Skip to main content

Indexing Structures for Content-Based Retrieval of Large Image Databases: A Review

  • Conference paper
Information Retrieval Technology (AIRS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3689))

Included in the following conference series:

  • 1067 Accesses

Abstract

Content-based image retrieval is a focused problem in current multimedia domain. To obtain better searching results more efficiently in some applications, a proper indexing structure is indispensable. This paper reviews the typical indexing structures in content-based image retrieval at first. Then based on the comparison of their different performance, the paper uncovers the problems in those structures and points out the development direction to improve the performance of CBIR in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guattman, A.: R-tree:a dynamic index structure for spatial searching. In: ACM Sigmod Int.Conf.on Management of Data, Boston, MA, pp. 47–57 (1984)

    Google Scholar 

  2. David, A., White, R.J.: Similarity indexing with the SS-tree. In: Proc.of the 12th IEEE Int.Conf.on Data Engineering (1996)

    Google Scholar 

  3. Katayama, N., Satoh, S.: SR-tree:An index structure for high dimensional nearest neighbor queries. In: Proc. of the Int. Conf. on Management of data (1997)

    Google Scholar 

  4. Beckmann, N., Kriegel, H.-P., Schneider, R.: The R*-tree: An Efficient and robust access method for points and tectangles. In: Proc.1990 ACM SIGMOD Int.Conf. management of Data, AtlanticCity, NJ, pp. 322–331 (1990)

    Google Scholar 

  5. Berchtold, S., Keim, D., Kriegel, H.-P.: The X-tree: An Index Structure for High-Dimensional Data. In: Proc. of the 22nd Int. Conf. on Very Large Data Bases, Mumbai, India (1996)

    Google Scholar 

  6. Lin, K.-I., Jagadish, H.V., Faloutsos, C.: The TV-tree:An index structure for high dimensional data. In: VLDB, vol. 3, pp. 517–549 (1994)

    Google Scholar 

  7. Henrich, A.: The LSDh-tree: An access structure for feature vectors. In: Proc. 14th Int. Conf. Data Engineering, pp. 362–369 (1998)

    Google Scholar 

  8. Berchtold, S., Bohm, C., Kriegel, H.-P.: The Pyramid Technique: Towards Breaking the Curse of Dimensionality. In: Proc. of the Int. Conf. on Management of Data. ACM Press, New York (1998)

    Google Scholar 

  9. Chakrabarti, K., Mehrotra, S.: The Hybrid Tree: An index structure for high dimensional feature spaces. In: Proc. of the 15th Int. Conf. on Data Engineering, pp. 440–447 (1999)

    Google Scholar 

  10. Sakurai, Y., Yoshikawa, M., Uemura, S.: The A-tree: An Index Structure for High-Dimensional Spaces Using Relative Approximation. In: Proc. of the 26th Int.Conf. on Very Large Data Bases (VLDB 2000) (2000)

    Google Scholar 

  11. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Proc. of the 24th Int. Conf. on Very Large Data Bases (VLDB 1998), NewYork, USA, pp. 194–205 (1998)

    Google Scholar 

  12. Caicca, P., Patella, M.: Approximate similarity queries:a survey. University of Bologna, Italy (2001)

    Google Scholar 

  13. Faloutsos, C., Lin, K.-I.: Fastmap: A fast algorithm for indexing,data mining, and visualization of traditional and multimedia database. In: Sigmod Record, Proc. 1995 ACM SIGMOD Int.Conf.on Management of data (1995)

    Google Scholar 

  14. Yu, C., Bressan, S., Ooi, B.C.: Querying high dimensional data in single dimensional space. VLDB Journal (2002)

    Google Scholar 

  15. Berchtold, S., Bohm, C., Jagadish, H.V.: Independent quantization: An index compression technique for high-dimensional data spaces. In: Proc. of the 16th Int.Conf. on Data Engineering (ICDE 2000), San Diego, USA, pp. 577–588 (2000)

    Google Scholar 

  16. Cha, G.-H., Chung, C.-W.: The GC-tree: a high dimensional index structure for similarity in image databases. IEEE Transactions on multimedia 4 (2002)

    Google Scholar 

  17. Wu, P., Manjunath, B.S.: An Adaptive Index Structure for Similarity Search in Large Image Databases. In: Proceedings of SPIE, vol. 4519 (2001)

    Google Scholar 

  18. Ferhatosmanoglu, H., Tuncel, E., Agrawal, D.: Vector approximation based indexing for non-Uniform high dimensional data sets. In: ACM International Conf. on Information and Knowledge Management (2000)

    Google Scholar 

  19. Cha, G.-H., Zhu, X., Petkovic, D.: An Efficient Indexing Method for Nearest Neighbor Searches in High-Dimensional Image Databases. IEEE Transactions on multimedia 4 (2002)

    Google Scholar 

  20. Hutflesz, A., Six, H.W., Widmayer, P.: Globally order preserving multidimensional linear hashing. In: Proc. 4th IEEE Int. Conf. on Data Eng., pp. 572–579 (1988)

    Google Scholar 

  21. Ooi, B.C.: Efficient Query Processing in Geographic Information Systems. In: Ooi, B.-C. (ed.) Efficient Query Processing in Geographic Information Systems. LNCS, vol. 471. Springer, Heidelberg (1990)

    Google Scholar 

  22. Oosterom, P.: Reactive Data Structures for GIS. Ph.D. thesis, University of Leiden, The Netherlands (1990)

    Google Scholar 

  23. Seeger, B.: Performance comparison of segment access methods implemented on top of buddy tree. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 277–296. Springer, Heidelberg (1991)

    Google Scholar 

  24. Kamel, I., Faloustsos, C.: Hilbert R-tree: An improved R-tree using fractals. In: Proc. 20th Int. Conf. On Very Large Data Bases, pp. 500–509 (1994)

    Google Scholar 

  25. Gaede, V., Günther, O.: Survey on Multidimensional Access Method. Department of Economics and Business Administration, Humboldt University Berlin (1997) (revised version)

    Google Scholar 

  26. Xu, J., Zheng, B., Lee, W.-C., Lee, D.L.: The D-Tree:An Index Structure for Planar Point Queries in Location-Based Wireless Services. IEEE Transactions on Knowledge and Data Engineering 16, 1526–1542 (2004)

    Article  Google Scholar 

  27. Qian, G., Zhu, Q., Xue, Q., Pramanik, S.: The ND-Tree: A Dynamic Indexing Technique for Multidimensional Non-ordered Discrete Data Spaces. In: Proceedings of the 29th VLDB Conference, Berlin, Germany (2003)

    Google Scholar 

  28. Lu, G.: Techniques and Data Structures for Efficient Multimedia Retrieval Based on similarity. IEEE Transactions on Multimedia 3, 372–384 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ling, H., Lingda, W., Yichao, C., Yuchi, L. (2005). Indexing Structures for Content-Based Retrieval of Large Image Databases: A Review. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.H. (eds) Information Retrieval Technology. AIRS 2005. Lecture Notes in Computer Science, vol 3689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562382_59

Download citation

  • DOI: https://doi.org/10.1007/11562382_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29186-2

  • Online ISBN: 978-3-540-32001-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics