Abstract
We show that uniformly random 5-regular graphs of n vertices are 3-colorable with probability that is positive independently of n.
The 1st, 2nd, 4th and 5th authors are partially supported by Future and Emerging Technologies programme of the EU under contract 001907 “Dynamically Evolving, Large-Scale Information Systems (DELIS)”. The 1st author was partially supported by the Distinció de la Generalitat de Catalunya per a la promoció de la recerca, 2002. The 3rd and 4th authors are partially supported by European Social Fund (ESF), Operational Program for Educational and Vacational Training II (EPEAEK II), and particularly Pythagoras. Part of the research of the 4th author was conducted while visiting on a sabbatical the Departament de Llenguatges i Sistemes Informàtics of the Universitat Politècnica de Catalunya.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achlioptas, D., Moore, C.: The asymptotic order of the random k-SAT threshold. In: Proc. 43th Annual Symp. on Foundations of Computer Science (FOCS), pp. 126–127 (2002)
Achlioptas, D., Moore, C.: Almost all graphs with degree 4 are 3-colorable. Journal of Computer and Systems Sciences 67(2), 441–471 (2003)
Achlioptas, D., Moore, C.: The chromatic number of random regular graphs. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 219–228. Springer, Heidelberg (2004)
Achlioptas, D., Naor, A.: The two possible values of the chromatic number of a random graph. In: 36th Symposium on the Theory of Computing (STOC), pp. 587–593 (2004)
Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of Combinatorics 1, 311–316 (1980)
Bollobás, B.: Random Graphs. Academic Press, New York (1985)
Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific and Statistical Computing 16(5), 1190–1208 (1995)
Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. John Wiley, Chichester (2000)
Krza̧kała, F., Pagnani, A., Weigt, M.: Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs. Phys. Rev. E 70, 046705 (2004)
Łuczak, T.: The chromatic number of random graphs. Combinatorica 11, 45–54 (1991)
Mézard, M., Zecchina, R.: Random K-satisfiability: from an analytic solution to a new efficient algorithm. Phys. Rev. E 66, 056126 (2002)
Molloy, M.: The Chromatic Number of Sparse Random Graphs. Master’s Thesis, University of Waterloo (1992)
Shi, L., Wormald, N.: Colouring random regular graphs Research Report CORR 2004-24, Faculty of Mathematics, University of Waterloo (2004)
Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Notes Series, vol. 267, pp. 239–298. Cambridge U. Press, Cambridg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Díaz, J., Grammatikopoulos, G., Kaporis, A.C., Kirousis, L.M., Pérez, X., Sotiropoulos, D.G. (2005). 5-Regular Graphs are 3-Colorable with Positive Probability. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_21
Download citation
DOI: https://doi.org/10.1007/11561071_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29118-3
Online ISBN: 978-3-540-31951-1
eBook Packages: Computer ScienceComputer Science (R0)