Abstract
Motivated by applications to systems biology, and the emergence of semi-algebraic hybrid systems as a natural framework for modeling biochemical networks, we continue exploring the decidability problem for model-checking with TCTL (Timed Computation Tree Logic) over this broad class of semi-algebraic hybrid systems. Previously, we had introduced these models, demonstrated the close connection to the goals of systems biology. However, we had only developed the techniques for bounded reachability, arguing for the adequacy of such an approach in a majority of the biological applications. Here, we present a semi-decidable symbolic algebraic dense-time TCTL model checking algorithm, which satisfies two desirable properties: it can be derived automatically from the symbolic description, and it extends to and generalizes other versions of temporal logics. The main mathematical device at the core of this approach is Tarski-Collins’ real quantifier elimination employed at each fixpoint iteration, whose high complexity is the crux of its unfortunate limitation. Along with these results, we prove the undecidability of this problem in the more powerful “real” Turing machine formalism of Blum, Shub and Smale. We then demonstrate a preliminary version of our model-checker Tolque on the Delta-Notch example.
The work reported in this paper was supported by grants from NSF’s ITR program, Defense Advanced Research Projects Agency (DARPA), the US Air Force (AFRL), National Institutes of Health (NIH) and New York State Office of Science, Technology & Academic Research (NYSTAR). C.P. was partially supported by the MIUR FIRB grant RBAU018RCZ and the MIUR PRIN’04 grant 2004013015.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Courcoubetis, C., Dill, D.: Model-Checking for Real-Time Systems. In: International Symposium on Logic in Computer Science, vol. 5, pp. 414–425. IEEE Computer Press, Los Alamitos (1990)
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science 138, 3–34 (1995)
Alur, R., Dang, T., Ivancic, F.: Progress on Reachability Analysis of Hybrid Systems Using Predicate Abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)
Anai, H.: Algebraic approach to analysis of discrete-time polynomial systems. In: ECC Karlsure, Germany (1999)
Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Reasoning about Biochemical Processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)
Asarin, E., Dang, T., Maler, O., Bournez, O.: Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)
Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1997)
Bournez, O., Maler, O., Pnueli, A.: Orthogonal Polyhedra: Representation and Computation. In: Poli, R., Voigt, H.-M., Cagnoni, S., Corne, D.W., Smith, G.D., Fogarty, T.C. (eds.) EvoIASP 1999 and EuroEcTel 1999. LNCS, vol. 1596, pp. 19–30. Springer, Heidelberg (1999)
Chutinan, A., Krogh, B.: Verification of Polyhedral-Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)
Collier, J.R., Monk, N.A.M., Maini, P.K., Lewis, J.H.: Pattern Formation by Lateral Inhibition with Feedback: a Mathematical Model of Delta-Notch Intercellular Signalling. Journal of Theor. Biology 183, 429–446 (1996)
Collins, G.E.: Quantifier Elimination for the Elementary Theory of Real Closed Fields by Cylindrical Algebraic Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation) 31(2), 2–9 (1997)
Fränzle, M.: What will be eventually true of polynomial hybrid automata? In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 340–359. Springer, Heidelberg (2001)
Ghosh, R., Tomlin, C.: Lateral Inhibition through Delta-Notch signaling: A Piecewise Affine Hybrid Model. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 232–246. Springer, Heidelberg (2001)
Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical, control, and hybrid systems. Theoretical Computer Science (November 2003)
Henzinger, T., Kopke, P.W., Puri, A., Varaiya, P.: What’s Decidable about Hybrid Automata. In: Symposium on the Theory of Computing (STOC), pp. 373–382 (1995)
Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-time Systems. In: 7th Annual IEEE Symposium on Logic in Computer Science, pp. 394–406. IEEE Computer Society Press, Los Alamitos (1992)
Hong, H.: Quantifier elimination in elementary algebra and geometry by partial cylindrical algebraic decomposition, version 13 (1995), www.eecis.udel.edu/~saclib
Hwang, I., Balakrishnan, H., Ghosh, R., Tomlin, C.: Reachability analysis of delta-notch lateral inhibition using predicate abstraction. In: Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp. 715–724. Springer, Heidelberg (2002)
Jirstrand, M.: Nonlinear control system design by quantifier elimination. J. Symb. Comput. 24(2), 137–152 (1997)
Lafferiere, G., Pappas, G.J., Sastry, S.: O-minimal Hybrid Systems. Mathematics of Control, Signals, and Systems 13(1), 1–21 (2000)
Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)
Lanotte, R., Tini, S.: Taylor approximation for hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 402–416. Springer, Heidelberg (2005)
Mandelbrot, B.: The Fractal Geometry of Nature. Freeman Co., San Francisco (1982)
Mishra, B.: A Symbolic Approach to Modeling Cellular Behavior. In: Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp. 725–732. Springer, Heidelberg (2002)
Mishra, B.: Computational Real Algebraic Geometry. CRC Press, Boca Raton (2004)
Mysore, V., Mishra, B.: Algorithmic Algebraic Model Checking III: Approximate Methods. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 217–233. Springer, Heidelberg (2005)
Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and their Reachability Analysis. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)
Puri, A., Varaiya, P.: Decidebility of hybrid systems with rectangular differential inclusions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 95–104. Springer, Heidelberg (1994)
Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1995)
Tabuada, P., Pappas, G.J.: Model checking LTL over controllable linear systems is decidable. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 498–513. Springer, Heidelberg (2003)
Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press (1948)
Tiwari, A., Khanna, G.: Series of Abstraction for Hybrid Automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mysore, V., Piazza, C., Mishra, B. (2005). Algorithmic Algebraic Model Checking II: Decidability of Semi-algebraic Model Checking and Its Applications to Systems Biology. In: Peled, D.A., Tsay, YK. (eds) Automated Technology for Verification and Analysis. ATVA 2005. Lecture Notes in Computer Science, vol 3707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562948_18
Download citation
DOI: https://doi.org/10.1007/11562948_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29209-8
Online ISBN: 978-3-540-31969-6
eBook Packages: Computer ScienceComputer Science (R0)