Abstract
The development of web and digital camera nowadays has made it easier to collect more than hundreds of thousands of examples. How to train a face detector based on the collected enormous face database? This paper presents a manifold-based method to subsample. That is, we learn the manifold from the collected face database and then subsample training set by the estimated geodesic distance which is calculated during the manifold learning. Using the subsampled training set based on the manifold, we train an AdaBoost-based face detector. The trained detector is tested on the MIT+CMU frontal face test set. The experimental results show that the proposed method is effective and efficient to train a classifier confronted with the huge database.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Inform. Proc. Systems, vol. 14, pp. 585–591. MIT Press, Cambridge (2002)
Bernstein, M., de Silva, V., Langford, J., Tenenbaum, J.: Graph approximations to geodesics on embedded manifolds. Technical report, Department of Psychology, Stanford University (2000)
Brand, M.: Charting a manifold. In: Advances in Neural Information Proc. Systems, vol. 15, pp. 961–968. MIT Press, Cambridge (2003)
Donoho, D.L., Grimes, C.: When does ISOMAP recover natural parameterization of families of articulated images? Technical Report 2002-27, Depart. of Statistics, Stanford University (2002)
Froba, B., Ernst, A.: Fast Frontal-View Face Detection Using a Multi-Path Decision Tree. In: Proceedings of Audio and Video based Biometric Person Authentication, pp. 921–928 (2003)
Heisele, B., Poggio, T., Pontil, M.: Face Detection in Still Gray Images. CBCL Paper #187. MIT, Cambridge (2000)
Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Anal. Machine Intell., 696–706 (2002)
Hundley, D.R., Kirby, M.J.: Estimation of topological dimension. In: Proc. SIAM International Conference on Data Mining (2003), http://www.siam.org/meetings/sdm03/proceedings/sdm03_18.pdf
Jenkins, O.C., Mataric, M.J.: Automated derivation of behavior vocabularies for autonomous humanoid motion. In: Proc. of the Second Int’l Joint Conference on Autonomous Agents and Multiagent Systems, Melbourne, Australia (July 2003)
Law, M.H., Zhang, N., Jain, A.K.: Nonlinear Manifold Learning for Data Stream. In: Proc. of SIAM Data Mining, Florida, pp. 33–44 (2004)
Li, S.Z., Zhu, L., Zhang, Z.Q., Blake, A., Zhang, H.J., Shum, H.: Statistical Learning of Multi-View Face Detection. In: Proc. of the 7th European Conference on Computer Vision (2002)
Liu, C., Shum, H.Y.: Kullback-Leibler Boosting. In: Proceedings of the 2003 IEEE Conf. on Computer Vision and Pattern Recognition, CVPR 2003 (2003)
Liu, C.J.: A Bayesian Discriminating Features Method for Face Detection. IEEE Trans. Pattern Anal. and Machine Intel., 725–740 (2003)
Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 130–136 (1997)
Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proc. 6th Int. Conf. Computer Vision, pp. 555–562 (1998)
Pettis, K., Bailey, T., Jain, A.K., Dubes, R.: An intrinsic dimensionality estimator from near-neighbor information. IEEE Trans. of Pattern Analysis and Machine Intel. 25–36 (1979)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Roweis, S.T., Saul, L.K., Hinton, G.E.: Global coordination of local linear models. In: Advances in Neural Information Processing Systems, vol. 14, pp. 889–896. MIT Press, Cambridge (2002)
Rowley, H.A., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Tr. Pattern Analysis and Machine Intel. 23–38 (1998)
Rowley, H.A., Baluja, S., Kanade, T.: Rotation Invariant Neural Network-Based Face Detection. In: Conf. Computer Vision and Pattern Rec., pp. 38–44 (1998)
Schneiderman, H., Kanade, T.: A Statistical Method for 3D Object Detection Applied to Faces. In: Comp. Vision and Pattern Recog., pp. 746–751 (2000)
Sung, K.K., Poggio, T.: Example-Based Learning for View-Based Human Face Detection. IEEE Trans. on PAM. 39–51 (1998)
Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: Conf. Comp. Vision and Pattern Recog., pp. 511–518 (2001)
Teh, Y.W., Roweis, S.T.: Automatic alignment of local representations. In: Advances in Neural Information Processing Systems, vol. 15, pp. 841–848. MIT Press, Cambridge (2003)
Tenenbaum, B.J., Silva, V., Langford, J.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)
Verbeek, J.J., Vlassis, N., Krose, B.: Coordinating principal component analyzers. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 914–919. Springer, Heidelberg (2002)
Verbeek, J.J., Vlassis, N., Krose, B.: Fast nonlinear dimensionality reduction with topology preserving networks. In: Proc. 10th European Symposium on Artificial Neural Networks, pp. 193–198 (2002)
Xiao, R., Li, M.J., Zhang, H.J.: Robust Multipose Face Detection in Images. IEEE Trans. on Circuits and Systems for Video Technology 14(1), 31–41 (2004)
Yang, M.-H.: Face recognition using extended ISOMAP. In: Processing International Conf. on Image, pp.117–120 (2002)
Yang, M.H., Roth, D., Ahuja, N.: A SNoW-Based Face Detector. In: Advances in Neural Information Processing Systems, vol. 12, pp. 855–861. MIT Press, Cambridge (2000)
Yang, M.H., Kriegman, D., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Tr. Pattern Analysis and Machine Intelligence 24, 34–58 (2002)
Zha, H., Zhang, Z.: Isometric embedding and continuum ISOMAP. In: International Conference on Machine Learning (2003), http://www.hpl.hp.com/conferences/icml2003/papers/8.pdf
http://www.ai.mit.edu/projects/cbcl/software-dataset/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, J., Wang, R., Yan, S., Shan, S., Chen, X., Gao, W. (2005). How to Train a Classifier Based on the Huge Face Database?. In: Zhao, W., Gong, S., Tang, X. (eds) Analysis and Modelling of Faces and Gestures. AMFG 2005. Lecture Notes in Computer Science, vol 3723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564386_8
Download citation
DOI: https://doi.org/10.1007/11564386_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29229-6
Online ISBN: 978-3-540-32074-6
eBook Packages: Computer ScienceComputer Science (R0)