Abstract
We propose a phrase-based context-dependent joint probability model for Named Entity (NE) translation. Our proposed model consists of a lexical mapping model and a permutation model. Target phrases are generated by the context-dependent lexical mapping model, and word reordering is performed by the permutation model at the phrase level. We also present a two-step search to decode the best result from the models. Our proposed model is evaluated on the LDC Chinese-English NE translation corpus. The experiment results show that our proposed model is high effective for NE translation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, H.-H., Yang, C., Lin, Y.: Learning Formulation and Transformation Rules for Multilingual NEs. In: Proceedings of the ACL 2003 Workshop on MMLNER (2003)
Knight, K., Graehl, J.: Machine Transliteration. Computational Linguistics 24(4) (1998)
Oh, J.-H., Choi, K.-S.: An English-Korean Transliteration Model Using Pronunciation and Contextual Rules. In: Proceedings of COLING 2002 (2002)
Li, H., Zhang, M., Su, J.: A Joint Source-Channel Model for Machine Transliteration. In: Proceedings of the 42th ACL, Barcelona, pp. 160–167 (2004)
Al-Onaizan, Y., Knight, K.: Translating named entities using monolingual and bilingual resources. In: Proceedings of the 40th ACL, Philadelphia, pp. 400–408 (2002)
Huang, F., Vogel, S., Waibel, A.: Improving NE Translation Combining Phonetic and Semantic Similarities. In: Proceedings of HLT-NAACL-2004 (2004)
LDC2003E01 (2003), http://www.ldc.upenn.edu/
Brown, P.F., Pietra, S.A.D., Pietra, V.J.D., Mercer, R.L.: The mathematics of statistical machine translation. Computational Linguistics 19(2), 263–313 (1993)
Zens, R., Ney, H.: Improvements in Phrase-Based Statistical Machine Translation. In: Proceedings of HLT-NAACL-2004 (2004)
Marcu, D., Wong, W.: A Phrase-based, Joint Probability Model for Statistical Machine Translation. In: Proceedings of EMNLP-2002 (2002)
Och, F.J., Tillmann, C., Ney, H.: Improved Alignment Models for Statistical Machine Translation. In: Proceedings of Joint Workshop on EMNLP and Very Large Corpus, pp. 20–28 (1999)
Koehn, P., Och, F.J., Marcu, D.: Statistical Phrase-based Translation. In: Proceedings of HLT-2003 (2003)
Stolcke, A.: SRILM – An Extensible Language Modeling Toolkit. In: Proceedings of ICSLP-2002, Denver, vol. 2, pp. 901–904 (2002)
Germann, U., Jahr, M., Knight, K., Marcu, D., Yamada, K.: Fast Decoding and Optimal Decoding for Machine Translation. In: Proceedings of ACL-2001 (2001)
Och, F.J., Ney, H.: A Systematic Comparison of Various Statistical Alignment Models. Computational Linguistics 29(1), 19–51 (2003)
Germann, U.: Greedy Decoding for Statistical Machine Translation in Almost Linear Time. In: Proceedings of HLT-NAACL-2003 (2003)
Tillmann, C., Ney, H.: Word Reordering and a Dynamic Programming Beam Search Algorithm for Statistical Machine Translation. Computational Linguistics 29(1), 97–133 (2003)
Schwartz, R., Chow, Y.L.: The N-best algorithm: An efficient and Exact procedure for finding the N most likely sentence hypothesis. In: Proceedings of ICASSP 1990, pp. 81–84 (1990)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. Technical Report RC22176 (W0109-022), IBM Research Report (2001)
Doddington, G.: Automatic evaluation of machine translation quality using n-gram co-occurrence statistics. In: Proceedings of ARPA Workshop on HLT (2002)
Bangalore, S., Riccardi, G.: Stochastic Finite State Models for Spoken Language Machine Translation, Workshop on Embedded MT System (2000)
Kanthak, S., Hey, H.: FSA: An Efficient and Flexiable C++ Tookkit for Finite State Automata Using On-Demand Computation. In: Proceedings of ACL-2004 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, M., Li, H., Su, J., Setiawan, H. (2005). A Phrase-Based Context-Dependent Joint Probability Model for Named Entity Translation. In: Dale, R., Wong, KF., Su, J., Kwong, O.Y. (eds) Natural Language Processing – IJCNLP 2005. IJCNLP 2005. Lecture Notes in Computer Science(), vol 3651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562214_53
Download citation
DOI: https://doi.org/10.1007/11562214_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29172-5
Online ISBN: 978-3-540-31724-1
eBook Packages: Computer ScienceComputer Science (R0)