Abstract
We present the syntax and reduction rules for χ, an untyped language that is well suited to describe structures which we call “circuits” and which are made of parts that are connected by wires. To demonstrate that χ gives an expressive platform, we will show how, even in an untyped setting, that we can faithfully embed algebraic objects and elaborate calculi, like the naturals, the λ-calculus, Bloe and Rose’s calculus of explicit substitutions λx, and Parigot’s λμ.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. Journal of Functional Programming 1(4), 375–416 (1991)
Appel, A.W., Jim, T.: Continuation-passing, closure-passing style. In: POPL1989, pp. 293–302 (1989)
van Bakel, S., Raghunandan, J.: Implementing X. In: TermGraph 2004, ENTCS (2005)
van Bakel, S., Raghunandan, J., Summers, A.: Term Graphs, α-conversion and Principal Types for χ (2005)
Barbanera, F., Berardi, S.: A symmetric lambda calculus for classical program extraction. Information and Computation 125(2), 103–117 (1996)
Barendregt, H.: The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam (1984)
Barendregt, H.P., Ghilezan, S.: Lambda terms for natural deduction, sequent calculus and cut-elimination. Journal of Functional Porgramming 10(1), 121–134 (2000)
Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: CSN 1995, pp. 62–72 (1995)
Curien, P.-L., Herbelin, H.: The duality of computation. In: ICFP 2000, pp. 233–243 (2000)
Danos, V., Joinet, J.-B., Schellinx, H.: Computational isomorphisms in classical logic (extended abstract). ENTCS 3 (1996)
Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: Linear logic. The Journal of Symbolic Logic 62 (1997)
Dragalin, A.G.: Mathematical Intuitionism: Introduction to Proof Theory. Translations of Mathematical Monographs, vol. 67. American Mathematical Society (1987)
Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
Girard, J.-Y.: A new constrcutive logic: classical logic. Mathematical Structures in Computer Science 1(3), 255–296 (1991)
Herbelin, H.: Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul de λ-termes et comme calcul de stratégies gagnantes. Thèse d’université, Université Paris 7 (1995)
Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M., van Bakel, S.: Intersection types for explicit substitutions. Information and Computation 189(1), 17–42 (2004)
Lengrand, S.: Call-by-value, call-by-name, and strong normalization for the classical sequent calculus. In: ENTCS, vol. 86, Elsevier, Amsterdam (2003)
Lescanne, P.: From λσ to λυ, a journey through calculi of explicit substitutions. In: POPL 1994, pp. 60–69. ACM, New York (1994)
Gentzen, G.: Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift 39, 176–210, 405–431 (1935); English translation in [20], pp. 68–131
Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1969)
Parigot, M.: An algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. M. Parigot, vol. 624, pp. 190–201. Springer, Heidelberg (1992)
Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge, Cambridge (2000)
Wadler, P.: Call-by-Value is Dual to Call-by-Name. In: ICFP 2003, pp. 189–201 (2003)
Whitehead, A.N., Russell, B.: Principia Mathematica. Cambridge University Press, Cambridge (1925)
Whitehead, A.N., Russell, B.: Principia Mathematica to *56. Cambridge University Press, Cambridge (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Bakel, S., Lengrand, S., Lescanne, P. (2005). The Language χ: Circuits, Computations and Classical Logic. In: Coppo, M., Lodi, E., Pinna, G.M. (eds) Theoretical Computer Science. ICTCS 2005. Lecture Notes in Computer Science, vol 3701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560586_8
Download citation
DOI: https://doi.org/10.1007/11560586_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29106-0
Online ISBN: 978-3-540-32024-1
eBook Packages: Computer ScienceComputer Science (R0)