Abstract
This paper explores new aspects of the image decomposition problem using modern variational techniques. We aim at splitting an original image f into two components u and v, where u holds the geometrical information and v holds the textural information. Our aim is to provide the necessary variational tools and suggest the suitable functional spaces to extract specific types of textures.
Our modeling uses the total-variation semi-norm for extracting the structural part and a new tunable norm, presented here for the first time, based on Gabor functions, for the textural part. A way to select the splitting parameter based on the orthogonality of structure and texture is also suggested.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, R.: Sobolev Spaces. Pure and applied Mathematics. Academic Press, Inc., London (1975)
Almansa, A., Caselles, V., Haro, G., Rouge, B.: Restoration and zoom of irregularly sampled, blurred and noisy images by accurate total variation minimization with local constraints (2004) (submitted)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Applied Mathematical Sciences, vol. 147. Springer, Heidelberg (2002)
Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. Journal of Mathematical Imaging and Vision 22(1), 71–88 (2005)
Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. International Journal on Computer Vision 63(1), 85–104 (2005)
Aujol, J.F., Gilboa, G.: Implementation and parameter selection for BV-Hilbert space regularizations, UCLA CAM Report 04-66 (2004)
Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition – modeling, algorithms, and parameter selection, UCLA CAM Report 05-10 (2005), ftp://ftp.math.ucla.edu/pub/camreport/cam05-10.pdf
Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)
Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numerische Mathematik 76(3), 167–188 (1997)
Chambolle, A., De Vore, R.A., Lee, N., Lucier, B.J.: Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Transcations on Image Processing 7(3), 319–335 (1998)
Chan, T., Esedoglu, S.: Aspects of total variation regularized L1 function approximation, CAM report 04-07 (2004) (to appear in SIAM Journal on Applied Mathematics)
Donoho, D.L., Johnstone, M.: Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association 90(432), 1200–1224 (1995)
Dunn, D., Higgins, W.E.: Optimal Gabor filters for texture segmentation. IEEE Transactions on Image Processing 4(7), 947–964 (1995)
Gabor, D.: Theory of communication. J. Inst. of Electrical Engineering 93(3), 429–457 (1946)
Gilboa, G., Sochen, N., Zeevi, Y.Y.: Estimation of optimal PDE-based denoising in the SNR sense. To appear in IEEE Trans. Image Processing, see http://www.math.ucla.edu/~gilboa/
Gilboa, G., Sochen, N., Zeevi, Y.Y.: Variational denoising of partly-textured images by spatially varying constraints (submitted)
Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational denoising using an adaptive fidelity term. In: Proc. VLSM 2003, Nice, France, pp. 137–144 (2003)
Gilboa, G., Sochen, N., Zeevi, Y.Y.: Estimation of the optimal variational parameter via SNR analysis. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 230–241. Springer, Heidelberg (2005)
Groetsch, C., Scherzer, O.: Inverse scale space theory for inverse problems. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 317–325. Springer, Heidelberg (2001)
Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)
Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE transactions on image processing 11(12), 1450–1456 (2002)
Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)
Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations. In: The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures (March 2001)
Morosov, V.A.: On the solution of functional equations by the method of regularization. Soviet Math. Dokl. 7, 414–417 (1966)
Mrázek, P., Navara, M.: Selection of optimal stopping time for nonlinear diffusion filtering. IJCV 52(2/3), 189–203 (2003)
Nikolova, M.: A variational approach to remove outliers and impulse noise. JMIV 20(1-2), 99–120 (2004)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration, CAM report 04-13, to appear in SIAM Journal on Multiscale Modeling and Simulation (2004)
Osher, S.J., Sole, A., Vese, L.A.: Image decomposition and restoration using total variation minimization and the H− 1 norm. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 1(3), 349–370 (2003)
Porat, M., Zeevi, Y.Y.: The generalized Gabor scheme of image representation in biological and machine vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(4), 452–468 (1988)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition: separation of texture from piecewise smooth content. To appear in IEEE Transactions on Image Processing (2003)
Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV,L 2) decompositions. SIAM Journal on Multiscale Modeling and Simulation 2(4), 554–579 (2004)
Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing 19, 553–572 (2003)
Yin, W., Goldfarb, D., Osher, S.: Total variation based image cartoon-texture decomposition, UCLA CAM Report 05-27 (2005), ftp://ftp.math.ucla.edu/pub/camreport/cam05-27.pdf
Zibulski, M., Zeevi, Y.Y.: Analysis of multi-window Gabor-type schemes by frame methods. J. Appl. Comp. Harmon. Anal. 4(2), 188–221 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aujol, JF., Gilboa, G., Chan, T., Osher, S. (2005). Structure-Texture Decomposition by a TV-Gabor Model. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_8
Download citation
DOI: https://doi.org/10.1007/11567646_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29348-4
Online ISBN: 978-3-540-32109-5
eBook Packages: Computer ScienceComputer Science (R0)