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Abstract. In this paper we study a new technique we call post-bagging,
which consists in resampling parts of a classification model rather then
the data. We do this with a particular kind of model: large sets of classifi-
cation association rules, and in combination with ordinary best rule and
weighted voting approaches. We empirically evaluate the effects of the
technique in terms of classification accuracy. We also discuss the predic-
tive power of different metrics used for association rule mining, such as
confidence, lift, conviction and x2. We conclude that, for the described
experimental conditions, post-bagging improves classification results and
that the best metric is conviction.

1 Introduction

One can use an association rule discovery strategy to obtain a large set of rules
from a given dataset, and subsequently combine a subset of the rules to obtain
a classification model. This two-step training process is typically heavier than
building directly a model, such as a decision tree. The motivation for going the
long way lies on the possibility for delaying heuristic decisions in model building,
while maintaining the scalability of the process. On the other hand, association
rules can be seen as Bayesian statements about the data, and can be combined
using Bayesian principles in a justified way.

As an example of the power of association based classifiers we can resort to
a variant of the well known XOR two class problem, with three independent
attributes (z, y and z) and one dependent attribute class, all taking values 0 or
1. The value of class is 1 if and only if x and y have different values. Attribute z
introduces noise. A heuristic method, such as decision tree induction, will tend
to choose z as the root variable, and then possibly fail to discover the correct
answer in all the branches. A technique based on association rules can discover
the 4 rules that are needed to correctly classify a new example, independently
of the values of z.

Since at least 1997, some proposals have appeared that employed association
rules to obtain classification models [2] [15][17][18]]20]. Such classifiers have been
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empirically shown as competitive in terms of predictive power (although, in the
case of the works cited above, no indication of the statistical significance of the
results has been provided). In this paper we explore a variant of bagging [6] to
obtain a classification model from a set of association rules. In classical bagging,
a number of bootstrap samples are obtained from the given training examples.
For each sample, a classification model is learnt, and new cases are classified
by combining the decisions of the resulting models for the new case. Bagging
is therefore an ensemble method that requires a single training data set and a
single model generator algorithm.

We propose and empirically evaluate a post-bagging method. From the train-
ing data, we obtain one set of association rules, and from that single set of rules
we build a number of (partial) classification models using a bootstrap sampling
approach on the set of rules.

We compare this approach with the single best rule and voting approaches
using different rule characterization metrics, and also with two decision tree
methods (¢4.5 and rpart) on 12 datasets. The empirical results provide some
evidence on the average predictive power of post-bagging.

2 Classification from Association

An association rule discovery algorithm such as APRIORI [1], takes a set of
transactions D = {T | T is a set of items ¢}, a minimal support threshold o
and a minimal confidence threshold ¢, and outputs all the rules of the form
A — B, where A and B are sets of items in D and sup(A U B) > o and
sup(AU B)/sup(A) > ¢. sup(X) is the support or the relative frequency of an
item set X observed in D.

Association rule discovery can be directly applied to tabular datasets, such
as the typical UCI dataset, with one column for each attribute by regarding
each example as a set of items of the form < attribute = value >. Likewise,
continuous attributes can be dealt with if discretized in advance.

Despite the fact that an association rule algorithm finds ALL rules that sat-
isfy o and ¢, the discovery process can be relatively fast and discovery time
grows linearly with the number of examples (clearly shown in [1] for the algo-
rithm AprioriHybrid). This provides a scalable heuristic-free process that makes
possible to avoid greedy methods such as decision trees.

The discovery of association rules can then be seen as a step preceding model
building, or a computationally feasible way of having a quasi-complete search on
the space of rules. A classification rule model built from such an unrestrained
set of rules can potentially be more accurate than another using a greedy search
approach [17, 18, 20].

Which is the best way of obtaining a classification model from a set of associ-
ation rules is, however, not entirely clear. One can look at the set of association
rules as a large decision list ordered by confidence and support [18], or by some
other metric. Rules can also be combined to classify new examples through some
kind of voting [17] or by using Bayesian principles [20].



In the following, we state the problem of finding a good Classification model
from Association Rules.

2.1 The Problem

The problem we approach in this paper consists in obtaining a classifier, or a
discriminant model M, from a set of association rules R. The rules are generated
from a particular data set D of cases T, where each case T is a set of pairs
< attribute = value >, where value can be categorical or numerical. One of the
attributes is the class attribute, ranging over a finite, and typically small, set G
of classes. All the rules have exactly one item on the consequent involving the
class attribute.

We want the model M to be successful in the prediction of the classes of
unseen cases taken from the same distribution as D. A Bayesian view of the
success of a classifier defines that the optimal classifier Mpgyes maximizes the
probability of predicting the correct class value g € G for a given case z [11].

Mpayes(x) = maxPr(g | 2) (1)
geG

The success of a model M in estimating Mpgyes Will depend on how the model
is obtained from R and on how it is used to classify new cases from R. Given a
case with description z, the confidence ¢ of an association rule 2’ — class = g,
with 2’ covering z, estimates the conditional probability Pr(g | #’) , and in the
lack of more information it is a good estimator of Pr(g | z). The coverage relation
is defined as: z covers 2’ iff ' C & when z and z’ are sets of items.

Previous work on classification from association rules has confirmed the pre-
dictive power of confidence. In this paper we provide empirical indication that
another metric, conviction, obtains better results.

When we have a set R of association rules, we can expect to obtain more
predictive power by combining different rules that apply to the same case. How
to select the rules from R and how to use them is not trivial. In other words,
given a rule set R, how do we obtain and use a classification model M?

3 Obtaining classifiers from Association Rules

We can regard classification from association rules as a particular case of the
general problem of model combination. Either because we see each rule as a
separate model or because we consider subsets of the rules for combination. We
first build a set of rules R. Then we select a subset M of rules that will be used
in classification, and finally we choose a prediction strategy m that obtains a
decision for a given unknown case x. To optimize predictive performance we can
fine tune one or more of these three steps.

Strategy for the generation of rules: The simplest choice is to run APRI-
ORI [1] once over the data D. The choice of minimal support and confidence



is not trivial. Constraints on other rule characteristics can be used. A more so-
phisticated approach is to employ a sort of coverage strategy [18]: Build all the
association rules, choose the best, remove the covered cases and repeat until all
cases are covered. In [17] this standard coverage strategy is generalized to allow
more redundancy between rules. A case is only removed from the training data
when it is covered by a pre-defined number of rules.

In our work, we build the set of rules separately using the Carenclass system
[4]. Carenclass is specialized in generating association rules for classification and
employs a bitwise depth-first frequent patterns mining algorithm. It resembles
the ECLAT algorithm proposed in [25], which is also a depth first algorithm that
makes use of a vertical representation of the database.

Choice of the rule subset:We can use the whole set of rules for prediction, and
count on the predictive strategy to dynamically select the most relevant ones.
Selection of rules is based on some measure of their quality, or combination of
measures. The structure of rules can also be used, for example for discarding rules
that are generalizations of others. The general effort of discarding rules that are
potentially irrelevant or harmful for prediction is called pruning [17][18].

Strategy for prediction: Most of the previous work on using association rules
for classification has been done on this topic. The simplest approach is to go
for the rule with the highest quality, where quality is typically measured as the
confidence of the rule, sometimes combined with support [18]. Other approaches
combine the rules by some kind of committee method, such as simple voting [14],
or weighted voting [17]. In this paper we explore another possibility inspired in

bagging [6].

4 Rule generation

Typically, the generation of association rules is done after the identification of
frequent itemsets. For efficiency purposes, it is desirable to push the rules genera-
tion task into the frequent pattern mining phase. Frequent itemset identification
is typically done as follows: first, all frequent items are identified, and then can-
didate itemsets are generated following an imposed order. In the case of [1] this
is a lexicographic order. Other, like [25], use a support oriented order. When we
interleave frequent itemset counting and rule generation, as soon as a frequent
itemset is counted and checked as valid (for instance, that it contains the required
consequent item), rule generation for that itemset can be triggered. However,
depth-first approaches to itemset mining face a problem. It may happen that
subsets of the itemset in question are not yet determined due to unfavourable
ordering. Thus, we might have a rule ready to be derived (because it already con-
tains a consequent item) but that does not have its antecedent support already
counted.

Carenclass has a simple and elegant approach to this problem. Since it knows
in advance which items it will generate rules for (they will occur in the conse-
quent) it imposes an itemset ordering that keeps the itemsets involving conse-
quent items at the end. This ensures two things: first, consequent items appear



at last in an itemset; secondly, when about to generate a rule, the subset of the
itemset (without the consequent item) is already counted.

5 Rule selection

Rule selection, or pruning, can be done right after rule generation. However,
most of the rule selection techniques can be used earlier when the rules are
being generated.

Pruning techniques rely on the elimination of rules that do not improve more
general versions. For example, rule {a,b,c} — g, may be pruned away if rule
{a, ¢} — g has similar or better predictive accuracy. CBA [18] uses pessimistic er-
ror pruning. Another possibility is to simply use some measure of improvement [5]
on a chosen rule quality metric. Using the same example as above, if we set a min-
imal confidence improvement of 0.1, we may discard {a, b, c} — ¢ if its confidence
is less than con fidence({a,c} — g)+0.1. In general, improvement(A — B) can
be defined as min({metric(A — B) —metric(As — B) | A; C A}, where metric
is a rule characterization metric such as confidence.

At modeling time we can still reduce the set of rules by choosing only the
N-best ones overall, or the N-best ones for each class [14], where N is a user
provided parameter. This technique may reduce the number of rules in the model
dramatically, but the choice of the best value for IV is not clear. The rule selection
method RC' [15] builds a decision list by traversing the generalization lattice of
the rules and by looking at the training error of the rules. It starts with the
most general rules, which will be at the bottom of the decision list. After that,
it moves to the next level of the generalization lattice and chooses the rules that
better handle the exceptions of the more general rules, while discarding the other
rules at the same generalization level. This is done iteratively until the bottom
of the lattice is reached.

6 Combining the decisions of rules

In this section we will analyze how association rules have been, and can be used
for classification purposes, by studying the quality of the decisions produced.
In the discussion we assume we have a static set R of classification association
rules, and a predefined set of classes G and that we want to classify cases with
description x, where the description of a case is a set of statements involving
independent attributes. The set of rules that apply to the case, or that fire upon
the case with description « will be F(x) defined as {(z’ — class =g) € R | 2’ C
z,g € G}.

Given a new case z to classify, we can use some prediction strategy to combine
the rules in R.



6.1 Best rule

This strategy tries to solve the problem with one single rule bestrule, obtained
with:

bestrule, = arg max metric(r) (2)
reF ()

The metric used is a function that assigns to each rule a value of its predictive
power. In this paper we study interest metrics typically used in association rule
discovery: con fidence, conviction, lift and x2.

Confidence is the natural choice when it comes to prediction. It estimates
the posterior probability of B given A, and is defined as con fidence(A — B) =
sup(AU B)/sup(A).

Lift is sometimes also called interest [8] and is a ratio between the observed
support of A U B and its expected support under the assumption that A and
B are independent, lift(A — B) = sup(AU B)/(sup(A).sup(B)). Under this
assumption, the expected support is given by sup(A).sup(B). Lift measures the
deviation from independence of A and B. If lift is close to 1, A and B are
independent, and the rule is not interesting.

Conviction is another interest metric [8] that also measures the independence
of A and B, but goes a little bit further. Contrarily to lift, conviction is sensitive
to rule direction (lift(A — B) = lift(B — A)). Conviction is somewhat inspired
in the logical definition of implication and attempts to measure the degree of
implication of a rule. Conviction is infinite for logical implications (confidence
1), and is 1 if A and B are independent.

o 1 — sup(B)
conviction(A — B) = = confidence(A = B) (3)

Another way of measuring the independence of antecedent and consequent
of a rule is by testing that hypothesis with a x? test [19]. If the value of the
statistic (equation 4) is close to zero the hypothesis of independence is accepted.
How close it must be to zero depends on the level of the significance of the test.

Z (sup(X UY) — sup(X).sup(Y))?

X(4—B)=|D| sup(X).sup(Y)

(4)

Xe{A-A},Ye{B,~B}

where | D | is the database size.

The prediction given by the best rule is the best guess we can have with one
single rule. When the best rule is not unique we can break ties maximizing sup-
port [18]. A kind of best rule strategy, combined with a coverage rule generation
method, provided encouraging empirical results when compared with state of
the art classifiers on some datasets from UCI [21].

However, the decision of a single rule is optimal only if we have a rule x —
class = g that uses all the information in the description of the case. In general
such a ‘complete’ rule has a very low support, most likely zero, and will not be



available, or is not reliable. Therefore, we can expect to improve the quality of the
prediction by using rules that use different sets of attributes in the antecedent.
In [20] different rules have been combined to better approximate a Bayesian
estimate of the probability of each class.

6.2 Voting

These strategies combine the rules F'(x) that fire upon a case x. A simple vot-
ing strategy takes all the rules in F'(x), groups the rules by antecedent, and
for each antecedent z’ obtains the class corresponding to the rule with highest
confidence. We will denote the class voted by an antecedent x’ with a binary
function vote(z’, g) which takes the value 1 when 2’ votes for g, and 0 for the
other classes.

predictions, = arg max g vote(z', g) (5)
geG
z’ €antecedents(F (x))

6.3 Weighted voting

This strategy is similar to voting, but each vote is multiplied by a factor that
quantifies the quality of the vote [16]. In the case of association rules, this can
be done using one of the above defined metric.

prediction,,, = arg max Z vote(x', g). max metric(z’ — g) (6)
geG v

Carenclass implements these and other prediction strategies efficiently by
keeping in an appropriate data structure [3].
In the next section we describe a technique for rule combination inspired in

bagging.

7 Bagging Association Rules for classification

Bagging is the generation of several models from bootstrap samples of the same
original dataset D [6]. The prediction given by the set of resulting models for one
example e is done by averaging the predictions of the different models. Bagging
has the effect of improving the results of an unstable classifier by reducing its
variance [11]. Domingos [9] suggests that, in the case of decision trees, bagging
works because it increases the probability of choosing more complex models.

In the case of classification from association, we obtain a large set of rules
R that contain many alternative possible models. So what we propose is the
technique we call post-bagging. It consists in sampling repeatedly the set of rules
a posteriori to obtain an ensemble of models similarly to bagging. The models
in a particular ensemble will be similar, but their differences will tend to reflect
the variability of rule sets obtained from the same source of data.



New cases are classified by obtaining the prediction of each of the models
in the ensemble (and this can be done with any strategy), and using simple
voting to combine those predictions. Experimental evaluation indicates that this
technique can obtain good results when compared to a bestrule or a voting
approach, or even to decision tree learners, such as ¢4.5 [23] and rpart [13].

We will now describe the BAGGAR (Bootstrap Aggregation of Association
Rules) algorithm (Algorithm 1) in detail. After obtaining a set of association
rules R from a dataset D, we build a number of baggs from R. Each bagg is
a sample with a pre-defined size of the rule set. Sampling is performed with
replacement. The number of baggs (n.baggs) is 30 by default, and the size T
of each bag is, in general, 10%. These defaults have been set in preliminary
experiments and should not be regarded as necessarily ideal.

Baggar Algorithm, training

Given: a set E with labelled examples; n.bags: the number of baggs (default
30); T size of each bag (default min(] R |, max(50,0.1x | R |)))

Do:

1. Build a set R of Association Rules
2. For 7 in 1 to n.bags
3. S; <+ sample with replacement from R of size T'

Output: the set of baggs {S;}

The classification of a single example e using a set of baggs {S;} is done by
applying a chosen prediction strategy m to each of the baggs. The most voted
class is then output as the overall prediction.

8 Empirical evaluation

To test the value of post-bagging, we have compared different variants of caren-
class, corresponding to different prediction strategies, on 12 UCI datasets [21].
To serve as a state of the art reference, we used the decision tree inducer c¢4.5
[23]. Due to its availability and ease of use we have also compared the results
with rpart from the statistical package R [13]. Rpart is a CART-like decision tree
inducer [7].

We used eight carenclass variants, by combining two strategies: “Best rule”
and “Weighted Voting” with four metrics (confidence, conviction, lift and y?).
Minimal support was set to 0.02 and minimal improvement to 0.01. For each
combination we ran carenclass with and without post-bagging. Numerical at-
tributes have been previously discretized using Weka’s [24] implementation of
Fayyad and Irani’s supervised discretization method [10].

An estimation of the error of each algorithm (and carenclass variant) was
obtained on each dataset with a 10 x 10-fold cross-validation (Table 2). From



Table 1. Datasets used for the empirical evaluation

Dataset F#examples|#classes|#Hattr
australian 690 2 14
breast-wisconsin 699 2 9
cleveland 303 5 13
diabetes 768 2 8
flare 1066 2 10
heart 270 2 13
hepatitis 155 2 19
house votes 435 2 16
german 1000 2 20
segment 2310 7 19
vehicle 846 4 18
yeast 1484 10 8

the estimated errors we ranked the algorithms separately for each dataset, and
used mean ranks as an indication of global rank. Besides that, we have studied
the statistical significance of the results obtained.

Table 2. Average error rates obtained with the algorithms on the datasets (minimal
support=0.02 and improvement=0.01)

austr| breas| diabe flare cleve| yeast| house| germal| vehic| heart| hepat| segme
rpart 0.1504| 0.0611| 0.2572[ 0.1831| 0.4566(0.4276| 0.0481| 0.2611| 0.3213| 0.1856| 0.3044| 0.0831
c4.5 0.1493| 0.0512( 0.2599(0.1804| 0.4939| 0.4408|0.0343| 0.2862(0.2690( 0.2205| 0.2122|0.0324
Bestrule.conf 0.1432| 0.0438( 0.2279| 0.1884| 0.4587| 0.4439| 0.0770| 0.2961| 0.3968| 0.1767| 0.1794| 0.1731
Bestrule.lift 0.3096| 0.1890( 0.4158| 0.2179| 0.6545| 0.5237| 0.4457| 0.5865| 0.4358| 0.2270| 0.5819| 0.1752
Bestrule.conv 0.1409| 0.0413| 0.2236| 0.2039| 0.4466| 0.4408| 0.0770| 0.2801| 0.3961| 0.1715| 0.1794| 0.1729
Bestrule.chi 0.1449| 0.0635| 0.2798| 0.1978| 0.4409| 0.4558| 0.0498| 0.3059| 0.4893| 0.2522| 0.3006| 0.3315
Voting.conf 0.1800| 0.0372| 0.2301| 0.1857| 0.4306| 0.4591| 0.1236| 0.2558| 0.3590| 0.1759| 0.2314| 0.2808
Voting.lift 0.1686(0.0300( 0.2365| 0.1936| 0.4565| 0.4448| 0.1417| 0.2592| 0.3586| 0.1707| 0.3663| 0.2805
Voting.conv 0.1542| 0.0376| 0.2244| 0.1856| 0.4272| 0.4453| 0.1101(0.2465| 0.3437|0.1596| 0.2108| 0.1971
Voting.chi 0.1448| 0.0388| 0.2400| 0.1913| 0.4285| 0.4397| 0.1423| 0.2683| 0.3872| 0.1767| 0.2401| 0.2914
Bag.Bestrule.conf | 0.1351| 0.0378| 0.2271| 0.1880| 0.4345| 0.4480| 0.0723| 0.2883| 0.3696| 0.1696(0.1663| 0.2533
Bag.Bestrule.lift 0.2035| 0.0571| 0.3278| 0.2104| 0.5065| 0.4764| 0.2767| 0.4322| 0.3831| 0.1681| 0.5099| 0.2515
Bag.Bestrule.conv|0.1345| 0.0329( 0.2246| 0.1984| 0.4361| 0.4426| 0.0739| 0.2699| 0.3702| 0.1648| 0.1672| 0.2533
Bag.Bestrule.chi 0.1480| 0.0499( 0.2582| 0.1968|0.4176| 0.4488| 0.1457| 0.2961| 0.4186| 0.1800| 0.2554| 0.3196
Bag.Voting.conf 0.1810| 0.0376| 0.2283| 0.1853| 0.4326| 0.4582| 0.1220| 0.2562| 0.3597| 0.1737| 0.2314| 0.2819
Bag.Voting.lift 0.1703|0.0300( 0.2381| 0.1939| 0.4518| 0.4427| 0.1393| 0.2567| 0.3589| 0.1707| 0.3622| 0.2823
Bag.Voting.conv 0.1394| 0.0342(0.2219| 0.1850| 0.4287| 0.4469| 0.0778| 0.2528| 0.3437| 0.1659| 0.2048| 0.2592
Bag.Voting.chi 0.1535| 0.0399| 0.2424| 0.1906| 0.4318| 0.4435| 0.1425| 0.2636| 0.3876| 0.1778| 0.2414| 0.3043

8.1 Post-bagging ranks high

The first empirical observation is that 3 post-bagging variants rank high among
the four top places (Table 3). Compared to c¢4.5 and rpart, 5 carenclass variants
rank higher than those. Although this is a good indication of the predictive
power of post-bagging, we still have to discriminate its effect from the effect of
the metric, and test its statistical significance.

To perceive the specific effect of post-bagging, we can observe that 5 (Vot-
ing.conv, Bestrule.conv, Bestrule.conf, Bestrule.chi and Bestrule.lift) against 3



(Voting.conf, Voting.lift, Voting.chi) of the carenclass variants benefit from post-
bagging. The improvement is more visible on the simple Bestrule approach,
rather than Voting. This may be explained by the fact that Voting is already a
multi rule method.

We should note that the segment data set appears as a particularly difficult
task for our association rule approaches. This is the data set, out of these 12,
where the tree approaches perform visibly better. Moreover, it is also the only
data set where post-bagging does not improve the results of best rule with con-
fidence as a metric. In fact, post-bagging obtains very bad results. The segment
data set has seven equally balanced classes. However, the number of rules per
class tend to be unbalanced, which may be the reason for the higher error of the
best rule approach: classes with more rules tend to get more votes. Similarly,
the rule distribution per class is unbalanced in the produced baggs.

Table 3. Ranks obtained (minimal support=0.02 and improvement=0.01)

mean [austr|breas|diabe|flare|cleve|yeast |house|germa|vehic|heart |hepat|segme
Bag.Voting.conv 4.79 3 4 1 3 4 11 8 2] 3.5 3 5 10
Voting.conv 5.42 12| 6.5 3 5 2 10 9 1| 3.5 1 6 6
Bag.Bestrule.conv| 6.21 1 3 4| 15 9 5 5 10 10 2 2 8.5
Bag.Bestrule.conf | 6.88 2 8 5 7 8 12 4 13 9 5 1 8.5
Bestrule.conv 7.79 4 11 2| 16/ 11} 3.5/ 6.5 11 14 8| 3.5 3
cd.5 8.04 9 14 15 1| 16| 3.5 1 12 1 16 7 1
rpart 8.17 10 16 13 2 14 1 2 7 2 15 14 2
Voting.conf 8.88 15 5 8 6 5 16 11 3 7 10| 8.5 12
Bag.Voting.conf 9 16| 6.5 7 4 7 15 10 4 8 8.5 13
Bestrule.conf 9.08 5 12 6 8l 15 8| 6.5 14.5 15| 11.5| 3.5 4
Voting.chi 9.38 6 9 11| 10 3 2 14 9 12| 11.5 10 15
Voting.lift 9.5 13| 1.5 9| 11| 13 9 13 6 5| 6.5 16 11
Bag.Voting.lift 9.5 14| 1.5 10 12| 12 6 12 5 6| 6.5 15 14
Bag.Voting.chi 10.92 11 10 12 9 6 7 15 8 13 13 11 16
Bag.Bestrule.chi [12.62 8 13 14| 13 1 13 16| 14.5 16 14 12 17
Bestrule.chi 13.67 7 17 16| 14| 10 14 3 16 18 18 13 18
Bag.Bestrule.lift |14.42 17 15 17| 17| 17 17 17 17 11 4 17 7
Bestrule.lift 16.75 18 18 18| 18| 18 18 18 18 17 17 18 5

8.2 Conviction ranks high

Four of the five top places are taken by carenclass variants that use conviction
as a rule value metric. Moreover, conviction always has higher mean ranks than
all the other metrics with respect to all the variants, and always higher than
c4.5 and rpart. This predictive power of conviction is somewhat surprising and
deserves to be better explained in the future. One possibility for the apparently
good predictive performance of this metric may be due to the fact that it tends
to favour less frequent classes. In particular, given two rules with the same confi-
dence, conviction prefers the one whose consequent has lower support (Equation
3). The results with segment corroborate this intuition. This is a problem with 7
equally frequent classes. As a result, confidence and conviction practically have



the same results. This is also observed on datasets with an almost balanced
number of classes (australian, heart, vehicle).

The second best metric is clearly confidence. x? and lift seem more or less
equivalent in terms of results with a slight advantage to x2. Note that these two
metrics are symmetric w.r.t. antecedent and consequent of the rule, contrarily
to confidence and conviction.

8.3 Statistical significance of results

Although the average ranks provide a good overall picture of the results, these
should be verified in terms of statistical significance. Our claims are based on
statements of the form “algorithm x is better than algorithm y”, and “the tested
algorithms perform equally”. To assess the statistical significance to such state-
ments we will use paired ¢-tests and the Friedman rank sum test [22]. The t-tests
are used as follows. For each partition of a dataset, we average the 10 error val-
ues obtained with a given algorithm from 10-fold cross validation. Since we have
10 different partitions we obtain 10 average errors. To compare two algorithms
we perform an hypothesis test where the two samples are the average errors of
each algorithm on the same dataset. The null hypothesis is that the algorithms
perform equally. The alternative hypothesis is accepted if the p value for the ¢
statistic is lower than 0.001. Friedman tests the hypothesis that all the methods
have equal performance.

Table 4. Statistically significant (v = 0.001) wins.

Bestrule Voting
conv conf conv conf
Bagging‘Simple Bagging‘Simple Bagging‘Simple Bagging‘Simple
c4.5 3/4|  4/3 3/5 3/2 3/5 3/5 4/5 5/5
rpart 3/3|  4/3 5/3]  4/3 3/3]  2/3 5/3 5/3

If we compare directly post bagging and single model variants using t-test,
we observe that statistically significant wins are not outstanding (Table 4). We
mostly observe a near-draw with a slight advantage in favour of the post-bagging
variants. However, if we separately compare post-bagging and the respective sin-
gle model variant with c4.5, we observe a higher number of statistically significant
wins of the post-bagging approach. With respect to rpart, post-bagging tends to
improve the results of the single model variants. Compared with post-bagging,
we observe an advantage of rpart, despite the fact that the direct comparison
between rpart and c4.5 is favourable to the latter (4 wins against 2).

By using Friedman’s test on all the data on Table 2, we reject the hypothesis
that all the approaches have equal performance with very high confidence (p-
value is lower than 10~7). However, if we take out the carenclass variants that



use lift and x?, p-value goes up to 0.13. Despite the good indications given by the
ranking and the t-tests, and despite the fact that similar rankings are observed
when the parameters of post-bagging are changed (number of baggs=30, 50, 70,
200; size of baggs=50%, minsup=0.01), we cannot firmly claim that there is a
highly significative advantage in using post-bagging.

9 Conclusions

We have presented the technique of post-bagging, which produces an ensemble
of rule classification from a single set of association rules. Post bagging has the
advantage that a single model is built from the dataset and bootstrap models are
built from this one. Empirical experiments indicate that post-bagging outranks
on average standard decision tree techniques and tends to improve the results of
bestrule, for the metrics considered. The effect of post-bagging on voting is only
marginally positive, using confidence and conviction. We hypothesize that this
is probably due to the fact that voting is already a multi rule decision method,
and post-bagging has little room for improvement.

In terms of metrics, conviction tends to give better results than confidence,
which is the second best metric. This is probably because class frequency is
taken into account by conviction but not by confidence. The other two metrics
(lift and x?) have been included for the sake of completeness but are far from
being competitive.

We also observe that a simple Bestrule approach (generate rules-use best
rule) gives competitive results: slightly better than c4.5 with conviction, slightly
worse with confidence.

In conclusion, we can say that it is worthwhile to proceed with the research on
post-bagging, and to better study the reasons for failure and success according
to data set and rule set characteristics (number of classes, class distribution,
number of rules, number of rules per class). This could lead us to improved
classification accuracy and a better insight of the classification problem itself.
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