Skip to main content

Speeding Up Constrained Path Solvers with a Reachability Propagator

  • Conference paper
Principles and Practice of Constraint Programming - CP 2005 (CP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3709))

  • 1564 Accesses

Abstract

We present a propagator which we call Reachability that implements a generalized reachability constraint on a directed graph g. Given a source node source in g, we can identify three parts in the Reachability constraint: (1) the relation between each node of g and the set of nodes that it reaches, (2) the association of each pair of nodes 〈source,i 〉 with its set of cut nodes, and (3) the association of each pair of nodes 〈source,i 〉 with its set of bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dooms, G., Deville, Y., Dupont, P.: CP(Graph): Introducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Consortium, M.: The Mozart Programming System, version 1.3.0 (2004), Available at http://www.mozart-oz.org/

  3. Quesada, L., Von Roy, P., Deville, Y.: Reachability: a constrained path propagator implemented as a multi-agent system. In: CLEI 2005 Proceedings (2005)

    Google Scholar 

  4. Quesada, L., Von Roy, P., Deville, Y.: The reachability propagator. Research Report INFO-2005-07, Université catholique de Louvain, Louvain-la-Neuve, Belgium (2005), Available at http://www.info.ucl.ac.be/~luque/SPMN/paper.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quesada, L., Van Roy, P., Deville, Y. (2005). Speeding Up Constrained Path Solvers with a Reachability Propagator. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_104

Download citation

  • DOI: https://doi.org/10.1007/11564751_104

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics