Skip to main content

An Experiment with Association Rules and Classification: Post-Bagging and Conviction

  • Conference paper
Discovery Science (DS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3735))

Included in the following conference series:

  • 752 Accesses

Abstract

In this paper we study a new technique we call post-bagging, which consists in resampling parts of a classification model rather then the data. We do this with a particular kind of model: large sets of classification association rules, and in combination with ordinary best rule and weighted voting approaches. We empirically evaluate the effects of the technique in terms of classification accuracy. We also discuss the predictive power of different metrics used for association rule mining, such as confidence, lift, conviction and χ 2. We conclude that, for the described experimental conditions, post-bagging improves classification results and that the best metric is conviction.

Supported by the POSI/SRI/39630/2001/Class Project (Fundação Ciência e Tecnologia), FEDER e Programa de Financiamento Plurianual de Unidades de I & D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of Association Rules. Advances in Knowledge Discovery and Data Mining, pp. 307–328 (1996)

    Google Scholar 

  2. Ali, K., Manganaris, S., Srikant, R.: Partial classification using association rules. In: Proceedings of the Third ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1997, pp. 115–118. ACM, New York (1997)

    Google Scholar 

  3. Azevedo, P.J.: A Data Structure to Represent Association Rules based Classifiers Technical Report, Universidade do Minho (2005)

    Google Scholar 

  4. Azevedo, P.J., Jorge, A.M.: The CLASS Project, http://www.niaad.liacc.up.pt/~amjorge/Projectos/Class/

  5. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-Based Rule Mining in Large, Dense Databases. Data Mining and Knowledge Discovery 4(2-3), 217–240 (2000)

    Article  Google Scholar 

  6. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)

    Google Scholar 

  8. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Proceedings of th ACM SIGMOD International Conference on Management of Data (1997)

    Google Scholar 

  9. Domingos, P.: Why does bagging work? A Bayesian account and its implications. In: Proceedings of the Third ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1997, pp. 115–118. ACM, New York (1997)

    Google Scholar 

  10. Fayyad, U.M., Irani, K.B.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambéry, France, pp. 1022–1029. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, Series in Statistics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  12. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision Combination in Multiple Classifier Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)

    Article  Google Scholar 

  13. Ihaka, R., Gentleman, R.: R: A Language for Data Analysis and Graphics. Journal of Computational Graphics and Statistics 5(3), 299–314 (1996)

    Article  Google Scholar 

  14. Jovanoski, V., Lavrac, N.: Classification rule learning with APRIORI-C. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 44–51. Springer, Heidelberg (2001)

    Google Scholar 

  15. Jorge, A., Lopes, A.: Iterative part-of-speech tagging. In: Cussens, J., Džeroski, S. (eds.) LLL 1999. LNCS (LNAI), vol. 1925, p. 170. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Kononenko, I.: Combining decisions of multiple rules. In: du Boulay, B., Sgurev, V. (eds.) Artificial Intelligence V: Methodology, Systems, Applications. Elsevier, Amsterdam (1992)

    Google Scholar 

  17. Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification Based on MultipleClass-Association Rules. In: IEEE International Conference on Data Mining (2001)

    Google Scholar 

  18. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Proceedings of the Fourth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 15-18. ACM, New York (1998)

    Google Scholar 

  19. Liu, B., Hsu, W., Ma, Y.: Pruning and Summarizing the Discovered Associations. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 15-18, pp. 125–134. ACM, New York (1999)

    Chapter  Google Scholar 

  20. Meretakis, D., Wüthrich, B.: Extending Nave Bayes Classifiers Using Long Itemsets. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 15-18, pp. 165–174. ACM, New York (1999)

    Chapter  Google Scholar 

  21. Merz, C.J., Murphy, P.: UCI Repository of Machine Learning Database (1996), http://www.cs.uci.edu/~mlearn

  22. Neave, H.R., Worthington, P.L.: Distribution-free tests, Unwin Hyman Ltd. (1988)

    Google Scholar 

  23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  24. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  25. Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering 12(3), 372–390 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jorge, A.M., Azevedo, P.J. (2005). An Experiment with Association Rules and Classification: Post-Bagging and Conviction. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds) Discovery Science. DS 2005. Lecture Notes in Computer Science(), vol 3735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11563983_13

Download citation

  • DOI: https://doi.org/10.1007/11563983_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29230-2

  • Online ISBN: 978-3-540-31698-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics