Skip to main content

Nonlinear Inverse Scale Space Methods for Image Restoration

  • Conference paper
Variational, Geometric, and Level Set Methods in Computer Vision (VLSM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3752))

Abstract

In this paper we generalize the iterated refinement method, introduced by the authors in [8],to a time-continuous inverse scale-space formulation. The iterated refinement procedure yields a sequence of convex variational problems, evolving toward the noisy image.

The inverse scale space method arises as a limit for a penalization parameter tending to zero, while the number of iteration steps tends to infinity. For the limiting flow, similar properties as for the iterated refinement procedure hold. Specifically, when a discrepancy principle is used as the stopping criterion, the error between the reconstruction and the noise-free image decreases until termination, even if only the noisy image is available and a bound on the variance of the noise is known.

The inverse flow is computed directly for one-dimensional signals, yielding high quality restorations. In higher spatial dimensions, we introduce a relaxation technique using two evolution equations. These equations allow accurate, efficient and straightforward implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bregman, L.M.: The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. and Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  2. Burger, M., Goldfarb, D., Osher, S., Xu, J., Yin, W.: Inverse total variation flow (in preparation)

    Google Scholar 

  3. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using bregman functions. SIAM J. Optim. 3, 538–543 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland Publishers, Amsterdam (1976)

    MATH  Google Scholar 

  5. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  6. Groetsch, C., Scherzer, O.: Nonstationary iterated Tikhonov-Morozov method and third order differential equations for the evaluation of unbounded operators. Math. Methods Appl. Sci. 23, 1287–1300 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. He, L., Marquina, A., Osher, S.: Blind deconvolution using TV regularization and Bregman iteration. Int. J. of Imaging Systems and Technology 5, 74–83 (2005)

    Article  Google Scholar 

  8. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. Multiscale Model. and Simul. 4, 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. PAMI 12(7), 629–639 (1990)

    Google Scholar 

  10. Plato, R.: The discrepancy principle for iterative and parametric methods to solve linear ill-posed problems. Numer. Math. 75, 99–120 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rudin, L.I., Osher, S.J., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  12. Scherzer, O., Groetsch, C.: Inverse scale space theory for inverse problems. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 317–325. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imaging and Vision 12, 43–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV,L 2) decompositions. Multiscale Model. Simul. 2, 554–579 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burger, M., Osher, S., Xu, J., Gilboa, G. (2005). Nonlinear Inverse Scale Space Methods for Image Restoration. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_3

Download citation

  • DOI: https://doi.org/10.1007/11567646_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics