Skip to main content

5-Regular Graphs are 3-Colorable with Positive Probability

  • Conference paper
Algorithms – ESA 2005 (ESA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3669))

Included in the following conference series:

Abstract

We show that uniformly random 5-regular graphs of n vertices are 3-colorable with probability that is positive independently of n.

The 1st, 2nd, 4th and 5th authors are partially supported by Future and Emerging Technologies programme of the EU under contract 001907 “Dynamically Evolving, Large-Scale Information Systems (DELIS)”. The 1st author was partially supported by the Distinció de la Generalitat de Catalunya per a la promoció de la recerca, 2002. The 3rd and 4th authors are partially supported by European Social Fund (ESF), Operational Program for Educational and Vacational Training II (EPEAEK II), and particularly Pythagoras. Part of the research of the 4th author was conducted while visiting on a sabbatical the Departament de Llenguatges i Sistemes Informàtics of the Universitat Politècnica de Catalunya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Moore, C.: The asymptotic order of the random k-SAT threshold. In: Proc. 43th Annual Symp. on Foundations of Computer Science (FOCS), pp. 126–127 (2002)

    Google Scholar 

  2. Achlioptas, D., Moore, C.: Almost all graphs with degree 4 are 3-colorable. Journal of Computer and Systems Sciences 67(2), 441–471 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Achlioptas, D., Moore, C.: The chromatic number of random regular graphs. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 219–228. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a random graph. In: 36th Symposium on the Theory of Computing (STOC), pp. 587–593 (2004)

    Google Scholar 

  5. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of Combinatorics 1, 311–316 (1980)

    MATH  MathSciNet  Google Scholar 

  6. Bollobás, B.: Random Graphs. Academic Press, New York (1985)

    MATH  Google Scholar 

  7. Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific and Statistical Computing 16(5), 1190–1208 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. John Wiley, Chichester (2000)

    MATH  Google Scholar 

  9. Krza̧kała, F., Pagnani, A., Weigt, M.: Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs. Phys. Rev. E 70, 046705 (2004)

    Google Scholar 

  10. Łuczak, T.: The chromatic number of random graphs. Combinatorica 11, 45–54 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mézard, M., Zecchina, R.: Random K-satisfiability: from an analytic solution to a new efficient algorithm. Phys. Rev. E 66, 056126 (2002)

    Google Scholar 

  12. Molloy, M.: The Chromatic Number of Sparse Random Graphs. Master’s Thesis, University of Waterloo (1992)

    Google Scholar 

  13. Shi, L., Wormald, N.: Colouring random regular graphs Research Report CORR 2004-24, Faculty of Mathematics, University of Waterloo (2004)

    Google Scholar 

  14. Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Notes Series, vol. 267, pp. 239–298. Cambridge U. Press, Cambridg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, J., Grammatikopoulos, G., Kaporis, A.C., Kirousis, L.M., Pérez, X., Sotiropoulos, D.G. (2005). 5-Regular Graphs are 3-Colorable with Positive Probability. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_21

Download citation

  • DOI: https://doi.org/10.1007/11561071_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29118-3

  • Online ISBN: 978-3-540-31951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics