Skip to main content

Signal Transmission and Synchrony Detection in a Network of Inhibitory Interneurons

  • Conference paper
Brain, Vision, and Artificial Intelligence (BVAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3704))

Included in the following conference series:

  • 929 Accesses

Abstract

Fast Spiking GABAergic interneurons, also coupled through gap junctions too, receive excitatory synaptic inputs from pyramidal cells and a relevant problem is to understand how their outputs depend on the timing of their inputs. In recent experiments it was shown that Fast Spiking interneurons respond with high temporal precision to synaptic inputs and are very sensitive to their synchrony level. In this paper this topic is investigated theoretically by using biophysical modelling of a pair of coupled Fast Spiking interneurons. In particular it is shown that, in agreement with the experimental findings, Fast Spiking interneurons transmit presynaptic signals with high temporal precision. Moreover, they are capable of reading and transferring high frequency inputs while preserving their relative timing. Lastly, a pair of Fast Spiking interneurons, coupled by both inhibitory and electrical synapses, behaves as a coincidence detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O., Somogyi, P.: Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995)

    Article  Google Scholar 

  2. Pouille, F., Scanziani, M.: Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001)

    Article  Google Scholar 

  3. Galarreta, M., Hestrin, S.: Electrical synapses between GABA-releasing neurons. Nature Neurosci. 2, 425–433 (2001)

    Article  Google Scholar 

  4. Galarreta, M., Hestrin, S.: Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295–2299 (2001)

    Article  Google Scholar 

  5. Gibson, J.R., Michael Beierlein, M., Connors, B.W.: Functional Properties of Electrical Synapses Between Inhibitory Interneurons of Neocortical Layer 4. J. Neurophysiol. 93, 467–480 (2005)

    Article  Google Scholar 

  6. Jonas, P., Bischofberger, J., Fricker, D., Miles, R.: Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons. TRENDS in Neurosciences 27, 30–40 (2004)

    Article  Google Scholar 

  7. Whittington, M.A., Traub, R.D., Jefferys, J.G.: Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995)

    Article  Google Scholar 

  8. Wang, X.J., Buzsaki, G.: Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996)

    Google Scholar 

  9. Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J.R., Jonas, P.: Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. PNAS 99, 13222–13227 (2002)

    Article  Google Scholar 

  10. Lewis, T.J., Rinzel, J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comput. Neurosci. 14, 283–309 (2003)

    Article  Google Scholar 

  11. Bem, T., Rinzel, J.: Short Duty cycle destabilizes a half-center oscillator, but gap junctions can restabilize the anti-phase pattern. J. Neurophysiol. 91, 693–703 (2004)

    Article  Google Scholar 

  12. Kopell, N., Ermentrout, B.: Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. PNAS 101, 15482–15487 (2004)

    Article  Google Scholar 

  13. Pfeuty, B., Mato, G., Golomb, D., Hansel, D.: The Combined Effects of Inhibitory and Electrical Synapses in Synchrony. Neural Computation 17, 633–670 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Di Garbo, A., Panarese, A., Chillemi, S.: Gap junctions promote synchronous activities in a network of inhibitory interneurons. BioSystems 79, 91–99 (2005)

    Article  Google Scholar 

  15. Erisir, A., Lau, D., Rudy, B., Leonard, C.S.: Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiology 82, 2476–2489 (1999)

    Google Scholar 

  16. Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, Segev (eds.) Methods in neural modelling. The MIT Press, Cambridge (1989)

    Google Scholar 

  17. Galarreta, M., Hestrin, S.: Electrical and chemical Synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. PNAS 99, 12438–12443 (2002)

    Article  Google Scholar 

  18. Martina, M., Jonas, P.: Functional differences in Na+ channel gating between fast spiking interneurons and principal neurons of rat hippocampus. J. of Physiol. 505.3, 593–603 (1997)

    Article  Google Scholar 

  19. Lien, C.C., Jonas, P.: Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J. of Neurosci. 23, 2058–2068 (2003)

    Google Scholar 

  20. Rudolph, M., Destexhe, A.: The discharge variability of neocortical neurons during high-conductance states. Neuroscience 119, 855–873 (2003)

    Article  Google Scholar 

  21. Singer, W.: Search for coherence: a basic principle of cortical self-organization. Concepts in Neurosci. 1, 1–26 (1990)

    Google Scholar 

  22. Gibson, J.R., Belerlein, M., Connors, B.W.: Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Garbo, A., Panarese, A., Barbi, M., Chillemi, S. (2005). Signal Transmission and Synchrony Detection in a Network of Inhibitory Interneurons. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_5

Download citation

  • DOI: https://doi.org/10.1007/11565123_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29282-1

  • Online ISBN: 978-3-540-32029-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics