Skip to main content

Symbolic Model Checking of Finite Precision Timed Automata

  • Conference paper
Theoretical Aspects of Computing – ICTAC 2005 (ICTAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3722))

Included in the following conference series:

  • 521 Accesses

Abstract

This paper introduces the notion of finite precision timed automata (FPTAs) and proposes a data structure to represent its symbolic states. To reduce the state space, FPTAs only record the integer values of clock variables together with the order of their most recent resets. We provide constraints under which the reachability checking of a timed automaton can be reduced to that of the corresponding FPTA, and then present an algorithm for reachability analysis. Finally, the paper reports some preliminary experimental results, and analyzes the advantages and disadvantages of the new data structure.

Supported by 973 Program of China under Grant No. 2002cb312200; and the National Natural Science Foundation of China under Grant Nos. 60273025, 60223005, 60421001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Henzinger, T.A.: A Really Temproal Logic. In: IEEE FOCS, pp. 164–169 (1989)

    Google Scholar 

  3. Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data-Structures for the Verification of Timed Automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 346–360. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Behrmann, G., Larsen, K.G., Weise, C., Wang, Y., Pearson, J.: Efficient Timed Reachability Analysis Using Clock Difference Diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  6. Bengtsson, J., Jonsson, B., Lilius, J., Wang, Y.: Partial Order Reductions for Timed System. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Bengtsson, J., Wang, Y.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.: Systems and Software Verification: Model-Checking Techniques and Tools. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  9. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A Tool for BDD-based Verification of Real-Time Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 122–125. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Bosnacki, D., Dams, D., Holenderski, L.: A Heuristic for Symmetry Reductions with Scalarsets. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 518–533. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a Model-Checking Tool for Real-Time Systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 298–302. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Bozga, M., Maler, O., Pnueli, A., Yovine, S.: Some Progress in the Symbolic Verification of Timed Automata. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 179–190. Springer, Heidelberg (1997)

    Google Scholar 

  13. Bryant, R.: Graph-based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  14. Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary Reachability Analysis of Discrete Pushdown Timed Automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 69–84. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  16. Daws, C., Yovine, S.: Reducing the Number of Clock Variables of Timed Automata. In: IEEE RTSS, pp. 73–81 (1996)

    Google Scholar 

  17. Gerd, B., Johan, B., Alexandre, D., Larsen, K.G., Paul, P., Wang, Y.: UPPAAL Implementation Secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Hendriks, M., Behrmann, G., Larsen, K.G., Vaandrager, F.: Adding Symmetry Reduction to Uppaal. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 46–59. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Lamport, L.: A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems 5(1), 1–11 (1987)

    Article  Google Scholar 

  20. Larsen, K.G., Pettersson, P., Wang, Y.: UPPAAL in a Nutshell. International Journal on Software Tools for Technology Transfer 1(1/2), 134–152 (1997)

    MATH  Google Scholar 

  21. Raskin, J.F., Schoebbens, P.: Real-Time Logics: Fictitious Clock as an Abstraction of Dense Time. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 165–182. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  22. Wang, F.: Efficient Data Structure for Fully Symbolic Verification of Real-Time Software Systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 157–171. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Wang, F.: Region Encoding Diagram for Fully Symbolic Verification of Real-Time Systems. In: COMPSAC, pp. 509–515 (2000)

    Google Scholar 

  24. Wang, F.: Efficient Verification of Timed Automata with BDD-like Data-Structures. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 189–205. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Wang, F.: Formal Verification of Timed Systems: A Survery and Perspective. Proceedings of the IEEE 92(8), 1283–1307 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, R., Li, G., Tang, Z. (2005). Symbolic Model Checking of Finite Precision Timed Automata. In: Van Hung, D., Wirsing, M. (eds) Theoretical Aspects of Computing – ICTAC 2005. ICTAC 2005. Lecture Notes in Computer Science, vol 3722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560647_18

Download citation

  • DOI: https://doi.org/10.1007/11560647_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29107-7

  • Online ISBN: 978-3-540-32072-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics