Skip to main content

Structure-Texture Decomposition by a TV-Gabor Model

  • Conference paper
Variational, Geometric, and Level Set Methods in Computer Vision (VLSM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3752))

Abstract

This paper explores new aspects of the image decomposition problem using modern variational techniques. We aim at splitting an original image f into two components u and v, where u holds the geometrical information and v holds the textural information. Our aim is to provide the necessary variational tools and suggest the suitable functional spaces to extract specific types of textures.

Our modeling uses the total-variation semi-norm for extracting the structural part and a new tunable norm, presented here for the first time, based on Gabor functions, for the textural part. A way to select the splitting parameter based on the orthogonality of structure and texture is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.: Sobolev Spaces. Pure and applied Mathematics. Academic Press, Inc., London (1975)

    MATH  Google Scholar 

  2. Almansa, A., Caselles, V., Haro, G., Rouge, B.: Restoration and zoom of irregularly sampled, blurred and noisy images by accurate total variation minimization with local constraints (2004) (submitted)

    Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Applied Mathematical Sciences, vol. 147. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  4. Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. Journal of Mathematical Imaging and Vision 22(1), 71–88 (2005)

    Article  MathSciNet  Google Scholar 

  5. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. International Journal on Computer Vision 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  6. Aujol, J.F., Gilboa, G.: Implementation and parameter selection for BV-Hilbert space regularizations, UCLA CAM Report 04-66 (2004)

    Google Scholar 

  7. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition – modeling, algorithms, and parameter selection, UCLA CAM Report 05-10 (2005), ftp://ftp.math.ucla.edu/pub/camreport/cam05-10.pdf

  8. Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numerische Mathematik 76(3), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chambolle, A., De Vore, R.A., Lee, N., Lucier, B.J.: Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Transcations on Image Processing 7(3), 319–335 (1998)

    Article  MATH  Google Scholar 

  11. Chan, T., Esedoglu, S.: Aspects of total variation regularized L1 function approximation, CAM report 04-07 (2004) (to appear in SIAM Journal on Applied Mathematics)

    Google Scholar 

  12. Donoho, D.L., Johnstone, M.: Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association 90(432), 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dunn, D., Higgins, W.E.: Optimal Gabor filters for texture segmentation. IEEE Transactions on Image Processing 4(7), 947–964 (1995)

    Article  Google Scholar 

  14. Gabor, D.: Theory of communication. J. Inst. of Electrical Engineering 93(3), 429–457 (1946)

    Google Scholar 

  15. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Estimation of optimal PDE-based denoising in the SNR sense. To appear in IEEE Trans. Image Processing, see http://www.math.ucla.edu/~gilboa/

  16. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Variational denoising of partly-textured images by spatially varying constraints (submitted)

    Google Scholar 

  17. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational denoising using an adaptive fidelity term. In: Proc. VLSM 2003, Nice, France, pp. 137–144 (2003)

    Google Scholar 

  18. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Estimation of the optimal variational parameter via SNR analysis. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 230–241. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Groetsch, C., Scherzer, O.: Inverse scale space theory for inverse problems. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 317–325. Springer, Heidelberg (2001)

    Google Scholar 

  20. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  21. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE transactions on image processing 11(12), 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  22. Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  23. Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations. In: The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures (March 2001)

    Google Scholar 

  24. Morosov, V.A.: On the solution of functional equations by the method of regularization. Soviet Math. Dokl. 7, 414–417 (1966)

    MathSciNet  Google Scholar 

  25. Mrázek, P., Navara, M.: Selection of optimal stopping time for nonlinear diffusion filtering. IJCV 52(2/3), 189–203 (2003)

    Article  Google Scholar 

  26. Nikolova, M.: A variational approach to remove outliers and impulse noise. JMIV 20(1-2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  27. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration, CAM report 04-13, to appear in SIAM Journal on Multiscale Modeling and Simulation (2004)

    Google Scholar 

  28. Osher, S.J., Sole, A., Vese, L.A.: Image decomposition and restoration using total variation minimization and the H− 1 norm. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 1(3), 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Porat, M., Zeevi, Y.Y.: The generalized Gabor scheme of image representation in biological and machine vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(4), 452–468 (1988)

    Article  MATH  Google Scholar 

  30. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  31. Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition: separation of texture from piecewise smooth content. To appear in IEEE Transactions on Image Processing (2003)

    Google Scholar 

  32. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV,L 2) decompositions. SIAM Journal on Multiscale Modeling and Simulation 2(4), 554–579 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing 19, 553–572 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yin, W., Goldfarb, D., Osher, S.: Total variation based image cartoon-texture decomposition, UCLA CAM Report 05-27 (2005), ftp://ftp.math.ucla.edu/pub/camreport/cam05-27.pdf

  35. Zibulski, M., Zeevi, Y.Y.: Analysis of multi-window Gabor-type schemes by frame methods. J. Appl. Comp. Harmon. Anal. 4(2), 188–221 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aujol, JF., Gilboa, G., Chan, T., Osher, S. (2005). Structure-Texture Decomposition by a TV-Gabor Model. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_8

Download citation

  • DOI: https://doi.org/10.1007/11567646_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics