
On cool congruence formats for weak bisimulations

Author:
van Glabbeek, Robert

Publication details:
Proceedings International Colloquium on Theoretical Aspects of Computing
(LNCS 3722)
pp. 318-333
3540291075 (ISBN)

Event details:
International Colloquium on Theoretical Aspects of Computing, ICTAC05
Hanoi, Vietnam

Publication Date:
2005

Publisher DOI:
http://dx.doi.org/10.1007/11560647_21

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/44468 in https://
unsworks.unsw.edu.au on 2024-05-04

http://dx.doi.org/http://dx.doi.org/10.1007/11560647_21
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/44468
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

On Cool Congruence Formats

for Weak Bisimulations
(extended abstract)

Rob van Glabbeek

National ICT Australia
and School of Computer Science and Engineering

The University of New South Wales
rvg@cs.stanford.edu

Abstract. In TCS 146, Bard Bloom presented rule formats for four
main notions of bisimulation with silent moves. He proved that weak
bisimulation equivalence is a congruence for any process algebra defined
by WB cool rules, and established similar results for rooted weak bisim-
ulation (Milner’s “observational congruence”), branching bisimulation
and rooted branching bisimulation. This study reformulates Bloom’s re-
sults in a more accessible form and contributes analogues for (rooted)
η-bisimulation and (rooted) delay bisimulation. Moreover, finite equa-
tional axiomatisations of rooted weak bisimulation equivalence are pro-
vided that are sound and complete for finite processes in any RWB cool
process algebra. These require the introduction of auxiliary operators
with lookahead. Finally, a challenge is presented for which Bloom’s for-
mats fall short and further improvement is called for.

Introduction

Structural Operational Semantics [8, 10] is one of the main methods for defining
the meaning of operators in system description languages like CCS [8]. A system
behaviour, or process, is represented by a closed term built from a collection of
operators, and the behaviour of a process is given by its collection of (outgo-
ing) transitions, each specifying the action the process performs by taking this
transition, and the process that results after doing so. For each n-ary operator
f in the language, a number of transition rules are specified that generate the
transitions of a term f(p1, . . . , pn) from the transitions (or the absence thereof)
of its arguments p1, . . . , pn.

For purposes of representation and verification, several behavioural equiva-
lence relations have been defined on processes, of which the most well-known is
strong bisimulation equivalence [8], and its variants weak and branching bisimu-
lation equivalence [8, 7], that feature abstraction from internal actions. In order
to allow compositional system verification, such equivalence relations need to be
congruences for the operators under consideration, meaning that the equivalence
class of an n-ary operator f applied to arguments p1, . . . , pn is completely de-
termined by the equivalence classes of these arguments. Although strong bisim-
ulation equivalence is a congruence for the operators of CCS and many other

2 Rob van Glabbeek

languages found in the literature, weak bisimulation equivalence fails to be a
congruence for the choice or alternative composition operator + of CCS. To by-
pass this problem one uses the coarsest congruence relation for + that is finer
than weak bisimulation equivalence, characterised as rooted weak bisimulation
equivalence [8, 3], which turns out to be a minor variation of weak bisimulation
equivalence, and a congruence for all of CCS and many other languages. Anal-
ogously, rooted branching bisimulation is the coarsest congruence for CCS and
many other languages that is finer than branching bisimulation equivalence [7].

In order to streamline the process of proving that a certain equivalence is
a congruence for certain operators, and to guide sensible language definitions,
syntactic criteria (rule formats) for the transition rules in structural operational
semantics have been developed, ensuring that the equivalence is a congruence for
any operator specified by rules that meet these criteria. One of these is the GSOS
format of Bloom, Istrail & Meyer [5], generalising an earlier format by De
Simone [11]. When adhering to this format, all processes are computably finitely
branching, and strong bisimulation equivalence is a congruence [5]. Bloom [4]
defines congruence formats for (rooted) weak and branching bisimulation equiv-
alence by imposing additional restrictions on the GSOS format. As is customary
in this field, finer equivalences have wider formats, so Bloom’s BB cool GSOS for-
mat, which guarantees that branching bisimulation equivalence is a congruence,
is more general than his WB cool GSOS format, which suits weak bisimulation
equivalence; also his RWB cool GSOS format, suiting rooted weak bisimulation,
is more general than the WB cool GSOS format, and his RBB cool GSOS format,
guaranteeing that rooted branching bisimulation equivalence is a congruence, is
the finest of all. The prime motivating example for these formats is the struc-
tural operational semantics of CCS [8]. All CCS operators are RWB cool, and
the CCS operators other than the + are even WB cool.

Bloom’s formats involve a fast bookkeeping effort of names of variables, used
to precisely formulate the bifurcation rules that his formats require. To make
his work more accessible, Bloom also presents simpler but less general versions
of his formats, obtained by imposing an additional syntactic restriction. This
restriction makes it possible to simplify the bifurcation rules to patience rules ,
which do not require such an extensive bookkeeping. Fokkink [6] generalises
Bloom’s simply RBB cool format to a format he calls RBB safe, and writes “The
definition of bifurcation rules is deplorably complicated, and we do not know
of any examples from the literature that are RBB cool but not simply RBB
cool. Therefore, we refrain from this generalisation here.” Ulidowski [12–14]
studies congruence formats for variations of the semantic equivalences mentioned
above with a different treatment of divergence. Ulidowski’s formats form the
counterparts of Bloom’s simply cool formats only.

The main aim of the present study is to simplify and further clarify Bloom’s
work, so as to make it more accessible for the development of applications, vari-
ations and extensions. In passing, analogous results are obtained for two equiva-
lences, and their rooted variants, that bridge the gap between weak and branch-
ing bisimulation. Moreover, the method of Aceto, Bloom & Vaandrager [1]
to extract from any GSOS language a finite equational axiomatisation that

On Cool Congruence Formats for Weak Bisimulations 3

is sound and complete for strong bisimulation equivalence on finite processes,
is adapted to rooted weak bisimulation equivalence. In the construction fresh
function symbols may need be added whose transition rules have lookahead and
thereby fall outside the GSOS format.

One of the simplifications of Bloom’s formats presented here stems from the
observation that the operators in any of the cool formats can be partitioned
in principal operators and abbreviations, such that the abbreviations can be
regarded as syntactic sugar, adding nothing that could not be expressed with
principal operators. For any abbreviation f there exists a principal operator
f? that typically takes more arguments. For instance, f(x1, x2) could be an
abbreviation of f?(x1, x1, x2). The rules for the abbreviations are completely
determined by the rules for the principal operators, and for principal operators
patience rules suffice, i.e. one does not need the full generality of bifurcation rules.
Moreover, the simply cool formats can be characterised by the requirement that
all operators are principal. These observations make it possible to define the cool
formats of Bloom without mentioning bifurcation rules altogether. It also enables
a drastic simplification of the congruence proofs, namely by establishing the
congruence results for the simply cool formats first, and reducing the general case
to the simple case by means of some general insights in abbreviation expansion.

Even though any operation that fits the cool formats can also be defined
using merely the simply cool formats, in practice it may be handy to work with
the full generality of the cool formats. The unary copying operator cp of [5]
(page 257) for instance does not fit the cool formats directly, but can be made
to fit by adding an auxiliary binary copying operator to the language, of which
the unary one is an abbreviation. Dumping the abbreviation from the language
would appear unnatural here, as the unary operator motivates the rules for both
itself and its binary expansion, the latter being needed merely to make it work.

Another simplification contributed here is in the description of the RWB cool
format. Bloom requires for every operational rule with target t the existence of
two terms t1 and t2, and seven types of derived operational rules. I show that
without limitation of generality it is always possible to choose t2 = t, thereby
making four of those seven types of rules redundant. Thus, the same format is
obtained by requiring only t1 and two types of derived rules (the third being a
patience rule, that was already required for its own sake).

After defining the basic concepts in Section 1, I present the simply cool
congruence formats in Section 2. Section 3 presents the theory of abbreviations
that lifts the results from the simple to the general formats, and Sect. 4 deals
with the rooted congruence formats. Section 5 compares my definitions of the
cool formats with the ones of Bloom. Section 6 recapitulates the method of [1] to
provide finite equational axiomatisations of strong bisimulation equivalence that
are sound and complete for finite processes on an augmentation of any given
GSOS language, and Sect. 7 extends this work to the rooted weak equivalences.
Finally, Sect. 8 presents a fairly intuitive GSOS language for which the existing
congruence formats fall short and further improvement is called for.

Acknowledgement. My thanks to Simone Tini for inspiration.

4 Rob van Glabbeek

1 Preliminaries

In this paper V = {x1, x2, . . .} and Act are two sets of variables and actions.

Definition 1. A signature is a collection Σ of function symbols f 6∈ V equipped
with a function ar : Σ → IN. The set TT(Σ) of terms over a signature Σ is defined
recursively by:

• V ⊆ TT(Σ),

• if f ∈ Σ and t1, . . . , tar(f) ∈ TT(Σ) then f(t1, . . . , tar(f)) ∈ TT(Σ).

A term c() is abbreviated as c. For t ∈ TT(Σ), var (t) denotes the set of variables
that occur in t. T (Σ) is the set of closed terms over Σ, i.e. the terms p ∈ TT(Σ)
with var (p) = ∅. A Σ-substitution σ is a partial function from V to TT(Σ). If
σ is a substitution and S is any syntactic object, then σ(S) denotes the object
obtained from S by replacing, for x in the domain of σ, every occurrence of x in S
by σ(x). In that case σ(S) is called a substitution instance of S. A Σ-substitution
is closed if it is a total function from V to T (Σ).

Definition 2. Let Σ be a signature. A positive Σ-literal is an expression t
a

−→ t′

and a negative Σ-literal an expression t 6
a
−→ with t, t′ ∈ TT(Σ) and a ∈ Act.

A transition rule over Σ is an expression of the form H
α with H a set of Σ-

literals (the premises of the rule) and α a positive Σ-literal (the conclusion).
The left- and right-hand side of α are called the source and the target of the
rule, respectively. A rule H

α with H = ∅ is also written α. A transition system
specification (TSS), written (Σ, R), consists of a signature Σ and a set R of
transition rules over Σ. A TSS is positive if the premises of its rules are positive.

Definition 3. [5] A GSOS rule is a transition rule such that

• its source has the form f(x1, . . . , xar(f)) with f ∈ Σ and xi ∈ V ,

• the left-hand sides of its premises are variables xi with 1 ≤ i ≤ ar(f),

• the right-hand sides of its positive premises are variables that that are all
distinct, and that do not occur in its source,

• its target only contains variables that also occur in its source or premises.

A GSOS language, or TSS in GSOS format, is a TSS whose rules are GSOS
rules.

Definition 4. A transition over a signature Σ is a closed positive Σ-literal.
With structural recursion on p one defines when a GSOS language L generates
a transition p

a
−→ p′ (notation p

a
−→L p′):

f(p1, . . . , pn)
a

−→L q iff L has a transition rule H

f(x1,...,xn)
a

−→t
and there is a

closed substitution σ with σ(xi) = pi for i = 1, ..., n and σ(t) = q, such that

pi
c

−→L σ(y) for (xi
c

−→ y) ∈ H and ¬∃r(pi
c

−→L r) for (xi 6
c
−→) ∈ H .

Henceforth a GSOS language L over a signature Σ is assumed, and closed Σ-
terms will be called processes. The subscript L will often be suppressed. More-

over, Act = A
.

∪ {τ} with τ the silent move or hidden action.

On Cool Congruence Formats for Weak Bisimulations 5

Definition 5. Two processes t and u are weak bisimulation equivalent or weakly
bisimilar (t↔w u) if tRu for a symmetric binary relation R on processes (a weak
bisimulation) satisfying, for a ∈ Act,

if pRq and p
a

−→ p′ then ∃q1, q2, q
′ such that q =⇒ q1

(a)
−→ q2 =⇒ q′ ∧ p′Rq′. (*)

Here p =⇒ p′ abbreviates p = p0
τ

−→ p1
τ

−→ · · ·
τ

−→ pn = p′ for some n ≥ 0,

whereas p
(a)
−→ p′ abbreviates (p

a
−→ p′) ∨ (a = τ ∧ p = p′).

t and u are η-bisimilar (t↔η u) if in (*) one additionally requires pRq1;
t and u are delay bisimilar (t↔d u) if in (*) one additionally requires q2 = q′;
t and u are branching bisimilar (t↔b u) if in (*) one requires both;

t and u are strongly bisimilar (t↔ u) if in (*) one simply requires q
a

−→ q′.
Two processes t and u are rooted weak bisimulation equivalent (t↔rw u), if they
satisfy

if t
a

−→ t′ then ∃u1, u2, u such that u =⇒ u1
a

−→ u2 =⇒ u′ and t′↔w u′, and

if u
a

−→ u′ then ∃t1, t2, t such that t =⇒ t1
a

−→ t2 =⇒ t′ and t′↔w u′.

They are rooted η-bisimilar (t↔rη u) if above one additionally requires u1 = u,
t1 = t, and t′ ↔η u′, they are rooted delay bisimilar (t ↔rd u) if one requires
u2 = u′, t2 = t′ and t′↔d u′, and they are rooted branching bisimilar (t↔rb u) if
one requires u1 = u, u2 = u′, t1 = t, t2 = t′ and t′↔b u′.

It is well known and easy to check that the nine relations on processes defined
above are equivalence relations indeed [2, 7], and that, for x ∈ {weak, η, de-
lay, branching, strong}, x-bisimulation equivalence is the largest x-bisimulation
relation on processes. Moreover, p↔rx q implies p↔x q.

Definition 6. An equivalence relation ∼ on processes is a congruence if

pi ∼ qi for i = 1, . . . , ar(f) ⇒ f(p1, . . . , par(f)) ∼ f(q1, . . . , qar(f))

for all f ∈ Σ. This is equivalent to the requirement that for all t ∈ TT(Σ) and
closed substitutions σ, ν : V → T (Σ)

σ(x) = ν(x) for x ∈ var (t) ⇒ σ(t) = ν(t).

This note, and Bloom [4], deal with syntactic conditions on GSOS languages
that guarantee that the equivalence notions of Definition 5 are congruences.

2 Simply Cool GSOS Languages

In this section I define simply XB cool rule formats, for X∈ {W,D,H,B}, such
that on XB cool GSOS languages, X-bisimulation equivalence is a congruence.
In [5] it is shown that strong bisimulation equivalence is a congruence on any
GSOS language. The proof is pretty straightforward; it consists of showing that
the congruence-closure of ↔ is a bisimulation. The same idea can be applied
almost verbatim to ↔w , ↔d , ↔η and ↔b , once we have lemmas like Lemma 1
below. The simply XB cool formats contain the simplest syntactic requirements
that guarantee these lemmas to hold.

6 Rob van Glabbeek

Definition 7. Let L be a positive GSOS language. For an operator f in L, the
rules of f are the rules in L with source f(x1, ..., xar(f)).

• An operator in L is straight if it has no rules in which a variable occurs
multiple times in the left-hand side of its premises. An operator is smooth if
moreover it has no rules in which a variable occurs both in the target and
in the left-hand side of a premise.

• An argument i ∈ IN of an operator f is active if f has a rule in which xi

appears as left-hand side of a premise.

• A variable x occurring in a term t is receiving in t if t is the target of a rule
in L in which x is the right-hand side of a premise. An argument i ∈ IN of
an operator f is receiving if a variable x is receiving in a term t that has a
subterm f(t1, . . . , tn) with x occurring in ti.

• A rule of the form
xi

τ
−→ y

f(x1, . . . , xn)
τ

−→ f(x1, . . . , xn)[y/xi]
with 1 ≤ i ≤ n is

called a patience rule for the ith argument of f . Here t[y/x] denotes term t
with all occurrences of x replaced by y.

Definition 8. A GSOS language L is simply WB cool if it is positive and

1. all operators in L are straight,

2. patience rules are the only rules in L with τ -premises,

3. every active argument of an operator has a patience rule,

4. every receiving argument of an operator has a patience rule,

5. all operators in L are smooth.

The formats simply DB cool, simply HB cool and simply BB cool are defined
likewise, but skipping Clause 4 for DB and BB, and Clause 5 for HB and BB.

The simply WB and BB cool formats above coincide with the ones of [4], whereas
the simply DB cool format coincides with the eb format of [13].

Lemma 1. Let L be simply WB cool, let H

s
a

−→t
be a rule in L, and let ν be a

closed substitution such that ν(x)=⇒
(c)
−→=⇒ν(y) for each premise x

c
−→y in H.

Then ν(s) =⇒
(a)
−→=⇒ ν(t).

Similar lemmas can be obtained for the other three formats, and these yield the
following congruence results. The proofs are in the full version of this paper.

Theorem 1. On any simply WB cool GSOS language, ↔w is a congruence.
On any simply DB cool GSOS language, ↔d is a congruence.
On any simply HB cool GSOS language, ↔η is a congruence.
On any simply BB cool GSOS language, ↔b is a congruence.

3 Cool GSOS Languages

In this section I will extend the simply XB cool rule formats to XB cool rule
formats and establish the associated congruence theorems (X∈ {W,D,H,B}).

On Cool Congruence Formats for Weak Bisimulations 7

Definition 9. A GSOS language is two-tiered if its operators are partitioned
into abbreviations and principal operators, and for every abbreviation f a prin-
cipal operator f? is specified, together with a substitution
σf : {x1, . . . , xar(f?)} → {x1, . . . , xar(f)}, such that the rules of f are

{

σf (H)

f(x1, . . . , xar(f))
a

−→ σf (t)

∣

∣

∣

∣

∣

H

f?(x1, . . . , xar(f∗))
a

−→ t
is a rule of f?

}

.

Write f(i) for the j such that σf (xi) = xj ; take f? = f and f(i) = i in case f is
a principal operator.

Trivially, any positive GSOS language can be extended (straightened) to a two-
tiered GSOS language whose principal operators are straight and smooth [1].

Example 1. Let L have an operator f with rule x1
a

−→ y, x1
b

−→ z

f(x1, x2)
a

−→ f(x1, (f(y, x2))
.

L is straightened by adding a operator f ? with

x1
a

−→ y, x2
b

−→ z

f?(x1, x2, x3, x4)
a

−→ f(x3, f(y, x4))
.

In this case σf (x1) = σf (x2) = σf (x3) = x1 and σf (x4) = x2.

Equally trivial, f?(pf(1), ..., pf(n))
a

−→ t iff f(p1, ..., pn)
a

−→ t;
so f?(pf(1), ..., pf(n))↔ f(p1, ..., pn).

Definition 10. A two-tiered GSOS language L is WB cool if it is positive and

1. all principal operators in L are straight,

2. patience rules are the only rules of principal operators with τ -premises,

3. every active argument of a principal operator has a patience rule,

4. if argument f(i) of f is receiving, then argument i of f ? has a patience rule,

5. all principal operators in L are smooth.

The formats DB cool, HB cool and BB cool are defined likewise, but skipping
Clause 4 for DB and BB, and Clause 5 for HB and BB. Clause 4 may be weakened
slightly; see Sect. 3.1.

Note that the simply cool formats defined before are exactly the cool formats
with the extra restriction that all operators are principal.

Theorem 2. On any WB cool GSOS language, ↔w is a congruence.
On any DB cool GSOS language, ↔d is a congruence.
On any HB cool GSOS language, ↔η is a congruence.
On any BB cool GSOS language, ↔b is a congruence.

Given that the cool GSOS languages differ from the simply cool GSOS language
only by the addition of operators that can be regarded as syntactic sugar, the
theorems above are a simple consequence of the corresponding theorems for
simply cool GSOS languages. Details are in the full version of this paper.

8 Rob van Glabbeek

3.1 A Small Extension

Say that an argument i of an operator f is ignored if f ? has no argument k with
f(k) = i. In that case there can be no rule with source f(x1, . . . , xar(f)) with xi in
its premises or in its target. A subterm u of a term t is irrelevant if occurs within
an ignored argument ti of a subterm f(t1, . . . , tar(f)) of t. Now Definition 7 of an
argument of an operator being receiving may be strengthened by replacing “a
subterm f(t1, . . . , tn) with x occurring in ti” by “a relevant subterm f(t1, . . . , tn)
with x a relevant subterm of ti”. This yields a slight weakening of Clause 4 in
Definition 10, still sufficient to obtain Theorem 2.

Example 2. Let L have a rule
x1

a
−→ y

g(x1)
a

−→ f(h(f(x1, y)), k(y))
. By Definition 7

both the arguments of h and k are receiving, so Clause 4 in Definition 10 demands
patience rules for both h? and k?. Now suppose that h? = h, k? = k, ar(f?) = 1
and σf (x1) = x1. This means that f(x1, x2) is an abbreviation for f?(x1) and
the second argument of f is ignored. In such a case f(p, q)↔ f(p, r) for all closed
terms p, q and r. Now the weakened Clause 4 does not demand a patience rule
for either h? or k?, since the arguments of h and k are no longer receiving.

4 Rooted Cool GSOS Languages

In this section I will define the (simply) RWB, RDB, RHB and RBB cool rule
formats and establish the associated congruence theorems. In order to formulate
the requirements for the RWB and RDB cool GSOS languages I need the concept
of a ruloid, this being a kind of derived GSOS rule.

Definition 11. For r transition rule, let RHS(r) denote the set of right-hand
sides of its premises. Let L be a positive GSOS language. The class of L-ruloids
is the smallest set of rules such that

• x
a

−→y

x
a

−→y
is an L-ruloid, for every x, y ∈ V and a ∈ Act;

• if σ is a substitution, L has a rule H

s
a

−→t
, and for every premise x

c
−→ y in H

there is an L-ruloid ry =
Hy

σ(x)
c

−→σ(y)
such that the sets RHS(ry) are pairwise

disjoint and each RHS(ry) is disjoint with var(σ(s)), then

⋃

y∈H
Hy

σ(s)
a

−→σ(t)
is an

L-ruloid.

Note that a transition α, seen as a rule ∅

α , is an L-ruloid iff it is generated by
L in the sense of Definition 4. The left-hand sides of premises of a ruloid are
variables that occur in its source, and the right-hand sides are variables that are
all distinct and do not occur in its source. Its target only contains variables that
also occur elsewhere in the rule.

Example 3. Let L contain the rule
x1

a
−→ y1 x2

b
−→ y2

f(x1, x2)
a

−→ g(x1, y1)
. Then L has ruloids

x
a

−→ x′ y
b

−→ y′

f(x, y)
a

−→ g(x, x′)
and

x
a

−→ x′ y
b

−→ y′ z
b

−→ z′

f(f(x, y), z)
a

−→ g(f(x, y), g(x, x′))
.

On Cool Congruence Formats for Weak Bisimulations 9

Definition 12. A GSOS language L is RWB cool if the operators can be par-
titioned in tame and wild ones, such that

1. the target of every rule contains only tame operations;

2. the sublanguage Ltame of tame operators in L is WB cool;

3. L is positive, and for each rule H

s
a

−→t
there is a term u and a substitution

σ : var (u) → var(s) such that

– there is an L-ruloid K

u
a

−→v
with σ(K) = H and σ(v) = t,

– and for every premise x
c

−→ y in K, L has a rule σ(x)
τ

−→y

s
τ

−→σ(u[y/x])
;

(4. if argument f(i) of f is receiving, then argument i of f ? has a patience rule.)

The formats RDB cool, RHB cool and RBB cool are defined likewise, adapting
“WB cool” in the second clause appropriately, but skipping the third clause for
RHB and RBB, and the last one for RDB and RBB. The last clause cannot
be skipped for RHB. The simply RXB cool rule formats (X∈ {W,D,H,B}) are
obtained by requiring the sublanguage of tame operators to be simply XB cool.

Note that in the third clause, u, σ and the ruloid can always be chosen in such a
way that v = t. The instance of this clause with s = f(x1, . . . , xar(f)) for a tame
operator f is (in the full version of this paper) easily seen to be redundant.

The last clause above appeared before as Clause 4 in Definition 10 of the
WB and HB cool formats. Given that a term with a receiving variable cannot
contain wild operators, this clause is almost implied by Clause 2 above. All it
adds, is that the requirement of Clause 4 for the sublanguage of tame operators
applies to “receiving in L” instead of merely “receiving in Ltame ”. Thus, the
rules for the wild operators help determine which variables in a term t count as
receiving. The following results are obtained in the full version of this paper.

Proposition 1. In the definition of RWB cool above, Clause 4 is redundant.

Theorem 3. On any RWB cool GSOS language, ↔rw is a congruence.
On any RDB cool GSOS language, ↔rd is a congruence.
On any RHB cool GSOS language, ↔rη is a congruence.
On any RBB cool GSOS language, ↔rb is a congruence.

Example 4. The following fragment of CCS has the constant 0, unary operators
a. , binary operators + and ‖, and instances of the GSOS rules below. Here a
ranges over Act = N

.

∪ N
.

∪ {τ} with N a set of names and N = {a | a ∈ N}
the set of co-names. The function · extends to N ∪N (but not to Act) by a = a.

x1
a

−→ y1

x1 + x2
a

−→ y1

x2
a

−→ y2

x1 + x2
a

−→ y2

a.x1
a

−→ x1

x1
a

−→ y1

x1‖x2
a

−→ y1‖x2

x2
a

−→ y2

x1‖x2
a

−→ x1‖y2

x1
a

−→ y1 x2
a

−→ y2

x1‖x2
τ

−→ y1‖y2

The sublanguage without the + is simply WB cool, and the entire GSOS lan-
guage is simply RWB cool. Clause 3 of Definition 12 applied to the ith rule for
the + is satisfied by taking u = x, σ(x) = xi, and the ruloid x

a
−→yi

x
a

−→yi

.

10 Rob van Glabbeek

5 Comparison with Bloom’s Formats

Bloom’s definitions of the cool formats differ in five ways from mine.
First of all Bloom requires bifurcation rules for all operators in Ltame, whereas

I merely require patience rules for the principal operators. As principal operators
in Ltame are straight, and bifurcation rules for straight operators are exactly
patience rules, the difference is that I dropped the bifurcation requirement for
abbreviations (non-principal operators). This is possible, because by Definition 9,
which corresponds to Definition 3.5.5 in [4], the rules for the abbreviations are
completely determined by the rules for their straightenings, and it turns out
that a bifurcation rule of an abbreviation f is exactly what is determined by the
corresponding patience rule for its straightening f ?.

Bloom requires the existence of bifurcation/patience ruloids for receiving
variables in any term, whereas I require them for receiving arguments of oper-
ators, which is a more syntactic and easy to check requirement. The two ap-
proaches are shown equivalent in the full version of this paper when using the
extension of my formats of Sect. 3.1, this being the reason behind that extension.

Bloom’s WB and RWB cool formats use a so-called ε-presentation. This
entails that rules may have premises of the form x

ε
−→ y. In terms of Definition 4,

the meaning of such premises is given by the requirement that σ(x) = σ(y) for
(x

ε
−→ y) ∈ H . By using ε-premises, any rule can be given a form in which the

target is a univariate term, having no variables in common with the source.
This allows a simplification of the statement of the bifurcation ruloids. Any ε-
presented GSOS language can be converted to ε-free form by substitution, in
each rule r, x for y for every premise x

ε
−→ y of r. I believe that my conventions

for naming variables improve the ones of [4].
Bloom’s rendering of the RWB cool format doesn’t fea-

ture Clause 4 (and in view of Prop. 1, neither does mine),
but Clause 3 is much more involved. For every rule with
conclusion s

a
−→ t Bloom requires the existence of two

terms t1 and t2 and seven types of derived operational
rules, such that the diagram on the right commutes. My

s t

t1 t2

a

a

a

a

τ τ

τ τ

Clause 3 stems from the observation that, given Bloom’s other restrictions, t
necessarily has the rules required for t2, so that one may always choose t2 = t.
This leaves only t1 (called u in Definition 12) and three types of rules, one of
which (the t1-loop in the diagram above) is in fact a bifurcation rule whose
existence is already implied by the requirements of Definition 10.

In Clause 3 of Definition 12, Bloom requires that

var(u) = {y′ | y∈var (t)} and σ(y′) =

{

x if H contains a premise x
c

−→ y
y otherwise.

(1)

In order to match Bloom’s format I could have done the same, but this condition
is not needed in the proof and reduces the generality of the format.

Proposition 2. A GSOS language is WB cool, respectively RWB, BB or RBB
cool, as defined here, with the extension of Sect. 3.1 and the restriction (1) above,
iff it is WB cool, resp. RWB, BB or RBB cool, as defined in Bloom [4].

On Cool Congruence Formats for Weak Bisimulations 11

Moreover, my proofs that cool languages are compositional for bisimulation
equivalences greatly simplify the ones of Bloom [4] by using a reduction of the
general case to the simple case, instead of treating the general formats directly.

6 Turning GSOS Rules into Equations

This section recapitulates the method of [1] to provide finite equational axioma-
tisations of ↔ on an augmentation of any given GSOS language.

Definition 13. A process p, being a closed term in a GSOS language, is finite
if there are only finitely many sequences of transitions p

a1−→ p1
a2−→ · · ·

an−→ pn.
The length n of the longest sequence of this form is called the depth of p.

Definition 14. An equational axiomatisation Ax over a signature Σ is a set
of equations t = u, called axioms, with t, u ∈ TT(Σ). It respects an equivalence
relation ∼ on T (Σ) if σ(t) ∼ σ(u) for any closed substitution σ : V → T (Σ).

An instance of axiom t = u is an equation σ(C[t/x]) = σ(C[u/x]) where σ is
a substitution and C a term with var(C)={x}, and x occurring only once in C.
An equation p = q is derivable from Ax, notation p =Ax q, if there is a sequence
p0, . . . , pn of terms with n ≥ 0 such that p = p0, q = pn and for i = 1, . . . , n the
equation pi−1 = pi is an instance of one of the axioms.

Ax is sound for ∼ if p =Ax q implies p ∼ q for p, q ∈ T (Σ). Ax is complete
for ∼ on finite processes if p ∼ q implies p =Ax q for finite processes p and q.

Note that Ax is sound for ∼ iff Ax respects ∼ and ∼ is a congruence.

Definition 15. A GSOS language L extends BCCS (basic CCS) if it contains
the operators 0, a. and + of Example 4.
A basic process is a closed term build from the operators mentioned above only.
A head normal form is a closed term of the form 0+a1.p1 + · · ·+an.pn for n ≥ 0.
An axiomatisation on L is head normalising if any term f(p1, . . . , par(f)) with
the pi basic processes can be converted into head normal form.

Proposition 3. Let L be a GSOS language extending BCCS, and Ax a head
normalising equational axiomatisation, respecting ↔ , and containing the axioms
A1–4 of Table 1. Then Ax is sound and complete for ↔ on finite processes.

x + (y + z) = (x + y) + z A1 x‖y = x‖
−

y + y‖
−

x + x|y CM1

x + y = y + x A2 a.x‖−y = a.(x‖y) CM2

x + x = x A3 0‖
−

y = 0 CM3

x + 0 = x A4 (x + y)‖−z = x‖−z + y‖−z CM4

a.x|a.y = τ.(x‖y) CM5
a.(τ.(x + y) + x) = a.(x + y) T1 a.x|b.y = 0 (if b 6= a) CM6

τ.x + x = τ.x T2 0|x = x|0 = 0 CM7
a.(τ.x + y) + a.x = a.(τ.x + y) T3 (x + y)|z = x|z + y|z CM8

x|(y + z) = x|y + x|z CM9

Table 1. Complete equational axiomatisations of BCCS and the parallel composition

12 Rob van Glabbeek

Proof. Using induction on the depth of p and a nested structural induction, the
axioms can convert any finite process p into a basic process. Here one uses that
strongly bisimilar processes have the same depth. Now apply the well-known fact
that the axioms A1–4 are sound and complete for ↔ on basic processes [8].

For the parallel composition operator ‖ of CCS no finite equational head nor-
malising axiomatisation respecting strong bisimulation equivalence exists [9].
However, Bergstra & Klop [3] gave such an axiomatisation on the language
obtained by adding two auxiliary operators, the left merge ‖− and the communi-

cation merge |, with rules
x1

a
−→ y1

x1‖−x2
a

−→ y1‖x2

and
x1

a
−→ y1 x2

a
−→ y2

x1|x2
τ

−→ y1‖y2

, provided

the alphabet Act of actions is finite. The axioms are CM1–9 of Table 1, in which
+ binds weakest and a. strongest, and a, b range over Act.

Aceto, Bloom & Vaandrager [1] generalise this idea to arbitrary GSOS
languages with finitely many rules, each with finitely many premises, and assum-
ing a finite alphabet Act. I recapitulate their method for positive languages only.

A smooth operator (Definition 7) only has rules of the form
{xi

ci−→ yi | i∈I}

f(x1, . . . , xn)
a

−→ t
.

The trigger of such a rule is the partial function ↑r: {i, . . . , n} ⇀ Act given by
↑r (i) = ci if i∈I , and ↑r (i) is undefined otherwise.

Definition 16. [1] A smooth GSOS operator f is distinctive, if no two rules of
f have the same trigger, and the triggers of all rules of f have the same domain.

All operators of CCS, as well as ‖− and |, are smooth. The operators 0, a. , ‖−
and | are distinctive, but ‖ is not. Its triggers have domains {1}, {2} and {1, 2}.

For every smooth and distinctive operator f , Aceto, Bloom & Vaan-
drager declare four types of axioms. First of all, for every rule r as above there
is an axiom f(σ(x1), . . . , σ(xn)) = a.σ(t), where σ : {x1, . . . , xn} → TT(Σ) is the
substitution given by σ(xi) = ci.yi for i ∈ I and σ(xi) = xi for i 6∈ I . Such an
axiom is called an action law. Examples are CM2 and CM5 in Table 1.

Secondly, whenever I is the set of active arguments of f , but f has no rule of
the form above (where the name of the variables yi is of no importance), there
is an axiom f(σ(x1), . . . , σ(xn)) = 0, with σ as above (for an arbitrary choice of
distinct variables yi). Such an axiom is an inaction law. An example is CM6. If
f has k active arguments, in total there are |Act|k action and inaction laws for
f , one for every conceivable trigger with as domain the active arguments of f .

Finally, for any active argument i of f , there are laws

f(x1, . . . xi−1, 0, xi+1, . . . , xn) = 0 and

f(x1, . . . , xi + x′
i, . . . , xn) = f(x1, . . . , xi, . . . , xn) + f(x1, . . . , x

′
i, . . . , xn).

Examples for the second type of inaction law are CM3 and CM7, and examples
of distributivity laws are CM4, CM8 and CM9.

It is not hard to see that all axioms above respect ↔ and that together they
bring any term f(p1, . . . , par(f)) with the pi basic processes in head normal form.

On Cool Congruence Formats for Weak Bisimulations 13

The method of [1] makes three types of additions to a given finite GSOS
language L, and provides an equational head normalising axiomatisation on the
resulting language, that respects strong bisimulation.

First of all, the operators 0, a. and + are added, if not already there. The
corresponding axioms are A1–4 of Table 1. If all other operators are smooth and
distinctive, for each of them the axioms just described are taken, which finishes
the job. (In the presence of negative premises, this step is slightly more complex.)

In case there are operators f that are smooth but not distinctive, the set of
operational rules of f is partitioned into subsets D such that no two rules in D
have the same trigger, and the triggers of all rules in D have the same domain.
Note that such a partition can always be found—possibly by taking exactly one
rule in each subset D. Now for any subset D in the partition, an operator fD with
ar(fD) = ar(f) is added to the language, whose rules are exactly the rules in
that subset, but with fD in the source. By definition, fD is distinctive. Now add
an axiom f(x1, . . . , xar(f)) =

∑

fD(x1, . . . , xar(f)), where the sum is taken over
all subsets in the partition, and apply the method above to the operators fD.
Again, it is trivial to check that the axioms respect ↔ and are head normalising.
Applied to the ‖ of CCS, this technique yields the left merge and communication
merge as auxiliary operators, as well as a right merge, and the axiom CM1.

In case of operators f that are not smooth, a smooth operator f ? is added
to L, of which f is an abbreviation in the sense of Definition 9 (cf. Example 1).
The treatment of f? proceeds as above, and the project is finished by the axiom

f(p1, ..., pn) = f?(pf(1), ..., pf(n)).

Besides completeness for finite processes, using an infinitary induction prin-
ciple the method of [1] even yields completeness for arbitrary processes. I will
not treat this here, as it does not generalise to weak equivalences.

7 Turning Cool GSOS Rules into Equations

The method of [1] does not apply to ↔w , ↔d , ↔η , and ↔b , because these
equivalences fail to be congruences for the +. However, Bloom [4] shows that the
method applies more or less verbatim to ↔rb . This section observes that the
same holds for ↔rη , and finds an adaptation to yield finite equational axioma-
tisations of ↔rw (resp. ↔rd) that are sound and complete for finite processes
on an augmentation of any RWB cool (resp. RDB cool) GSOS language.

On basic processes, the axioms A1–4 together with T1–T3 are complete for
↔rw [8], whereas complete axiomatisations for ↔rd , ↔rη and ↔rb are obtained
by dropping T3, T2 or both, respectively [7]. So in order to get axiomatisations
of these equivalences that are complete for finite processes, all that is needed is
head normalisation. The simplest approach is to use the same head normalising
axioms as in the previous section, reasoning that axioms that respect ↔ surely
respect a coarser equivalence like ↔rb or ↔rw . The only way this approach
could fail is when the auxiliary operators generated by [1] fail to be congruences
for the equivalence relation at hand. The operators 0, a. and + are WB cool,

14 Rob van Glabbeek

and thus unproblematic. As observed in [4], for any RBB cool GSOS language,
the augmented language is also RBB cool. Namely, the new operators do not
show up in targets of new rules, so classifying all auxiliary operators as wild is
sufficient. Since the auxiliary operators do not increase the collection of receiving
arguments of operators either, it follows likewise that for any RHB cool GSOS
language, the augmented language is also RHB cool. Hence one obtains

Proposition 4. The method of [1], together with axiom T1 (and T3), yields
finite equational axiomatisations of ↔rb (resp. ↔rη) that are sound and com-
plete for finite processes on an augmentation of any RBB cool (resp. RHB cool)
GSOS language.

For ↔rw and ↔rd this approach fails. In particular, these equivalences fail to
be congruences for the communication merge: one has τ.a.0↔rd τ.a.0 + a.0 but

0↔ (τ.a.0|a.b.0) 6↔rd ((τ.a.0 + a.0)|a.b.0)↔ τ.b.0.

Conjecture. There exists no GSOS language including the parallel composition
of CCS and ≥2 visible actions that admits a finite equational axiomatisation of
weak bisimulation equivalence that is sound and complete for finite processes.

Nevertheless, such an axiomatisation was found by Bergstra & Klop [3],
using a variant of the communication merge that is not a GSOS operator. Their
axiomatisation of ‖ is obtained from the one in Table 1 by requiring a, b 6= τ
in CM6, and adding the axioms τ.x|y = x|τ.y = x|y. Here I generalise their
approach to arbitrary RWB cool (or RDB cool) GSOS languages.

The RWB cool format can be extended by allowing wild operators f , besides
GSOS rules satisfying Clause 3 of Definition 12, also to have rules of which
all premises have the form x =⇒

c
−→ y with c ∈ A. For such rules Clause 3

is not required, but in fulfilling Clause 4, they do count in determining which
arguments are receiving. A similar extension applies to the RDB cool format.

Theorem 4. On any extended-RWB cool TSS, ↔rw is a congruence.
On any extended-RDB cool TSS, ↔rd is a congruence.

In an RWB (or RDB) cool language, the smooth operators f ? that are needed to
axiomatise a non-smooth operator f are unproblematic. For tame operators f ,
they are already in the language, and for a wild f it is not hard to define them
in such a way that the augmented language remains RWB (or RDB) cool. Of the
operators fD needed to axiomatise a non-distinctive operator f , those that have
exactly one active argument can be made to satisfy Clause 3 of Definition 12
by including the relevant τ -rule in D. All operators fD with another number of
active arguments cannot have τ -premises, by Definitions 12 and 10. These op-
erators fD are replaced by counterparts f ′

D, obtained by replacing each premise

x
c

−→ y in a rule for fD by x =⇒
c

−→ y. By Theorem 4, ↔rw (or ↔rd) is
a congruence for f ′

D. Furthermore, f(x1, . . . , xar(f))↔rw

∑

f ′
D(x1, . . . , xar(f)).

Now the required axiomatisation is obtained by omitting all inaction laws for
the modified operators f ′

D with σ(xi) = τ.yi for some active argument i, and
instead adding τ -laws f ′

D(x1, . . . , τ.xi, . . . , xn) = f ′
D(x1, . . . , xi, . . . , xn).

On Cool Congruence Formats for Weak Bisimulations 15

8 A Challenge

All equivalences of Definition 5 are congruences of the GSOS language with rules
x1

a
−→ y

f(x1)
a

−→ g(y)

x1
τ

−→ y

g(x1)
τ

−→ g(y)
g(x1)

τ
−→!x1

x1
a

−→ y

!x1
a

−→ y‖!x1

x1
a

−→ y1

x1‖x2
a

−→ y1‖x2

x2
a

−→ y2

x1‖x2
a

−→ x1‖y2

for a∈Act. Here, the operator !x can be understood as a parallel composition of
infinitely many copies of x. The rules for f , g and ‖ are WB cool, but the one
for ! is not. It is not even RBB safe in the sense of [6].

Open problem. Find a congruence format that includes the language above.

References

1. L. Aceto, B. Bloom & F.W. Vaandrager (1994): Turning SOS rules into

equations. Information and Computation 111(1), pp. 1–52.
2. T. Basten (1996): Branching bisimulation is an equivalence indeed! Information

Processing Letters 58(3), pp. 141–147.
3. J.A. Bergstra & J.W. Klop (1985): Algebra of communicating processes with

abstraction. Theoretical Computer Science 37(1), pp. 77–121.
4. B. Bloom (1995): Structural operational semantics for weak bisimulations. The-

oretical Computer Science 146, pp. 25–68.
5. B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation can’t be traced. Jour-

nal of the ACM 42(1), pp. 232–268.
6. W.J. Fokkink (2000): Rooted branching bisimulation as a congruence. Journal of

Computer and System Sciences 60(1), pp. 13–37.
7. R.J. van Glabbeek & W.P. Weijland (1996): Branching time and abstraction

in bisimulation semantics. Journal of the ACM 43(3), pp. 555–600.
8. R. Milner (1990): Operational and algebraic semantics of concurrent processes.

In J. van Leeuwen, editor: Handbook of Theoretical Computer Science, chapter 19,
Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242. Alternatively see
Communication and Concurrency, Prentice-Hall International, Englewood Cliffs,
1989, or A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, 1980.

9. F. Moller (1990): The nonexistence of finite axiomatisations for CCS congru-

ences. In Proceedings 5th Annual Symposium on Logic in Computer Science,

Philadelphia, USA, IEEE Computer Society Press, pp. 142–153.
10. G.D. Plotkin (2004): A structural approach to operational semantics. The Journal

of Logic and Algebraic Programming 60–61, pp. 17–139. First appeared in 1981.
11. R. de Simone (1985): Higher-level synchronising devices in Meije-SCCS. Theo-

retical Computer Science 37, pp. 245–267.
12. I. Ulidowski (1992): Equivalences on observable processes. In Proceedings 7th

Annual Symposium on Logic in Computer Science, Santa Cruz, California, IEEE
Computer Society Press, pp. 148–159.

13. I. Ulidowski & I. Phillips (2002): Ordered SOS rules and process languages for

branching and eager bisimulations. Information & Computation 178, pp. 180–213.
14. I. Ulidowski & S. Yuen (2000): Process languages for rooted eager bisimulation.

In C. Palamidessi, editor: Proceedings of the 11th International Conference on
Concurrency Theory, CONCUR 2000, LNCS 1877, Springer, pp. 275–289.

