Skip to main content

On Superposition-Based Satisfiability Procedures and Their Combination

  • Conference paper
Theoretical Aspects of Computing – ICTAC 2005 (ICTAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3722))

Included in the following conference series:

Abstract

We study how to efficiently combine satisfiability procedures built by using a superposition calculus with satisfiability procedures for theories, for which the superposition calculus may not apply (e.g., for various decidable fragments of Arithmetic). Our starting point is the Nelson-Oppen combination method, where satisfiability procedures cooperate by exchanging entailed (disjunction of) equalities between variables. We show that the superposition calculus deduces sufficiently many such equalities for convex theories (e.g., the theory of equality and the theory of lists) and disjunction of equalities for non-convex theories (e.g., the theory of arrays) to guarantee the completeness of the combination method. Experimental results on proof obligations extracted from the certification of auto-generated aerospace software confirm the efficiency of the approach. Finally, we show how to make satisfiability procedures built by superposition both incremental and resettable by using a hierarchic variant of the Nelson-Oppen method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a rewriting approach to satisfiability procedures: extension, combination of theories and an experimental appraisal. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 65–80. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Armando, A., Ranise, S., Rusinowitch, M.: A Rewriting Approach to Satisfiability Procedures. Info. and Comp. 183(2), 140–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Déharbe, D., Ranise, S.: Light-Weight Theorem Proving for Debugging and Verifying Units of Code. In: Proc. of the Int. Conf. on Software Engineering and Formal Methods (SEFM 2003). IEEE Comp. Soc. Press, Los Alamitos (2003)

    Google Scholar 

  4. Denney, E., Fischer, B., Schumann, J.: Using automated theorem provers to certify auto-generated aerospace software. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 198–212. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Dershowitz, N., Jouannaud, J.-P.: Handbook of Theoretical Computer Science, ch. 6. Rewrite Systems, vol. B, pp. 244–320. Elsevier Science Publishers B. V. North-Holland (1990)

    Google Scholar 

  6. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A Theorem Prover for Program Checking. Technical Report HPL-2003-148, HP Laboratories (2003)

    Google Scholar 

  7. Ganzinger, H., Hillenbrand, T., Waldmann, U.: Superposition modulo a Shostak theory. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 182–196. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Kapur, D., Nie, X.: Reasoning about Numbers in Tecton. In: Proc. 8th Inl. Symp. Methodologies for Intelligent Systems, pp. 57–70 (1994)

    Google Scholar 

  9. Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.K.: On Superposition-Based Satisfiability Procedures and their Combination (Full Version), Available at http://www.loria.fr/~ranise/pubs/long-ictac05.ps.gz

  10. Nelson, G.: Techniques for program verification. Technical Report CS-81-10, Xerox Palo Research Center California USA (1981)

    Google Scholar 

  11. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  12. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Hand. of Automated Reasoning (2001)

    Google Scholar 

  13. Ranise, S., Ringeissen, C., Tran, D.-K.: Nelson-Oppen, Shostak and the Extended Canonizer: A Family Picture with a Newborn. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 372–386. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably infinite theories using many-sorted logic. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3), 111–126 (2002)

    MATH  Google Scholar 

  16. Shostak, R.E.: Deciding combinations of theories. J. of the ACM 31, 1–12 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.K. (2005). On Superposition-Based Satisfiability Procedures and Their Combination. In: Van Hung, D., Wirsing, M. (eds) Theoretical Aspects of Computing – ICTAC 2005. ICTAC 2005. Lecture Notes in Computer Science, vol 3722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560647_39

Download citation

  • DOI: https://doi.org/10.1007/11560647_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29107-7

  • Online ISBN: 978-3-540-32072-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics