Abstract
We study how to efficiently combine satisfiability procedures built by using a superposition calculus with satisfiability procedures for theories, for which the superposition calculus may not apply (e.g., for various decidable fragments of Arithmetic). Our starting point is the Nelson-Oppen combination method, where satisfiability procedures cooperate by exchanging entailed (disjunction of) equalities between variables. We show that the superposition calculus deduces sufficiently many such equalities for convex theories (e.g., the theory of equality and the theory of lists) and disjunction of equalities for non-convex theories (e.g., the theory of arrays) to guarantee the completeness of the combination method. Experimental results on proof obligations extracted from the certification of auto-generated aerospace software confirm the efficiency of the approach. Finally, we show how to make satisfiability procedures built by superposition both incremental and resettable by using a hierarchic variant of the Nelson-Oppen method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a rewriting approach to satisfiability procedures: extension, combination of theories and an experimental appraisal. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 65–80. Springer, Heidelberg (2005)
Armando, A., Ranise, S., Rusinowitch, M.: A Rewriting Approach to Satisfiability Procedures. Info. and Comp. 183(2), 140–164 (2003)
Déharbe, D., Ranise, S.: Light-Weight Theorem Proving for Debugging and Verifying Units of Code. In: Proc. of the Int. Conf. on Software Engineering and Formal Methods (SEFM 2003). IEEE Comp. Soc. Press, Los Alamitos (2003)
Denney, E., Fischer, B., Schumann, J.: Using automated theorem provers to certify auto-generated aerospace software. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 198–212. Springer, Heidelberg (2004)
Dershowitz, N., Jouannaud, J.-P.: Handbook of Theoretical Computer Science, ch. 6. Rewrite Systems, vol. B, pp. 244–320. Elsevier Science Publishers B. V. North-Holland (1990)
Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A Theorem Prover for Program Checking. Technical Report HPL-2003-148, HP Laboratories (2003)
Ganzinger, H., Hillenbrand, T., Waldmann, U.: Superposition modulo a Shostak theory. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 182–196. Springer, Heidelberg (2003)
Kapur, D., Nie, X.: Reasoning about Numbers in Tecton. In: Proc. 8th Inl. Symp. Methodologies for Intelligent Systems, pp. 57–70 (1994)
Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.K.: On Superposition-Based Satisfiability Procedures and their Combination (Full Version), Available at http://www.loria.fr/~ranise/pubs/long-ictac05.ps.gz
Nelson, G.: Techniques for program verification. Technical Report CS-81-10, Xerox Palo Research Center California USA (1981)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Hand. of Automated Reasoning (2001)
Ranise, S., Ringeissen, C., Tran, D.-K.: Nelson-Oppen, Shostak and the Extended Canonizer: A Family Picture with a Newborn. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 372–386. Springer, Heidelberg (2005)
Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably infinite theories using many-sorted logic. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005)
Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3), 111–126 (2002)
Shostak, R.E.: Deciding combinations of theories. J. of the ACM 31, 1–12 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.K. (2005). On Superposition-Based Satisfiability Procedures and Their Combination. In: Van Hung, D., Wirsing, M. (eds) Theoretical Aspects of Computing – ICTAC 2005. ICTAC 2005. Lecture Notes in Computer Science, vol 3722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560647_39
Download citation
DOI: https://doi.org/10.1007/11560647_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29107-7
Online ISBN: 978-3-540-32072-2
eBook Packages: Computer ScienceComputer Science (R0)