Skip to main content

Evolving Variable-Ordering Heuristics for Constrained Optimisation

  • Conference paper
Principles and Practice of Constraint Programming - CP 2005 (CP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3709))

  • 1722 Accesses

Abstract

In this paper we present and evaluate an evolutionary approach for learning new constraint satisfaction algorithms, specifically for MAX-SAT optimisation problems. Our approach offers two significant advantages over existing methods: it allows the evolution of more complex combinations of heuristics, and; it can identify fruitful synergies among heuristics. Using four different classes of MAX-SAT problems, we experimentally demonstrate that algorithms evolved with this method exhibit superior performance in comparison to general purpose methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borchers, B., Furman, J.: A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems. Journal of Combinatorial Optimization 2, 299–306 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Xing, Z., Zhang, W.: Efficient strategies for (weighted) maximum satisfiability. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 690–705. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)

    Article  Google Scholar 

  4. Minton, S.: Automatically configuring constraint satisfaction programs: A case study. Constraints 1, 7–43 (1996)

    Article  MathSciNet  Google Scholar 

  5. Epstein, S.L., Freuder, E.C., Wallace, R., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–540. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Fukunaga, A.: Automated discovery of composite SAT variable-selection heuristics. In: AAAI 2002, Canada, pp. 641–648 (2002)

    Google Scholar 

  7. Koza, J.: Genetic Programming: On the programming of computers by means of natural selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  8. Zhang, H., Stickel, M.: Implementing the Davis-Putnam method. Journal of Automated Reasoning 24, 277–296 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bain, S., Thornton, J., Sattar, A. (2005). Evolving Variable-Ordering Heuristics for Constrained Optimisation. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_54

Download citation

  • DOI: https://doi.org/10.1007/11564751_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics