Skip to main content

Gabor-Eigen-Whiten-Cosine: A Robust Scheme for Face Recognition

  • Conference paper
Analysis and Modelling of Faces and Gestures (AMFG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3723))

Included in the following conference series:

  • 951 Accesses

Abstract

Recognizing faces with complex intrapersonal variations is a challenging task, especially when using small size samples. Our approach, which obtains state of the art results, is based on a new face recognition scheme: Gabor-Eigen-Whiten-Cosine (GEWC). The novelty of this paper lies in 1) the finding that the same face with complex variations, projected into the Gabor based whitened PCA feature space, is approximately angle invariance; and 2) the experimental studies that analyze the joint contribution of Gabor wavelet, whitening process, and cosine similarity measure on the PCA based face recognition. The new GEWC method has been successfully tested and evaluated using comparative experiments on 3000+ FERET frontal face images with 1196 subjects. In particular, the GEWC method achieves constant 100% accuracy on the 200-subject experiment across illuminations and facial expressions. Furthermore, its recognition rates reach up to 96.3%, 99.5%, 78.8%, and 77.8% on the FB, fc, dup I, and dup II probes respectively using only one training sample per person.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chellappa, R., Wilson, C., Sirohey, S.: Human and Machine Recognition of Faces: A Survey. Proc. IEEE 83(5), 705–740 (1995)

    Article  Google Scholar 

  2. Adini, Y., Moses, Y., Ullman, S.: Face Recognition:The Problem of Compensating for Changes in Illumination Direction. IEEE Trans. PAMI 19(7), 721–732 (1997)

    Google Scholar 

  3. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  4. Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant Analysis of Principal Components for Face Recognition. In: Proc. Third Int’l Conf. Automatic Face and Gesture Recognition, pp. 336–341 (1998)

    Google Scholar 

  5. Swets, D.L., Weng, J.: Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans. PAMI 16(8), 831–836 (1996)

    Google Scholar 

  6. Liu, C., Wechsler, H.: Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans. Image Processing 11(4), 467–476 (2002)

    Article  Google Scholar 

  7. Phillips, P.J., Wechsler, H., Rauss, P.: The FERET Database and Evaluation Procedure for Face-Recognition Algorithms. Image and Vision Computing 16(5), 295–306 (1998)

    Article  Google Scholar 

  8. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. PAMI 23(2), 228–232 (2001)

    Google Scholar 

  9. Wang, X., Tang, X.: A Unified Framework for Subspace Face Recognition. IEEE Trans. PAMI 26(9), 1222–1228 (2004)

    MathSciNet  Google Scholar 

  10. Lades, M., Vorbrüggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R.P., Konen, W.: Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Trans. Computers 42(3), 300–311 (1993)

    Article  Google Scholar 

  11. Daugman, J.G.: Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters. J. Optical Soc. Am. A 2, 1,160–1,169 (1985)

    Google Scholar 

  12. Daugman, J.: Face and Gesture Recognition: Overview. IEEE Trans. PAMI 19(7), 675–676 (1997)

    Google Scholar 

  13. Pentland, A., Starner, T., Etcoff, N., Masoiu, N., Oliyide, O., Turk, M.: Experiments with Eigenfaces. In: Proc. Looking at People Workshop Int’l Joint Conf. Artifical Intelligence (1993)

    Google Scholar 

  14. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. PAMI 19(7), 711–720 (1997)

    Google Scholar 

  15. Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. PAMI 19(7), 775–779 (1997)

    Google Scholar 

  16. Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. PAMI 20(1), 39–51 (1998)

    Google Scholar 

  17. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. PAMI 19(7), 696–710 (1997)

    Google Scholar 

  18. Liu, C.: Gabor-Based Kernel PCA with Fractional Power Polynomial Models for Face Recognition. IEEE Trans. PAMI 26(5), 572–581 (2004)

    Google Scholar 

  19. Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. PAMI 17(7), 775–779 (1997)

    Google Scholar 

  20. Moghaddam, B., Jebara, T., Pentland, A.: Bayesian Face Recognition. Pattern Recognition 33, 1771–1782 (2000)

    Article  Google Scholar 

  21. Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic Classification of Single Facial Images. IEEE Trans. PAMI 21(12), 1357–1362 (1999)

    Google Scholar 

  22. Liu, C., Wechsler, H.: Evolutionary Pursuit and Its Application to Face Recognition. IEEE Trans. PAMI 22(6), 570–582 (2000)

    Google Scholar 

  23. Gao, W., Cao, B., Shan, S., Zhang, X., Zhou, D.: The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations. Technical report of JDL (2004), http://www.jdl.ac.cn/~peal/peal_tr.pdf

  24. Deng, W., Hu, J., Guo, J.: Robust Face Recognition from One Training Sample per Person. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 915–924. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, W., Hu, J., Guo, J. (2005). Gabor-Eigen-Whiten-Cosine: A Robust Scheme for Face Recognition. In: Zhao, W., Gong, S., Tang, X. (eds) Analysis and Modelling of Faces and Gestures. AMFG 2005. Lecture Notes in Computer Science, vol 3723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564386_26

Download citation

  • DOI: https://doi.org/10.1007/11564386_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29229-6

  • Online ISBN: 978-3-540-32074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics