Skip to main content

Dynamical Statistical Shape Priors for Level Set Based Sequence Segmentation

  • Conference paper
Variational, Geometric, and Level Set Methods in Computer Vision (VLSM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3752))

Abstract

In recent years, researchers have proposed to introduce statistical shape knowledge into the level set method in order to cope with insufficient low-level information. While these priors were shown to drastically improve the segmentation of images or image sequences, so far the focus has been on statistical shape priors that are time-invariant. Yet, in the context of tracking deformable objects, it is clear that certain silhouettes may become more or less likely over time. In this paper, we tackle the challenge of learning dynamical statistical models for implicitly represented shapes. We show how these can be integrated into a segmentation process in a Bayesian framework for image sequence segmentation. Experiments demonstrate that such shape priors with memory can drastically improve the segmentation of image sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H.: Autoregressive model fitting for control. Ann. Inst. Statist. Math. 23, 163–180 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blake, A., Isard, M.: Active Contours. Springer, London (1998)

    Google Scholar 

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. IEEE Intl. Conf. on Comp. Vis, Boston, USA, pp. 694–699 (1995)

    Google Scholar 

  4. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  5. Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S., Briggs, R.W., Geiser, E.: Using shape priors in geometric active contours in a variational framework. Int. J. of Computer Vision 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  6. Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statistics in mumford-shah based segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 93–108. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: Teaching level sets to walk. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 36–44. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Dervieux, A., Thomasset, F.: A finite element method for the simulation of Raleigh-Taylor instability. Springer Lect. Notes in Math, vol. 771, pp. 145–158 (1979)

    Google Scholar 

  9. Duci, A., Yezzi, A., Mitter, S., Soatto, S.: Shape representation via harmonic embedding. In: ICCV, pp. 656–662 (2003)

    Google Scholar 

  10. Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., Yezzi, A.J.: Gradient flows and geometric active contour models. In: IEEE Intl. Conf. on Comp. Vis, pp. 810–815 (1995)

    Google Scholar 

  11. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR, Hilton Head Island, SC, vol. 1, pp. 316–323 (2000)

    Google Scholar 

  12. Malladi, R., Sethian, J.A., Vemuri, B.C.: A topology independent shape modeling scheme. In: SPIE Conf. on Geometric Methods in Comp. Vision II, vol. 2031, pp. 246–258 (1994)

    Google Scholar 

  13. Moelich, M., Chan, T.: Tracking objects with the Chan-Vese algorithm. Technical Report 03-14, Computational Applied Mathematics, UCLA, Los Angeles (2003)

    Google Scholar 

  14. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Neumaier, A., Schneider, T.: Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM T. on Mathematical Software 27(1), 27–57 (2001)

    Article  MATH  Google Scholar 

  16. Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. of Comp. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. of Computer Vision 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  18. Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Particle filtering for geometric active contours and application to tracking deforming objects. In: IEEE Int. Conf. on Comp. Vision and Patt. Recognition (2005) (to appear)

    Google Scholar 

  19. Riklin-Raviv, T., Kiryati, N., Sochen, N.: Unlevel sets: Geometry and prior-based segmentation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 50–61. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Rousson, M., Cremers, D.: Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 757–764. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Rousson, M., Paragios, N., Deriche, R.: Implicit active shape models for 3D segmentation in MR imaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 209–216. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Schwarz, G.: Estimating the dimension of a model. Ann. Statist. 6, 461–464 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, E., Willsky, A.: Model–based curve evolution technique for image segmentation. In: Comp. Vision Patt. Recog., pp. 463–468. Kauai, Hawaii (2001)

    Google Scholar 

  25. Tsai, A., Yezzi, A.J., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  26. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE PAMI 18(9), 884–900 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cremers, D., Funka-Lea, G. (2005). Dynamical Statistical Shape Priors for Level Set Based Sequence Segmentation. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_18

Download citation

  • DOI: https://doi.org/10.1007/11567646_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics