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Abstract. We show that uniformly random 5-regular graphs of n ver-
tices are 3-colorable with probability that is positive independently of n.

1 Introduction

The problem of finding the chromatic number of a graph has been a cornerstone
in the field of discrete mathematics and theoretical computer science. Recall that
the chromatic number of a graph is the minimum number of colors needed to
legally color the vertices of the graph, where a coloring is legal if no two adjacent
vertices share the same color. The problem is trivial for two colors but became
difficult for three or more colors. Due to the difficulty of the problem, a large
effort has been made in looking into structural properties of the problem, in
the hope of finding more efficient procedures which apply to larger families of
graphs.

An active line of research has been the characterization of classes of graphs
due to their chromatic number. In particular, intense effort has been devoted to
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the study of the chromatic number on random structures. One active approach
consists in finding the threshold pj of k-colorability for the binomial model
Ghn.p,- An early result in this line is presented in [I0], where it is shown that,
for any d € N, d > 0, 3k € N such that asymptotically almost surely (a.a.s.) the
chromatic number of G, 4/, is either k or k + 1. Recall that a sequence of events
&, holds a.a.s. if lim,, o, Pr [£,] = 1. Further results on the particular threshold
ps for 3-colorability can be found in the introduction of [2].

A related approach is to consider the chromatic number of random d-regular
graphs (i.e., graphs for which every vertex has degree d). For a comprehensive
review on random regular graphs, the reader is referred to [14].

For d > 6, a simple counting argument shows that d-regular graphs are not
3-colorable, a.a.s. In fact, Molloy and Reed [12] proved that 6-regular graphs
have chromatic number at least 4, a.a.s. Achlioptas and Moore [2] proved that
4-regular graphs have chromatic number 3 with uniform positive probability
(w.u.p.p.), where a sequence of events &, holds w.u.p.p. if liminf,, o, Pr[,] >
0. The proof was algorithmic in the sense that a backtracking-free algorithm
based on Brelaz’ heuristic was designed and shown to produce a 3-coloring
w.u.p.p. Subsequently, Achlioptas and Moore [3] showed that a.a.s. the chro-
matic number of a d-regular graph (d > 3 ) is k or k+ 1 or k+ 2, where k is the
smallest integer such that d < 2klogk. They also showed that if furthermore
d > (2k — 1)logk, then a.a.s. the chromatic number is either k¥ + 1 or k + 2.
This result however gives no information for the chromatic number of either
4-regular or 5-regular graphs, apart from the known fact that a.a.s. the former
have chromatic number either 3 or 4 and, the latter either 3 or 4 or 5. Shi and
Wormald [I3] showed that a.a.s. the chromatic number of a 4-regular graph is
3, that a.a.s. the chromatic number of a 6-regular graph is 4 and that a.a.s. the
chromatic number of a 5-regular graph is either 3 or 4. They also showed that
a.a.s. the chromatic number of a d-regular graph, for all other d up to 10, is
restricted to a range of two integers.

The above results leave open the question of whether the chromatic number
of a 5-regular graph can take the value 3 w.u.p.p., or perhaps even a.a.s.

On the other hand, building on a statistical mechanics analysis of the space
of truth assignments of the 3-SAT problem, which has not been shown yet to
be mathematically rigorous, and Survey Propagation (SP) algorithm for 3-SAT
inspired by this analysis (see e.g. [I1] and the references therein), Krzakala et al.
[9] provided strong evidence that 5-regular graphs are a.a.s. 3-colorable by a SP
algorithm. They also showed that the space of assignments of three colors to the
vertices (legal or not) consists of clusters of legal color assignments inside of which
one can move from point to point by steps of small Hamming distance. However,
to go from one cluster to another by such small steps, it is necessary to go through
assignments of colors that grossly violate the requirement of legality. Moreover,
the number of clusters that contain points with energy that is a local, but not
global, minimum is exponentially large. As a result, local search algorithms are
easily trapped into such local minima. These considerations left as the only
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plausible alternative to try to prove that 5-regular graphs are 3-colorable w.u.p.p.
in an analytic way.

In this paper, we solve in the positive the question, showing that 5-regular
graphs are 3-colorable w.u.p.p. The technique used is the Second Moment Method:
Let X be a non-negative random variable (r.v.), then

(E (X))
E(X2) @

Thus, if this ratio is ©(1), then we have that X > 0 w.u.p.p. This well known
technique (see Remark 3.1 in [8]) was used by Achiloptas and Naor [4] to solve
the long standing open problem of computing the two possible values of the
chromatic number of a random graph.

To apply the Second Moment Method, we work under the configuration model
(see [6]) and consider the r.v. X that counts a special type of colorings, which we
call the stable balanced 3-colorings. In Section 2, we give exact expressions for the
first and second moments of X, as sums of terms where each term consists of the
product of polynomial (in n) and exponential terms. In Section 3 we compute
the asymptotic values of those exact expressions, which turned out to be a non-
trivial task. We show that F(X?) = O((E(X))?), so that the probability in (I
is uniformly positive. Finally, the result is transferred from configurations to
random 5-regular graphs.

An important remaining open question that we are working on is the ex-
tension of our result to a.a.s. It is plausible that an affirmative answer to the
question can be obtained by concentration results similar to those in [3].

Pr(X > 0] >

2 Exact Expressions for the First and Second Moments

Everywhere in this paper n will denote a positive integer divisible by 6. Asymp-
totics are always in terms of n.

In the sense of the configuration model (see, e.g., [6] or [I4]), let C,, 5 be the
probability space of 5-regular configurations, obtained by considering a set of n
vertices, labelled 1, ..., n, for each of these vertices a set of 5 semi-edges, labelled
1,...,5, and a uniform random perfect matching of all 5n semi-edges. Each pair
of semi-edges according to the matching defines one edge of the configuration.

Definition 1. A 3-coloring of a configuration G € C, 5 is called stable if for
every verter v and every color i = 0,1,2, either v itself or one of its neighbors
are colored by i. Equivalently, for no single verter v can we change its color
without the appearance of an edge with the same color at its endpoints. A 3-
coloring is called balanced if for each i = 0,1,2, the number of vertices with
color i is n/3.

Given a configuration G € C,, 5, let Sg be the class of balanced stable 3-colorings
of G. Let X be the random variable that counts the number of balanced stable
3-colorings of C,, 5. Then, the following equations can be easily shown:

(5n)! _{(G,C)| G €Cns,C e Scl

|{G I G e Cn,5}| = 25"/2(571/2)!7 |{G | Ge Cn,5}| ’ (2)

E (X)
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G,C1,C2) | G E€Crps,C1,C2 € SGH

2y _ [
E(X) = {G | G € Cus}l ¥

2.1 First Moment

Below we assume we are given a configuration G and a balanced stable 3-coloring
C on G. The arithmetic in the indices is modulo 3. We start by giving some useful
terminology and notation:

Definition 2. A 1-spectrum s is an ordered pair of non-negative integers, s =
(s—1,51), such that s_1 +s1 =5 and s_1,s1 > 0.

Notice that there are four 1-spectra. They are intended to express the distribu-
tion of the five edges stemming from a given vertex according to the color of
their other endpoint. Formally, a vertex v of color ¢ is said to have 1-spectrum
s = (s-1,81), if s_1 out of its five edges are incident on vertices of color ¢ — 1
and the remaining s; edges are incident on vertices of color ¢ + 1. The condition
s—1,s1 > 0 expresses the fact that the 3-coloring is a stable one.

For each ¢ = 0,1,2 and 1-spectrum s, we denote by d(i; s) the scaled (with
respect to n) number of vertices of G which are colored by ¢ and have 1-spectrum
s. Then, > d(i;s) = 1/3 and therefore ;  d(i;s) = 1.

Let Ny = {(G,C) | G € Cpn5,C € Sg}|. Given any two colors ¢ and j,
observe that there are exactly 5n/6 edges connecting vertices with color ¢ and
Jj, respectively.

Given a fixed sequence (d(i; s)n); s that corresponds to a balanced stable 3-
coloring, let us denote by ( ( d(i§;;n)i,s) the multinomial coefficient that counts the
number of ways to distribute the n vertices into classes of cardinality d(i; s)n for
all possible values of 7 and s. Let also (i) stand for (si) = (i)

By a counting argument, we have that

d(i;s)n 3
— n 5 5n
N1 = d(g)iys <(d(z7s)n)l,s> (H <S) ) ( 6 ') § (4)

where the summation above is over all possible sequences (d(i; s)); s that corre-
spond to balanced stable 3-colorings.

2.2 Second Moment

Below we assume we are given a configuration G and two balanced stable 3-
colorings Cy and C5 on G. For 4,5 =0,1,2, let Vij be the set of vertices colored
with 7 and j with respect to colorings C; and Cs, respectively. Let nf = \VZJ |/n,
and let EZ be the set of semi-edges whose starting vertex is in Vij . Also, for
rt € {=1,1}, let Ej’t be the set of semi-edges in E/ which are matched with

one in E/'!. Let m \Ejt|/n We have that -, Jt = 5n, ]nj =1,

and therefore > = 5. And, since matchlng sets of semi-edges should

L jHt—t
have equal cardinalities, we also have that mw =M, .

zgrtmz'r



5-Regular Graphs are 3-Colorable with Positive Probability 219

Definition 3. A 2-spectrum s is an ordered quadruple of non-negative integers,
s=(s"1,s" 87", s)), such that s~} +s* | +s7 45t =5 and (s~ +s- ) (s +
sP(s71 451 ) (shy +s1) > 0.

Notice that the number of 2-spectra is 36. Let v be a vertex in Vij . Vertex v
is said to have 2-spectrum s = (s°1,s%,,s7%,5]) if st out of its five edges,
r,t € {—1, 1}, are incident on vertices in Vf:‘rt The condition (s”1 +s,)(s7* +
s (s”1 4 s71)(sL, 4 s1) > 0 expresses the fact that both C; and Cy are stable.
For each i,7 = 0,1,2 and 2-spectrum s, we denote by d(i, j;s) the scaled
number of vertices which belong to V;j and have 2-spectrum s. We have:

Z sy d(i,j;s) = mlt, Zd(i,j; s)=n! and therefore Z d(i,j;8) = 1.
s s 47,8
Throughout this paper we refer to the set of the nine numbers nf as the set of
the overlap matriz variables. We also refer to the set of the thirty-six numbers
meL as the set of the matching variables. Finally, we refer to the 9 x 36 numbers
d(i,7; s) as the spectral variables.

Let No = |[{(G,C1,C2) | G € Cy5,C1,C € Si|. Given a fixed sequence
(d(,7;5)n); 5, that corresponds to a pair of balanced stable 3-colorings, let us
denote by (( d(z‘,j;gn)i,j,s) the multinomial coefficient that counts the number
of ways to distribute the n vertices into classes of cardinality d(i, j; s)n for all

possible values of 4, j and s. Let also (i) stand for (371 51 5 o1 81) (the distinction
S_1,8_1:%1 51
from a similar notation for 1-spectra will be obvious from the context). Now, by

an easy counting argument, we have:

d(i,j;s)n
. n 5 ) &
N d_(”%” { <(d(i,j; S)n)m‘,s> (11:[5 <s) ) (igﬂ(( ) > } » (9)

where the summation above is over all possible sequences (d(i,75;5)) s that
correspond to pairs of balanced stable 3-colorings.

3 Asymptotics

In this section we will show that F(X?) = O((E(X))?). An immediate conse-
quence of this is that 5-regular configurations have a balanced stable 3-coloring
and hence a generic 3-coloring w.u.p.p.

By applying Stirling approximation to formulae @), (@) and (&), we get:

s (5) d(i;s) "
B(X)~Y filnd(iss):,) 62H< d(;s)) , (©)

d(i58)i,s .

5 d(i,5;s) 1 gt
E(X%) ~> fg(n,d(i,j;S)i,j,s)[55 11 <d(z’(,;');5)) < 11 (m{jﬁ)Qm“)]v o

d(i,558)i,5,s ©,J,8 3,3,m,t
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where f; and fy are functions that are sub-exponential in n and also depend
on the sequences d(i; s);,s and d(i, ;)i 5.5, respectively. By a result similar to
Lemma 3 in [3], by using a standard Laplace-type integration technique, we can
prove that the Moment Ratio is asymptotically positive if

(E(X))? < E(X?), ie. In((E(X))?) ~In(E(X?)). (8)

(5) d(i§5)

Let M; be the maximum base 67°/2 ], d(is) as d(i; ), s ranges over all

possible sequences that correspond to balanced stable 3-colorings. Analogously,
let M5 be the maximum base

5/2 @) \“ Gty sml
— s ) 2 i,
5 IL ;. (d(i,j;S)) <Hi,j,m (mi) ) ‘

From the equations (@) and () one can immediately deduce that the relation
@) is true if (M;)? = My. We need to compute the exact values of M; and Mo.

3.1 First Moment: Computing M,
(5) d(i;s)
Let f =TI, a( ;.s) be a real function of 12 non-negative real variables

d(i; s) defined over the polytope > d(i;s) = 1/3, where ¢ = 0,1,2 and s runs

over 1-spectra. The following lemma follows from the application of elementary

analysis techniques and the computation of Lagrange multipliers.

Lemma 1. The function In f is strictly conver. Let D, = Z“ (f) = 3 x 30.
5

The function f has a mazimizer at the point where d(i;s) = (Dsl), Vi, s.

By direct substitution, we obtain:

Lemma 2. M, = 6-5/2 (Hi,s Dii(z’,s)) — (é)5/2 Dy = \/5451

From the above and from (@), we get:
Theorem 1. The expected number of balanced stable 3-colorings of a random

5-regular configuration approaches infinity as n grows large.

3.2 Second Moment: Computing M,

(5) d(i,7;s) - 1,d0t
Let F= Hi,j,s (d(i;;s)) (Hi,j,r,t (mi’r)z “) (9)
be a real function of non-negative real variables d(i,j;s) (where 4,5 = 0,1,2,
r,t = —1,1 and s runs over 2-spectra) defined over the polytope determined by:

> d(ijss) =1/3, Vi; Y _d(i,j;s) =1/3, Vi and mll =mI{"71, (10)
J,s 1,8

Jit _
,T

where m; Y. st d(i,j;s). Notice that F is a function of 9 x 36 variables.
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We will maximize F' in three phases. In the first one, we will maximize F'
assuming the matching variables mZi are fixed constants such that their values
are compatible with the polytope over which F is defined. Thus we will get a
function F;, of the 36 matching variables m . At the second phase we will
maximize F),, assuming that the nine overlap matrlx variables 5nj = Zr,t mﬁ
are fixed constants compatible with the domain of the matching Varlables. Thus
we will get a function F), of the overlap matrix variables. The preceding two
maximizations will be done in an analytically exact way. Observe that since we
consider balanced 3-colorings, F;, depends only on the values of four n’s. We will
maximize F, by going through its 4-dimensional domain over a fine grid. Let
us point out that the maximizations above will not be done ez nihilo. Actually,
we know (see below) the point where we would like the maximizer to occur.
Therefore all we do is not find the maximizer but rather prove that it is where
we want it to be. The proof of the next lemma is done by direct substitution.

Lemma 3. Let Dy = Y, . (2) = 9 x 900 and let d(i, j;s) = (2)/Da, Vi, j s
Then the value of the base 5-5/2F at the above values of d(i,j; 8)i5,s s equal to
(M;)? =25/24.

We call the sequence d(, j; s) = (‘2) /D2 the barycenter. Barycenter as well we

call the corresponding point in the domain of Fj,, i.e. the point mﬁ = 5/36,
Vi, j,r,t. Finally, barycenter also we call the corresponding point in the domain
of F,, i.e. the point n] = 1/9, Vi, j. We will see, by direct substitutions, that
the functions 5-°/2F,, and 57°/2F, as well take the value (M;)? = 25/24 at
their corresponding barycenters. Therefore, after computing F%,, and F,, all that
will remain to be proved is that F,, has a maximizer at its barycenter n = 1/9,
i,j = 0,1, 2. Below, we compute the functions F},, and F,, and then we show that
the barycenter is a maximizer for F),, by sweeping its 4-dimensional domain.

From the Spectral to the Matching Variables. Everywhere below we as-
sume that the 36 matching variables mZ , are non-negative and moreover take

only values for which there exist 9 x 36 spectral non-negative variables d(i, j, s)
such that

= sy d(i,gis), 1,5 =0,1,2, rit =—1,+1. (11)

and such that the equations in (I0) hold. It is not hard to see that the above
restrictions on the matching variables are equivalent to assuming that Vi,j =
0,1,2 and Vr,t = —1,1,

Mo=milTl Y mlin=5/3, Y mll=5/3 and (12)

@7t J,rit

m

mly >0, ml; +mm—t<4( +mlZ)), mii4+mdl, < Aml T +mlTl). (13)

Fix such values for the m . To maximize the function F given by equation (@)
over the polytope descrlbed in (I0) for the fixed values of the matching variables
mlt i,7 = 0,1,2, r,t = {—1,1}, it is sufficient to maximize the function F'

1,7

subject to the 36 constraints in ([Il). We call this maximum F,.
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Since for different pairs of (i,7), i, = 0,1, 2, neither the variables d(i, j; s)
nor the constraints in ([Il) have anything in common, and since the matching
variables are fixed, it is necessary and sufficient to maximize separately for each

d(i,5; .
i,j = 0,1,2 the function F;; = [], ((i)/d(i,j;s)) (g S), subject to the four
constraints: Y st d(i, j; s) = mzf;, r,t = —1,1. We will use Lagrange multipliers
to maximize the logarithm of these functions. Notice that the functions In F; ;
are strictly convex. We define the following function:

(z,y,2,w) = (z+y+z+w)’ — (z+y)°— (2+2)° = (y+w)° — (z+w)° +2° +7° + 2" +w°.

Also for each of the nine possible pairs (i,7), 4,7 = 0, 1,2, consider the 4 x 4
system: _ _ _ _
OP(ul T ) S
W = mg;

e M=mil, rt=-1,1, (14)

where /sz; denote the 36 unknowns of these nine 4 x 4 systems. Applying the
method of the Lagrange multipliers, we get

Lemma 4. Each of the nine systems in ({IJ]) has a unique solution. Moreover
in terms of the solutions of these systems

J,t
i,7,7,t ‘uiﬂ“

By the above Lemma, we have computed in an analytically exact way the func-
tion Fj,. Notice that the function I}, is a function of the 36 matching variables
mfi, i,7 = 0,1,2 and r,t = —1,1, over the domain given by (IZ) and (I3).
However its value is given through the solutions of the systems in (I4]), which
have a unique solution.

From the Matching to the Overlap Matrix Variables. We assume now
that we fix nine non-negative overlap matrix variables n such that _, n] =1/3,
Vj and ), n] = 1/3, Vi. Using again multiple Lagrange multipliers, we will
find the maximum, call it F,, of the function F,, given in Lemma [E] under the
constraints:

> omly=5nl, and mll =ml{ "}, fori,j=0,1,2 and r,t={-1,1}. (15)
r,t
assuming in addition that the mZi satisfy the inequalities in (I3). We consider
the latter inequality restrictions not as constraints to be dealt with Lagrange
multipliers, but as restrictions of the domain of F},, that must be satisfied by the
maximizer to be found.
We will need that the function In F;, over the polytope determined by the
constraints (I5)) (for fixed values of the variables n?) is strictly convex. To show
this it is sufficient to fix an arbitrary 4,j = 0, 1,2 and show that the 4-variable

il
function In <HM ((mzi)é/uﬁ) ' >, subject to the single linear constraint
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Zr’t mﬁ = ng , is strictly convex. To show the latter, we computed the Hessian
and its LPMD’s after solving the single linear constraint for one of its variables
(thus we obtained a function of three variables). Notice that the value of the
function under examination is given through the unique solutions of a 4 x 4
system. The Hessian and the LPMD’s were analytically computed in terms of
these solutions by implicit differentiation of the equations of the system. The
strict convexity then would follow if we showed that at every point of the domain
of this 3-variable function, the LPMD’s were non-zero and of alternating sign.
We demonstrated this by going over this domain over a fine grid and computing
at all its points the LPMD’s. The values of the LPMD’s that we got were safely
away from zero and with the desired algebraic sign. Notice that although to
prove the convexity of the function In F,,, , subject to the constraints in ([IH), we
relaxed the constraints m] "t — mIThTt the latter ones are essential for correctly
computing F),.

To apply Lagrange multipliers, we have to find the partial derivatives of the
function In Fy, = 37, . ( émﬁ lnmg:f; - mﬁ ln,uﬁ ). In fact, after a few
manipulations, we obtain:

i+r,—r’

3.t

y alnu”, 1 OlnF, 3 1 j
Lemma 5. Z m am?"; = and thus omit 10 ty Inm?; lnp”
r/t T,T i,7

By applying now the technique of multiple Lagrange multipliers, we get:

' ) - ,
Lemma 6. Consider the 45 x 45 system with unknowns pl’, and x!:
;
g T T T ST S W Jt—t g g+t
0 J,t ‘u'i,fl’iu’i,fl’lu’i,l’/’bi,l lu‘i,r /’L'Lr iu’z+7“ —r T ':C'H»'r?
lu’i,r ..
i_ Z gt gtt—t G gt
5ni - (/‘l/i,r l’L'H»'r,f'r €Ty ‘T"i+r> ’ T,

r,t

This system has a unique solution. Moreover in terms of the solution of this

system: v
Fo =[]
2V
So we have computed in an analytically exact way the function F),. Since solving
the 45 x 45 system in Lemma [6l when n} =1/9, 4,5 = 0,1, 2 is trivial, we get by
direct substitution:

Lemma 7. The value of 5-°/2F, at the barycenter ni; =1/9,4,7=0,1,2 is
equal to (My)? = 25/24. Therefore the value of F,, at the barycenter is > 58.2309.

Therefore all that it remains to be proved is that the function F,, maximizes at
the barycenter.

From the Overlap Matrix Variables to the Conclusion. We have to prove
the function F), maximizes at the barycenter Since we have assumed that the 3-
coloring is balanced, i.e. Vi, 37, n] = 1/3 and Vj, 3, n} = 1/3, the domain of F;,

has four degrees of freedom, all in the range [0,1/3]. We swept over this domain
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going over the points of a grid with 200 steps per dimension. The sweeping
avoided a thin layer (of width 1/1000) around the boundary (the points in the
domain where at least one of the n] = 0), because at the boundary the derivative
of the original function F' is infinity, thus no maximum occurs there. Moreover,
we have computed the Hessian at the barycenter and proved that it is negative
definite so in an neighborhood of the barycenter Fj, is convex, and we know that
F,, will be smaller than at the barycenter. At all points where we got a value
for F,, greater than 58, we made an additional sweep at their neighborhood of
step-size 1/7500 (all these points where close the barycenter). Nowhere did we
get a value greater than the value at the barycenter. To solve the 45 x 45 systems
efficiently, we designed a fast search algorithm based on an algorithm by Byrd
et al. [7]. We also devised a way to select good starting points for each system,
whose basic principle was to select for each successive system a starting point
that belonged to the convex hull of the solutions to the previous systems. The
algorithm was implemented in Fortran and run on the IBM’s supercomputer
in the Barcelona Supercomputing Center, which consists of 2.268 dual 64-bit
processor blade nodes with a total of 4.536 2.2 GHz PPC970FX processors.
Therefore,

Theorem 2. Random 5-regular configurations are 3-colorable with uniformly
positive probability.

In order to transfer this result to random 5-regular graphs, we need to consider
the restriction of C, 5 to simple configurations (i.e. those without loops and
multiple edges). We write Pr* and E* to denote probability and expectation
conditional to the event “G € C, 5 is simple”. By using similar techniques to
the ones developed in [5] (see also Theorem 2.6 in [I4]), we get:

Lemma 8. Let C be any fized balanced 3-coloring of n vertices. Then,
Pr[G is simple | C is stable coloring of G] is bounded away from 0, indepen—
dently of C' and n.

From this lemma, we obtain: E* (X) = O(E (X)) and E* (X?) = O (E (X?)).
(B (X))
E* (X?)
Theorem 3. The chromatic number of random 5-reqular graphs is 3 with uni-

formly positive probability.

Therefore, Pr* [X > 0] > = 6(1), and we can conclude:
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