Skip to main content

A Binary Decision Tree Implementation of a Boosted Strong Classifier

  • Conference paper
Analysis and Modelling of Faces and Gestures (AMFG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3723))

Included in the following conference series:

Abstract

Viola and Jones [1] proposed the influential rapid object detection algorithm. They used AdaBoost to select from a large pool a set of simple features and constructed a strong classifier of the form {∑ j α j h j (x) ≥ θ} where each h j (x) is a binary weak classifier based on a simple feature. In this paper, we construct, using statistical detection theory, a binary decision tree from the strong classifier of the above form. Each node of the decision tree is just a weak classifier and the knowledge of the coefficients α j is no longer needed. Also, the binary tree has a lot of early exits. As a result, we achieve an automatic speedup that always makes the rapid Viola and Jones algorithm rapider.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  2. Papageorgiou, C., Oren, M., Poggio, T.: A general framework for object detection. In: IEEE International Conference on Computer Vision, pp. 555–562 (1998)

    Google Scholar 

  3. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting (Computation Learning Theory: Eurocols) 23–27

    Google Scholar 

  4. Jones, M., Viola, P.: Face recognition using boosted local features. In: IEEE International Conference on Computer Vision (2003)

    Google Scholar 

  5. Jones, M., Viola, P.: Fast multi-view face detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (June 2003)

    Google Scholar 

  6. Lienhart, R., Maydt, J.: An extended set of harr-like features for rapid object detection. In: IEEE International Conference on Image Processing, vol. 1, pp. 900–903 (2002)

    Google Scholar 

  7. Zhang, L., Li, S., Qu, Z., Huang, X.: Boosting local feature based classifier for face recognition. In: First IEEE International Workshop on Face Processing in Video (2004)

    Google Scholar 

  8. Lienhart, R., Kuranov, A., Pisarevsky, A.: Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In: The 25th Pattern Recognition Symposium, pp. 297–304 (2003)

    Google Scholar 

  9. Viola, P., Jones, M.: Face and robust classification using asymmetric adaboost and a detector cascade. Neural Information Processing Systems 14 (2001)

    Google Scholar 

  10. Li, S., Zheng, Z.: Floatboost learning and statistical face detection. IEEE Trans. Pattern Analysis and Machine Intelligence 26, 1–12 (2004)

    Article  MathSciNet  Google Scholar 

  11. Lienhart, R., Liang, L., Kuranov, A.: A detector tree of boosted classifiers for real-time object detection and tracking. In: IEEE International Conference on Multimedia and Expo. (July 2003)

    Google Scholar 

  12. Sun, J., Rehg, J.M., Bobick, A.: Automatic cascade training with perturbation bias. In: CVPR (2004)

    Google Scholar 

  13. Casella, G., Berger, R.L.: Statistical Inference. Duxbury, Boston (2002)

    Google Scholar 

  14. Poor, H.: An Introduction to Signal Detection and Estimation. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  15. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of statistics 28, 337–374 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grossmann, E.: Adatree: Boosting a weak classifier into a decision tree. In: IEEE Workshop Learning in Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  17. CBCL Face Database #1, MIT Center for Biological and Computational Learning, http://www.ai.mit.edu/projects/cbcl

  18. Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 39–51 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, S.K. (2005). A Binary Decision Tree Implementation of a Boosted Strong Classifier. In: Zhao, W., Gong, S., Tang, X. (eds) Analysis and Modelling of Faces and Gestures. AMFG 2005. Lecture Notes in Computer Science, vol 3723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564386_16

Download citation

  • DOI: https://doi.org/10.1007/11564386_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29229-6

  • Online ISBN: 978-3-540-32074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics