Abstract
We study the problem of adding edges to an arbitrary graph so that the resulting graph is an interval graph. Our objective is to add an inclusion minimal set of edges, which means that no proper subset of the added edges can result in an interval graph when added to the original graph. We give a polynomial time algorithm to obtain a minimal interval completion of an arbitrary graph, thereby resolving the complexity of this problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berry, A., Heggernes, P., Villanger, Y.: A vertex incremental approach for dynamically maintaining chordal graphs. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 47–57. Springer, Heidelberg (2003)
Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. on Computing 31(1), 212–232 (2001)
Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co., New York (1978)
Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canadian J. Math. 16, 539–548 (1964)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)
Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Bio. 2(1), 139–152 (1995)
Gustedt, J.: On the pathwidth of chordal graphs. Discrete Applied Mathematics 45(3), 233–248 (2003)
Heggernes, P.: Minimal triangulations of graphs: A survey. To appear Discrete Math.
Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal interval completions. Technical Report RR2005-04, LIFO - University of Orléans (2005), http://www.univ-orleans.fr/SCIENCES/LIFO/prodsci/rapports/RR2005.htm.en
Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theor. Comput. Sci. 175, 309–335 (1997)
Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)
Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Disc. Appl. Math. 79, 171–188 (1997)
Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)
Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heggernes, P., Suchan, K., Todinca, I., Villanger, Y. (2005). Minimal Interval Completions. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_37
Download citation
DOI: https://doi.org/10.1007/11561071_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29118-3
Online ISBN: 978-3-540-31951-1
eBook Packages: Computer ScienceComputer Science (R0)