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Abstract. Pose variations, especially large out-of-plane rotations, make
face recognition a difficult problem. In this paper, we propose an algo-
rithm that uses a single input image to accurately synthesize an image
of the person in a different pose. We represent the two poses by stack-
ing their information (pixels or feature locations) in a combined feature
space. A given test vector will consist of a known part corresponding to
the input image and a missing part corresponding to the synthesized im-
age. We then solve for the missing part by maximizing the test vector’s
probability. This approach combines the “distance-from-feature-space”
and “distance-in-feature-space”, and maximizes the test vector’s proba-
bility by minimizing a weighted sum of these two distances. Our approach
does not require either 3D training data or a 3D model, and does not
require correspondence between different poses. The algorithm is com-
putationally efficient, and only takes 4 - 5 seconds to generate a face.
Experimental results show that our approach produces more accurate
results than the commonly used linear-object-class approach. Such tech-
nique can help face recognition to overcome the pose variation problem.

1 Introduction

Face recognition applications often involve pose variations. The gallery may only
have the faces under a specific pose, such as the frontal view, but the probe image
may be captured under a random pose, sometimes with a large out-of-plane rota-
tion. In order to do face recognition in this scenario, we need to synthesize the new
view of the probe face, such that we can compare it with the gallery images.

According to the stereopsis theory in computer vision, to recover the precise
3D geometry of an object, we need at least three images of this object. This is
why some approaches use multi-view images [6], or even video sequences [13],
to synthesize new views. Although a single image is insufficient to recover the
precise 3D geometry, machine learning techniques can apply prior knowledge
onto this single image in order to synthesize new views. In particular, Blanz and
Vetter pioneered a 3D algorithm based on fitting a 3D morphable model learned
from many 3D training examples, to synthesize novel views from a single image
[2,3,4].

The drawback of such a 3D approach is its large computational cost of 4.5
minutes for each fitting process [3,4]. This high computational cost limits the
approach’s applicability to real life applications, such as in airport security. An-
other drawback is the need for specialized 3D scanning hardware. For practical
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systems, it would be more attractive to implement a solution using only 2D im-
ages. The linear-object-class method proposed by Vetter and Poggio [12] and its
variation [7] hold the promise of such a method. However, our own experiments
show that its performance for large out-of-plane rotations, such as 45◦ and 90◦ is
not satisfactory. In particular, the predicted shapes exhibit significant distortion
(Fig. 3, 4, 5).

Vetter and Poggio’s linear-object-class method [12] solves a set of linear equa-
tions with missing data: (

Φ1

Φ2

)
y =

(
b̃1

b̃2

)
, (1)

where b̃2 is the unknown pose and b̃1 is the known pose of the test example.

ΦM =
(

Φ1

Φ2

)
is the training set (or vectors formed from a linear combination of

the training set, i.e., PCA of the training set) containing the two poses.
(

b̃1

b̃2

)

is represented as a linear combination of the columns in
(

Φ1

Φ2

)
. The vector y

contains the parameters describing the linear combination. The linear-object-

class method solves for y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥2

, then uses it to predict b̃2 =
Φ2y. (In the view synthesis problem for faces, shape and appearance are usually
analyzed and predicted seperately.)

This method has been discussed in some related problems [8,1,9]. Hwang and
Lee [8] use exactly the same method as above in predicting occluded parts of
human faces. Black et al. [1] and Leonardis et al.[9] slightly modify the approach,
by either excluding [9] or putting less weight [1] on some rows of Φ1 that they
assume are outliers.

We believe that the problems with the linear-object-class method lie with
an incorrect assumption: there are no errors inherent in the solution for y in

y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥2

. However, as it is well known, there are measurement
errors in the training data due to many factors. These errors will propagate
into the solution for b̃2, using the linear-object-class method. We can improve
upon this solution with a probabilistic formulation. This formulation combines
“distance-from-feature-space” (DFFS) and “distance-in-feature-space” (DIFS)
[10], whereas the linear-object-class solution is purely based on DFFS. By con-

sidering DIFS, our method penalizes for points within the subspace,
(

Φ1

Φ2

)
,

that have low probability. Our representation leads to solutions that have higher
probability and, as we will show, significantly better empirical performance.

This paper is organized as follows. In Section 2, a probabilistic model combin-
ing DFFS and DIFS is introduced, and the solution for equation (1) is derived.
In Section 3, we explain the necessary steps of seperating the shapes from the
appearance of faces, and apply the solution in Section 2 to predict a new view
of faces. Section 4 shows experimental results of synthetic face images at new
views. In Section 5, we discuss this approach and conclude.
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2 Probabilistic Modeling

The problem of linear equations with missing data described in equation (1) is
restated in the following way:

We have NT training vectors {xi}NT

i=1, each of which is an N -by-1 vector.

Usually N � NT . A test example b =
(

b1

b2

)
belongs to the same class defined

by the training set. b is N -by-1. We only know b1, which contains the first N1

elements of b. The task is to predict b2, given b1 and {xi}NT

i=1.

2.1 Probabilistic Modeling

Let’s first discuss the ideal case that we have enough independent training ex-
amples to span the whole N -dimensional space, i.e., NT ≥ N .

Here we apply several assumptions:

1. The class defined by the training set is an M -dimensional linear subspace,
denoted as F . M < N and determined by PCA from the training set. PCA
is computed from the training set {xi}NT

i=1, and the M largest eigenvalues of
the principal components λ1 ≥ λ2 ≥ · · · ≥ λM are the variances along the
M dimensions of F .

2. In this subspace F , samples are drawn from an M -dimensional Gaussian
distribution with zero mean.

3. If the complete space has N dimensions, there is another (N − M) di-
mensional linear subspace F̄ , which is orthogonal and complementary to
the eigenspace F (Fig. 1). We assume F and F̄ are statistically indepen-
dent.

4. The samples also contain random noise distributed over all the (N − M)
dimensions of F̄ . Each of the (N − M) dimensions of F̄ has approximately
equal non-zero variance, i.e., λM+1 ≈ λM+2 ≈ · · · ≈ λN > 0.

Under these assumptions, the probability of x is

P (x|Ω) =

⎡
⎢⎢⎢⎢⎣

exp

(
− 1

2

N∑
i=1

y2
i

λi

)

(2π)N/2
N∏

i=1

λ
1/2
i

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

exp

(
− 1

2

M∑
i=1

y2
i

λi

)

(2π)M/2
M∏
i=1

λ
1/2
i

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

exp

(
− 1

2

N∑
i=M+1

y2
i

λi

)

(2π)(N−M)/2
N∏

i=M+1

λ
1/2
i

⎤
⎥⎥⎥⎥⎥⎦

= PF (x|Ω) · PF̄ (x|Ω),
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Fig. 1. Decomposition into the eigenspace F and its orthogonal subspace F̄ . The DFFS

and DIFS are also shown.

where Ω denotes the class described by the training set. x is a random point from
this class, and its projection onto each dimension is denoted as {yi}N

i=1. PF (x|Ω)
and PF̄ (x|Ω) are two marginal Gaussian distributions, in F and F̄ respectively.

Since N is very large, we lack sufficient data to compute each {λi}N
i=M+1 in

PF̄ (x|Ω).
Recall the assumption that {λi}N

i=M+1 are about the same magnitude. Then

it is reasonable to use the arithematic average ρ = 1
N−M

N∑
i=M+1

λi [10] to get an

estimation of P (x|Ω), which is

P̂ (x|Ω) = PF (x|Ω) · P̂F̄ (x|Ω)

=

⎡
⎢⎢⎢⎢⎣

exp

(
− 1

2

M∑
i=1

y2
i

λi

)

(2π)M/2
M∏
i=1

λ
1/2
i

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

exp

(
− 1

2ρ ·
N∑

i=M+1

y2
i

)

(2πρ)(N−M)/2

⎤
⎥⎥⎥⎥⎥⎦

.

The distance characterizing the P̂ (x|Ω) is

d̂(x) =

[
M∑
i=1

y2
i

λi

]
+

1
ρ
·
[

N∑
i=M+1

y2
i

]
. (2)

In our problem, we only know the upper part of b =
(

b1

b2

)
, and know it is

from class Ω. In order to solve for the unknown part b2, we want to maximize the
likelihood of P̂ (b|Ω) by choosing {yi}N

i=1, where (y1, y2, · · · , yN)T = ΦT (b − x̄)
and x̄ is the mean of the training set. We then generate b2 = x̄2 + Φ2 · y.

This optimization depends upon three quantities:

[
M∑
i=1

y2
i

λi

]
,

[
N∑

i=M+1

y2
i

]
and the

weight ρ, . Let’s look at them one by one.
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2.2

[
M∑

i=1

y2
i

λi

]
: DIFS

This is the Mahalanobis distance, also called the “distance-in-feature-space”
(DIFS) [10]. It describes how far the projection of x onto F is from the origin.

Let Λ−1
M =

⎡
⎢⎢⎢⎣

1
λ1

0
1
λ2

. . .
0 1

λM

⎤
⎥⎥⎥⎦, and y = (y1, y2, · · · , yM )T , then

[
M∑
i=1

y2
i

λi

]
= yT Λ−1

M y. (3)

2.3

⎡
⎣ N∑

i=M+1

y2
i

⎤
⎦ : DFFS

The residual reconstruction error, also called DFFS [10] is
N∑

i=M+1

y2
i = ε2(x) =

‖x′ − x‖2, where x′ is the projection of x on F .
The linear-object-class method [12] minimizes the DFFS to find y in order to

predict b2. Split the eigenvector matrix ΦM containing the first M eigenvectors

into ΦM =
(

Φ1

Φ2

)
and split the mean x̄ of training data into x̄ =

(
x̄1

x̄2

)
, where

Φ1 and x̄1 have the same number of rows as b1. No matter what method we use
to solve for y, since b2 is defined as x̄2 + Φ2 ·y, the residual reconstruction error

of resulting b =
(

b1

b2

)
is

N∑
i=M+1

y2
i = ε2(b) = ‖b − (x̄ + ΦM · y)‖2 =

∥∥∥∥
(

b1

b2

)
−
(

x̄1 + Φ1 · y
x̄2 + Φ2 · y

)∥∥∥∥
2

= ‖b1 − (x̄1 + Φ1 · y)‖2

=
∥∥∥b̃1 − Φ1 · y

∥∥∥2

,

(4)

where b̃1 = b1− x̄1. Thus the linear-object-class method [12] solves a least square
problem to solve for y :

y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥2

.

2.4 Determining ρ

Moghaddam and Pentland [10] define ρ = 1
N−M

N∑
i=M+1

λi, under the assumption

that the number of training examples NT ≥ N , and that {λi}N
i=M+1 are about
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the same magnitude. However, in practice, N is very large and we have NT � N .
These NT training examples can only span an (NT − 1) dimensional subspace,
resulting in that λNT = λNT +1 = · · · = λN = 0.

We use the non-zero eigenvalues, {λi}NT −1
i=M+1, to guess what {λi}N

i=NT
would be

like had we been given sufficient training data. Here we add another assumption:
– We assume that the actual values of {λi}N

i=NT
will be about the same mag-

nitude as the average of the known eigenvalues {λi}NT−1
i=M+1.

Under this assumption, ρ = 1
NT−M−1

NT−1∑
i=M+1

λi.

2.5 Solving the Optimization Problem

Given b1, we want to find b2 that minimizes d̂(b). Substituting equations (3) and
(4) into (2),

d̂(b) =
M∑
i=1

y2
i

λi
+ ε2(b)

ρ

= yT Λ−1
M y + 1

ρ

∥∥∥b̃1 − Φ1 · y
∥∥∥2

= yT Λ−1
M y + 1

ρ

(
b̃1 − Φ1 · y

)T (
b̃1 − Φ1 · y

)

= 1
ρ

(
yT ρΛ−1

M y + yT ΦT
1 Φ1y − 2

(
ΦT

1 b̃1

)T

· y + b̃T
1 b̃1

)
.

Letting the partial derivative to be zero,

0 = ∂d̂(b)
∂y = 2ρΛ−1

M y + 2ΦT
1 Φ1y − 2ΦT

1 b̃1

= 2
[(

ρΛ−1
M + ΦT

1 Φ1

)
y − ΦT

1 b̃1

]
.

The solution of y is
y =

(
ρΛ−1

M + ΦT
1 Φ1

)−1 · ΦT
1 b̃1. (5)

And the unknown b2 can be predicted as b2 = x̄2 + Φ2 · y.

3 Seperating Shape and Appearance

Let’s use the above technique to solve the problem of synthesizing new views of
human faces. The problem is described as follows. Given a probe face image I
under pose 1, we need to synthesize a new image J of this person’s face under
pose 2. The training set consists of NT pairs of face images, {[I1, J1] , [I2, J2] , · · · ,
[INT , JNT ]}. Ii and Ji are faces of the ith subject in the training set. {Ii}NT

i=1 are
under pose 1, and {Ji}NT

i=1 are under pose 2.
In our approach, we make the common assumption [5,12,7] that the charac-

teristics of shape can be seperated from appearance.
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3.1 Shape

On each face image, a set of landmarks are labeled by hand. For the ith training
image under pose 1, denote the coordinates of each landmark as (xj , yj) , j =
1, · · · , L1, where L1 is the number of landmarks on the faces under pose 1. Define
the shape vector of this ith face image under pose 1 as

si,1 = (x1, x2, · · · , xL1 , y1, y2, · · · , yL1)
T

.

A similar vector si,2 can also be defined in the same way for pose 2. Concate-
nating these two vectors, we get a vector

si =
(

si,1

si,2

)

as a combined shape vector for the ith subject in the training set.
Thus, for the NT subjects in the training set, we get a training set of shape

vectors {si}NT

i=1.

3.2 Appearance

For each pose, a reference face is chosen, so that every face under this pose
is warped to the shape of the reference face, giving a normalized image. The
warping is done via a triangulation algorithm with the landmarks [5] assuming
that the faces have lambertian surfaces. On each normalized image, only the
pixels within the convex hull of the landmarks are kept and all other pixels are
discarded. This is done to remove the unnecessary variations of the hair or the
background scenery. Let’s call the resultant normalized images under pose 1 as
Ĩ1, Ĩ2, · · · , ĨNT , and those under pose 2 as J̃1, J̃2, · · · , J̃NT . Reshape them into
vectors as {ti,1}NT

i=1 and {ti,2}NT

i=1 for pose 1 and pose 2 respectively.
For the ith subject in the training set, define

ti =
(

ti,1
ti,2

)

as a combined appearance vector. Thus, for the NT subjects in the training set,
we get a training set of appearance vectors {ti}NT

i=1.

3.3 Probe Image and Prediction

Given a probe face image I under pose 1, we need to synthesize a new image
J of this person’s face under pose 2. With a set of landmarks on I and the
reference face under pose 1, we can again decompose I into its shape vector ŝ1

and appearance vector t̂1. The landmarks can be obtained using AAM fitting
[5]. In our experiments, we hand labeled these landmarks on the probe image I.
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If we can predict the shape vector ŝ2 and the appearance vector t̂2 of the
unknown image J , by warping t̂2 from the reference face under pose 2 back to
the shape defined by ŝ2, we will be able to get the synthesized new image J .

So the problem turns into: How to predict ŝ2, given ŝ1 and the training set
{si}NT

i=1? And how to predict t̂2, given t̂1 and the training set {ti}NT

i=1? They are
the same mathematical problem. Using exactly equation (5) that we described

Fig. 2. The 13 poses in CMU PIE database

Fig. 3. Synthesizing a frontal view from a given profile. Column 1 to 5: (1) input image

under pose 1 (2) synthetic image using linear-object-class. (3) synthetic image using our

approach. (4) PCA reconstruction of ground truth of pose 2. (5) ground truth of pose 2.
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in Section 2 will predict the unknown shape ŝ2 and the unknown appearance t̂2.
Then we can combine them to get the synthesized new image J , which is the
new view of the probe face under pose 2 .

4 Experimental Results

We tested the performance of this method on the CMU PIE database [11]. The
database contains 68 subjects. We chose 64 subjects as the training set, and
4 subjects (04016, 04022, 04026 and 04029) as the test set. Our experiments
were performed on the “expression” subset including those images with neutral
expressions, and those images containing glasses if the subject normally wears
glasses. All images were converted to gray-scale images. The database contains
13 poses, illustrated in Fig. 2. We used combinations of ‘c27’ (frontal view),
‘c37’ (45◦ view) and ‘c22’ (profile) to test our algorithm. The landmarks were

Fig. 4. Synthesizing a profile from a given frontal view. Column 1 to 5: (1) input image

under pose 1 (2) synthetic image using linear-object-class. (3) synthetic image using

our approach. (4) PCA reconstruction of ground truth of pose 2. (5) ground truth of

pose 2.
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Fig. 5. Synthesizing a 45◦ view from a given frontal view. Column 1 to 5: (1) input image

under pose 1 (2) synthetic image using linear-object-class. (3) synthetic image using our

approach. (4) PCA reconstruction of ground truth of pose 2. (5) ground truth of pose 2.

provided courtesy of Ralph Gross [7]. The number of landmarks vary depending
on the pose, from 39 landmarks to 54 landmarks.

We performed 3 sets of experiments, including predicting frontal view from
profile (Fig. 3), predicting profile from frontal view (Fig. 4), predicting 45◦ view
from frontal view (Fig. 5). These experiments all involve large out-of-plane ro-
tations, such as 90◦ or 45◦. In each experiment, the result of our approach is
compared with that of linear-object-class method. We also computed the PCA

reconstruction of the ground truth, by projecting the true b =
(

b1

b2

)
onto the

eigenspace, to show the best possible reconstruction under the linear eigenspace
assumption. In each experiment, for either the shape or the appearance, we al-
ways choose the number of principal eigenvectors that occupies 98% of energy.
Each synthesis takes an average of 4 - 5 seconds on a PC with a 3GHz Pentium 4
processor, including predicting shape and appearance and also warping the ap-
pearance to the shape. More specificly, the prediction of shape and appearance
takes about 0.3 second, and the warping takes about 4 seconds.

Fig. 3 - 5 show how our approach improves upon the results of the linear-
object-class method, especially in predicting the shapes and handling large out-
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Table 1. Sum of squared errors in shape prediction from profile to frontal view

linear-object-class method our approach PCA reconstruction of ground truth

49.5860 36.4763 12.8272

31.8927 27.6268 11.6914

51.8873 34.2422 11.6563

74.9253 49.6667 13.1261

Table 2. Sum of squared errors in shape prediction from frontal view to profile

linear-object-class method our approach PCA reconstruction of ground truth

67.1898 38.1367 15.9177

42.6668 32.0460 11.9452

47.4225 31.5215 13.5370

50.4465 28.2523 16.2700

Table 3. Sum of squared errors in shape prediction from frontal view to 45◦ view

linear-object-class method our approach PCA reconstruction of ground truth

46.4735 34.7182 16.0734

42.6817 31.4329 12.1678

56.5308 35.1610 18.0164

65.3341 41.0252 15.2125

of-plane rotations. Although our synthetic images are not perfect replicas of
the ground truth, they are similiar to the PCA reconstructions of the ground
truth, which are the best possible synthetic images under the linear eigenspace
assumption. We performed these experiments using a training set of only 64
subjects. With more training data, the eigenspace would be more accurately
described and better results could be expected.

We have also included the numerical comparison of errors for shape prediction
in each set of experiments (Table 1, 2, 3). In each table, we compare the sum-of-
squared-errors in the coordinates of the predicted shape, using the linear-object-
class method, our approach, and the PCA reconstructions of ground truth, re-
spectively. From the numerical errors, we can see our approach is efficient in
reducing the errors by at least 30%.

Such technique can be used in face recognition which involves pose variation
of large out-of-plane rotations.

5 Discussion and Conclusion

In this paper, we proposed an approach that can efficiently synthesize accurate
new views of faces across large out-of-plane rotation, given only a single image. In
our approach, we formulate a probabilistic model combining the “distance-from-



Face View Synthesis Across Large Angles 375

feature-space” and the “distance-in-feature-space”, and minimize the weighted
sum of the two distances, in order to maximize the likelihood of the test example
with missing data. Experimental results show that our approach produces more
accurate results than the commonly used linear-object-class approach which is
the basis of many 2D approaches.

Moreover, if compared with the 3D approaches, our method is also attractive
in that it is computationally efficient and fast. With no need for a 3D model or 3D
training data, it does not construct 3D geometry at all, thus it avoids expensive
3D rendering and fitting. It directly synthesizes 2D images, and requires using
only pairs of 2D images. Nor does our approach require correspondence between
different poses. Only correspondence between faces under the same pose is used.
As a tradeoff, our approach needs the same number of views for each subject in
the database, and can only synthesize those views which are in the database.

Pose variations, especially large out-of-plane rotations, make face recognition
a difficult problem. Our algorithm of synthesizing new views of a person’s face
given a single input face image, can enable face recognition systems to overcome
the pose variation problem.
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