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Abstract

By using a mixture model for the density distribution of the three pseudobond angles formed by Cα

atoms of four consecutive residues, the local structural states are discretized as 17 conformational letters
of a protein structural alphabet. This coarse-graining procedure converts a 3D structure to a 1D code
sequence. A substitution matrix between these letters is constructed based on the structural alignments
of the FSSP database.
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1 Introduction

Drastic approximations are unavoidable in prediction of protein structure from the amino acid sequence.
Most local structure prediction methods use three secondary structure states: helix, strand and loop. How-
ever, segments of a single secondary structure may vary significantly in their 3D structures. A refined
objective classification of segments may enhance our ability in the prediction of structures, and deepen our
understanding of the modular architecture of proteins.

The usual approaches simplify protein structure by modelling proteins as chains of one or two interacting
centers representing individual amino acids, and adopt only a small number of discrete conformational states.
Many studies to investigate the classification of protein fragments use the backbone (φ, ψ) dihedral angles,
or angles of Cα psuedobonds or distances derived from the positions of Cα atoms. Due to the anticorrelation
between φ and ψ (McCammon et al., 1977; Flocco and Mowbray 1995), there may be instances where a
big change in both φ and ψ does not represent an obvious change in the Cα pseudobond angles, but a
reorientation of the peptide in question. Furthermore, the relation between Cα coordinates and pseudobond
angles is rather straightforward, and pseudobond angles have a more direct geometric meaning than distances.
We shall use only pseudobond angles in this paper.

By restricting the local conformations of individual residues to a handful of states, one can discretize
protein conformation to convert the 3D structure of a backbone to a 1D sequence of these discrete states
akin to the amino acid sequence. Prediction of protein structure depends on the accuracy and complexity of
the models used. A model must be as simple as possible to reduce the conformational space to be searched
for a correct conformation, while a model of low complexity tends to have a lower accuracy. A model must
represent the actual geometry of protein conformations accurately enough, but a complex model is prone to
over-fitting the observed data.

Generally, the procedure to deduce finite discrete conformational states from a continuous conformational
phase space is a clustering analysis. There have been a variety of different ways of clustering. For example,
Park and Levitt (1995) represent the polypeptide chain by a sequence of rigid fragments that are chosen
from a library of representative fragments, and concatenated without any degrees of freedom. The average
deviation of the global-fit approximations over the training set is taken as the objective function for optimizing
the finite representative fragments. The state clusters there are representative points of the phase space.
Rooman, Kocher and Wodak (1991) intuitively divide the φ-ψ space into 6 regions, which corresponds to
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a partitioning based on the Ramachandran plot. Standard methods for clustering analysis have been also
used to generate discrete structure states (Bystroff and Baker, 1998).

Hidden Markov models (HMMs; Rabiner, 1989), possessing a rigorous but flexible mathematical struc-
ture, have been used in a variety of computational biology problems such as sequence motif recognition
(Fujiwara et al., 1994), gene finding (Burge and Karlin, 1997), protein secondary structure prediction (Asai,
Hazamizu and Handa, 1993; Zheng, 2004), and multiple sequence alignments (Krogh et al., 1994). The
HMMs have been also used for identifying the modular framwork for the protein backbone (Edgoose, Allison
and Dowe, 1998; Camproux et al., 1999). In these HMMs conformation states are represented by probability
distributions, which is much finer than a simple partition of the phase space. HMMs also take into account
the sequential connections between conformational states, hence involve in a large number of parameters,
which make the model training a tough task. Furthermore, it is not so convenient to assign structure codes
to a short segment with HMMs.

Here we develop a description of protein backbone tertiary structure using psuedobond angles of suc-
cessive Cα atoms. Finite conformational states as structural alphabet are selected according to the density
peaks of probability distribution in the phase space spanned by pseudobond angles, and their feasibility of
characterizing short segment polypeptide backbone conformation is examined. In order to use the structural
codes in the structural comparison, we derive a substitution matrix of these conformational states from a
representative pairwise aligned structure set of the FSSP (families of structurally similar proteins) database
of Holm and Sander (1994).

2 Methods

Among a variety of abstract representing forms for protein 3D structure, a frequently encountered one is
the protein virtual backbone. The Cα atom of the residue is chosen as the representative point. In this
representation, two adjacent residues in a protein sequence are virtually bonded, forming a pseudobond.

2.1 Pseudo-bond angles

The virtual bond bending angle θ defined for three contiguous points (a, b, c) is the angle between the vectors
rab = rb − ra and rbc, i.e. θ = rab · rbc/(|rabrbc|). The range of θ is [0, 2π]. The virtual bond torsion angle τ
defined for four contiguous points (a, b, c, d) is the dihedral angle between the planes abc and bcd. The range
of τ is (−π, π], and its sign is the same as (rab×rbc) ·rcd. In fact, we may adopt a wider range of τ under the
equivalence relation that τ1 and τ2 are equivalent if τ1 = τ2 (mod 2π). For the four-residue segment abcd,
by takeing a as the origin, and b on the x-axis, and c on the xy-plane, the number of independent relative
coordinates are 6. The assumption of the fixed pseudobond length, which is 3.8 Å for the dominating trans

peptide, further reduces the number of degrees of freedom to 3. These independent coordinates correspond
to the angles (θabc, τabcd, θbcd). Elongating the segment by one residue e will add two more angles τbcde and
θcde. Generally, for a sequence of n residues, we have n−2 bending angles and n−3 torsion angles, 2n−5 in
total. We shall assign the angle pair (τabcd, θbcd) ≡ (τc, θc) to residue c, the third of the four-residue segment.

Bending and torsion angles of a chain correspond to curvature and torsion of a curve. The relative
coordinates of the chain {r0, r1, · · · rn} can be recovered from their 2n− 5 angles {θ1; τ2, θ2; · · · ; τn−1, θn−1}.
By convention, we set the origin at r0, put r1 along the x-axis, and add τ1 = 0. Introducing the rotation
matrices Rθ and Rτ (with respect to the z- and x-axis, respectively)

Rθ =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 , Rτ =





1 0 0
0 cos τ − sin τ
0 sin τ cos τ



 , and d = r1 =





1
0
0



 , (1)

position rk is determined by

T0 = I, r0 = 0 · d, Tk = Tk−1RτkRθk , dk = Tk−1 · d, rk = rk−1 + dk, k ≥ 1, (2)

where I is the identity matrix.
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Longer fragments will include more correlation than shorter fragments. However, the complexity that
can be explored with the longer fragment lengths is limited severely by the relatively small number of known
protein structures, and a larger number of discrete states have to be determined for a longer segment. The
minimal unit where the relative coordinates fix the angles and vice versa is four contiguous residue segment.
We shall concentrate mainly on the structure codes for the four residue unit.

2.2 The mixture model for the angle probability distribution

The three pseudobond angles (θ, τ, θ′) of the four-residue unit span the three-dimensional phase space. Our
classifiers for conformational states are based on the following mixture modelM : The probability distribution
of ‘points’ x ≡ (θ, τ, θ′) is given by the mixture of several normal distributions

P (x|M) =

c
∑

i=1

πiN(µi,Σi), (3)

where c is the number of the normal distribution categories in the mixture, πi the prior for category i, and
N(µ,Σ) the normal distribution

N(µ,Σ) = (2π)−3/2|Σ|−1/2 exp[ 12 (x− µ) ·Σ−1 · (x− µ)]. (4)

Each normal distribution has 6 parameters for its symmetric covariance matrix Σ and three for its mean µ.
Adding one more parameter of the prior for each category, the mixture model has 10c parameters for the
total c categories. (The normalization

∑

i πi = 1 reduces the number to 10c− 1.) These categories will be
translated as the structure codes.

To objectively determine the number c of categories, we investigate density peaks in the phase space with
the downhill simplex method of Nelder and Mead (1965). The method requires only function evaluations,
not derivatives. It is not very efficient in terms of the number of function evaluations that it requires, but
still works well for our problem here. We use counts in a rectangular box as the value of the function for
optimization at the center of the box. The box size corresponds to the Parzon window width. A large
box size has a low resolution, hence help us to focus on main density peaks in the phase space, and to
easily locate them near their real location. Reducing the box size, we can see more peaks which are less
conspicuous and then unseen under a larger box size. A too small box size, making local fluctuations visible,
is often misleading. Missing out any important modes will affect the model training and the efficacy of the
structural codes generated. We first search for maximal points of the one-dimensional marginal probability
distributions of θ and τ , and then utilize them to generate a grid in the (θ, τ, θ′) space for searching for peaks
in the space.

We examine also density peaks in the five-dimensional phase space spanned by (θb, τc, θc, τd, θd) of the
five-residue unit abcde to investigate the effect of the angle correlation. A five-angle mode (θb, τc, θc, τd, θd)
contains two three-angle modes (θb, τc, θc) and (θc, τd, θd). It is demanded that all the important three-angle
modes implied by the main density peaks in the five-angle phase space must be included in the modes used
for the construction of the mixture model.

The main purpose of searching for density peaks is to estimate the number c of categories and {µi} for
each category. Once this has been done, we may start with some simple {πi} and {Σi}, say πi = 1/c and
certain diagonal {Σi}, and then update the mixture model by the Expectation-Maximization (EM) method
as follows. For each point xk = (θk−1, τk, θk), we calculate the probability for the point to belong to the i-th
category Ci according to the Bayes formula as

P (Ci|xk) ∝ πiP (xk|Ci)

∝ πi|Σi|
−1/2 exp[ 12 (xk − µi) ·Σ

−1
i · (xk − µk)], (5)

where we always shift τk to the interval [τ (i)−π, τ (i)+π) centered at τ (i) of the τ -component of the mean µi.
The probability P (Ci|xk) satisfies the normalization condition

∑c
i=1 P (Ci|xk) = 1. The updated parameters

for the mixture model are estimated by the EM method as

ni =
∑

k

P (Ci|xk), πi = ni/n, n =
∑

i

ni, (6)
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µi =
1

n i

∑

k

P (Ci|xk)xk, (7)

Σi =
∑

k

P (Ci|xk)(xk − µk)(xk − µk)
T . (8)

Generally, the objective function for optimizing the mixture model is

Prob({xk}) =
∏

k

∑

i

P (xk, Ci) ∝
∏

k

∑

i

P (Ci|xk). (9)

However, when we convert point xk to its structural code i∗, we use

i∗ = argimaxP (Ci|xk). (10)

An alternative objective function would be

Q({xk}) =
∏

k

max
i
P (Ci|xk). (11)

When starting with narrow distributions for Σi, a very high value of Q could be seen at the first step.
However, by just one step of the EM iteration Q will drop significantly, and then increases at later steps.
While Prob({xk}) never decreases, Q will decrease after reaching its maximum. We may stop the model
training before Q decreases again. Thus, the optimization here is a compromise between Prob({xk}) and
Q({xk}).

Once we have the model, we may convert a structure to its conformational code sequence according to
(10). Although no effect from the connection of states is directly considered, the model gains the advantage
in being able to easily assign codes to short fragments.

Table 1. The 17 structural states from the mixture model.

π |Σ|−1/2 µ Σ
−1

State θ τ θ′ θθ τθ ττ θ′θ θ′τ θ′θ′

I 8.2 1881 1.52 0.83 1.52 275.4 -28.3 84.3 106.9 -46.1 214.4
J 7.3 1797 1.58 1.05 1.55 314.3 -10.3 46.0 37.8 -70.0 332.8
H 16.2 10425 1.55 0.88 1.55 706.6 -93.9 245.5 128.9 -171.8 786.1
K 5.9 254 1.48 0.70 1.43 73.8 -13.7 21.5 15.5 -25.3 75.7
F 4.9 105 1.09 -2.72 0.91 24.1 1.9 10.9 -11.2 -8.8 53.0
E 11.6 109 1.02 -2.98 0.95 34.3 4.2 15.2 -9.3 -22.5 56.8
C 7.5 100 1.01 -1.88 1.14 28.0 4.1 6.2 2.3 -5.1 69.4
D 5.4 78 0.79 -2.30 1.03 56.2 3.8 4.2 -10.8 -2.1 30.1
A 4.3 203 1.02 -2.00 1.55 30.5 9.1 8.7 6.0 5.7 228.6
B 3.9 66 1.06 -2.94 1.34 26.9 4.6 4.9 9.5 -5.0 54.3
G 5.6 133 1.49 2.09 1.05 163.9 0.6 3.8 2.0 -3.7 32.3
L 5.3 40 1.40 0.75 0.84 43.7 2.5 1.4 -7.0 -2.9 34.5
M 3.7 144 1.47 1.64 1.44 72.9 2.1 4.8 1.9 -7.9 72.9
N 3.1 74 1.12 0.14 1.49 25.3 3.2 3.1 9.9 0.9 83.0
O 2.1 247 1.54 -1.89 1.48 170.8 -0.7 3.7 -4.1 3.1 98.7
P 3.2 206 1.24 -2.98 1.49 48.0 8.2 7.3 -4.9 -6.6 155.6
Q 1.7 25 0.86 -0.37 1.01 28.4 1.5 1.2 3.4 0.1 19.5

3 Result

For establishing the discrete structural states by training the mixture model, we create a nonredundant set of
1544 non-membrane proteins from PDB SELECT (Hobohm and Sander, 1994) with amino acid identity less
than 25% issued on 25 September of 2001. The data of the three-dimensional structures for these proteins
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are taken from Protein Data Bank (PDB). The secondary structures for these sequences are taken from the
DSSP database (Kabsch and Sander, 1983). We consider the reduced 3 secondary structure states {h, e, c}
generated from the 8 states of the DSSP by the coarse-grainingH,G, I → h, E → e and X,T, S,B → c. The
total number of contiguous fragments is 2248, which gives totally 264,232 points in the three-angle phase
space.

Table 2. The percentages of each secondary structure in the structural states.

I J H K F E C D A B G L M N O P Q Counts

cccc 3 3 1 5 3 7 14 3 7 3 10 9 5 7 4 5 3 25090
ccce 0 1 0 3 3 6 15 2 5 4 24 9 4 4 4 4 3 3272
ccch 2 1 1 6 5 8 22 4 3 2 9 11 7 4 1 3 2 3028
ccee 0 0 0 0 7 20 17 7 0 1 15 24 0 0 0 0 2 4029
cchh 1 3 0 1 0 0 1 0 46 1 0 0 17 4 0 18 1 3664
ceec 0 0 0 0 6 36 26 14 0 8 0 2 0 0 0 0 3 620
ceee 0 0 0 0 7 43 12 22 0 4 0 2 0 0 0 2 3 3676
ceeh 0 0 0 0 3 11 49 19 0 3 0 0 0 0 1 1 7 51
chhh 21 38 28 4 0 0 0 0 0 0 0 0 4 2 0 0 0 4353
eccc 3 3 1 3 2 6 15 3 14 3 5 11 4 7 2 7 4 3007
ecce 3 1 1 6 1 4 5 1 1 1 1 4 1 26 35 0 1 492
ecch 1 1 0 5 1 6 18 5 4 1 9 24 5 6 0 3 2 258
ecee 1 0 0 0 5 18 16 10 1 2 3 33 1 0 0 2 3 80
echh 0 1 0 0 0 0 0 0 52 1 1 0 10 5 0 17 5 256
eecc 0 0 0 0 6 16 19 7 12 6 0 3 0 9 0 11 4 3807
eece 0 0 0 0 6 18 21 11 11 6 0 3 1 11 0 6 2 80
eech 0 0 0 0 4 15 25 16 2 5 0 3 0 6 0 10 10 256
eeec 0 0 0 0 7 36 19 14 1 9 0 6 0 0 0 1 3 3596
eeee 0 0 0 0 5 48 8 17 0 6 0 7 0 0 0 2 1 11418
eeeh 0 0 0 0 4 15 41 17 2 11 0 2 0 0 0 1 4 197
eehh 0 0 0 0 0 0 3 0 57 2 0 0 0 2 1 28 4 248
ehhh 13 43 25 3 0 0 0 0 0 0 0 0 6 5 1 0 0 248
hccc 4 5 2 4 2 4 7 1 4 2 14 6 6 5 18 6 1 3254
hcce 1 2 0 3 5 5 11 0 7 5 22 7 4 4 6 7 3 208
hcch 3 0 1 4 3 5 21 5 4 2 14 9 7 4 4 3 1 328
hcee 0 0 0 0 6 21 18 9 0 4 17 14 1 0 0 0 2 151
hchh 1 2 0 1 0 0 1 0 12 1 0 0 27 18 0 31 0 356
heec 0 0 0 0 5 50 15 10 0 10 0 5 0 0 0 5 0 20
heee 0 0 0 0 4 50 4 17 1 6 0 3 0 0 0 8 1 117
hhcc 9 15 11 9 1 0 0 0 1 0 15 10 9 1 10 2 0 3861
hhce 1 1 0 1 2 0 2 0 1 1 43 15 6 0 14 3 0 151
hhch 8 4 3 19 3 0 1 0 0 0 15 28 7 2 3 0 0 356
hhee 0 0 0 0 0 0 0 0 0 0 52 40 3 0 0 0 0 137
hhhc 23 21 25 20 0 0 0 0 0 0 0 2 2 3 1 0 0 4464
hhhe 29 30 15 11 0 0 0 0 0 0 0 4 4 2 2 0 0 137
hhhh 21 11 60 4 0 0 0 0 0 0 0 0 1 0 0 0 0 31327

3.1 The discrete structural states

The marginal one-dimensional distribution of the pseudobond bending angle has two prominent peaks around
θ = 1.10 and 1.55 (radians). Non-zero θs are in the interval [.4, 1.9]. The marginal one-dimensional distri-
bution of the torsion angle τ has one immediately noticeable peak at τ = 0.87 (corresponding to the helix).
Another peak at τ = −2.94 is less prominent. There is a vague peak still recognizable around τ = −2.00. A
grid generated with θ ∈ {1.00, 1.55} and τ ∈ {−2.80,−2.05,−1.00, 0.00, 0.87} is used to search high dimen-
sional phase space for density peaks by the downhill simplex method. In the box counting, the box size is
taken from 0.1 to 0.2 for θ, and the width for τ is twice of that for θ. The helices seen as a single peak in
the three-angle phase space are clearly identified as several sub-peaks in the five-angle phase space. Further
exploring main peaks in the five-angle phase space, we identify 17 mode centers, which are then used as
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the main initial parameters to train the mixture model. Finally, the 17 structural states are obtained for
the mixture model by the EM algorithm. They are listed in Table 1. Note that it is the entries of the
inverse covariance matrix that are given. The determinant of the matrix is a measure of the divergence of
the corresponding mode. The most sharp state is H , while the most vague state is Q, which occupies the
least proportion of phase points.

Table 3. The forward transition rates (multiplied by 100) between structural states.

I J H K F E C D A B G L M N O P Q
I 28 13 26 12 0 0 0 0 0 0 8 3 6 0 4 0 0
J 19 21 23 12 0 0 0 0 0 0 11 3 5 0 5 0 0
H 11 7 74 2 0 0 0 0 0 0 2 0 1 0 3 0 0
K 8 6 4 23 2 3 2 0 5 2 8 14 11 4 4 6 0
F 0 0 0 0 3 32 16 16 14 8 0 1 0 5 0 1 5
E 0 0 0 0 6 44 12 15 5 7 0 1 0 3 0 4 2
C 0 0 0 3 7 22 22 0 17 5 1 3 1 10 0 8 1
D 0 0 0 0 7 44 14 8 10 6 0 2 0 3 0 4 2
A 12 26 19 8 1 0 0 0 0 0 13 10 5 0 2 2 0
B 2 2 1 5 6 12 5 0 2 4 9 28 8 4 2 10 1
G 0 0 0 1 7 21 28 7 11 7 0 2 1 6 0 7 2
L 0 0 0 0 2 20 17 22 12 9 0 1 0 5 0 2 9
M 14 10 8 11 2 3 2 0 2 2 10 13 9 3 3 8 0
N 3 5 2 4 3 2 2 0 1 1 35 8 13 3 13 4 0
O 1 1 0 2 2 2 1 0 0 3 56 6 17 2 4 4 0
P 12 18 7 7 2 1 1 0 0 0 12 23 9 1 4 3 0
Q 0 0 0 1 3 16 15 8 10 5 1 4 1 20 0 3 13

3.2 The structure alphabet and the secondary structure

Our 17 structural states or letters of the structural alphabet describe the local structure of four-residue
segments, and a code is assigned to the third residue of the unit of four residues. The total number of
possible four-residue secondary structures is 37. The restriction of the minimal lengths 2 for e and 3 for h
removes 44 quartets from the total 34 = 81.

In order to make a detailed comparison between the secondary structures and the discrete structural
states, from the training set we extract a subset, which contains 676 fragments and 118,621 residues (hence
116,593 points in the three-angle phase space). We arrange the corresponding counts in Table 2. (Secondary
structure heeh has zero count, so it is omitted.) The table shows the percentages of each secondary structure
in the structural states. It is clearly seen that there exists a correlation between the two types of structure
classifications. For example, from Table. 2 hhhh are mainly attributed to H , I and J , while eeee to E, and
D. The mutual information between the conformational codes and the secondary structure states equals
0.731. In Table 2, the row cccc shows rather uniform percentages in different structural states as we would
expect.

3.3 Transition between structural states

Any two sequential points (θi−1, τi, θi) and (θi, τi+1, θi+1) share the common angle θi. The effect of the
connection of sequential structural states reflects transition rates between structural states. We first convert
the 3D structures of the training set to their structure code sequences, and then determine the transition
rates by counting code pairs. The obtained rates are listed in Table 3.

The entries of Table 3 are the forward transition rates as the conditional probability of the (i+1)-th site
of a state chain at a given i-th site. Normalized according to the row, the table tells where a row state would
like to go. Extended states, e.g. H and E, are characterized by large diagonal elements, while transient
states, e.g. A and G, have almost vanishing diagonal rates. From the table, we may trace the capping states
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for the helix and β-strand. For example, A is an important mode which leads to the helix, and G is a main
leaving mode for the helix.

Table 4. CLESUM: The conformation letter substitution matrix (in the unit of 0.05 bit).

J 38
H 15 25
I 12 14 51
K 16 8 17 51
N -1 -32 -16 28 89
Q -43 -87 -69 -24 31 88
L -31 -61 -48 0 5 24 71
G -21 -49 -40 -11 -7 8 27 68
M 17 -2 -4 14 8 -7 4 21 59
B -55 -94 -79 -49 -11 10 -13 12 -14 49
P -33 -58 -55 -35 -4 6 -14 3 7 41 64
A -22 -43 -39 -17 10 13 -12 -7 -2 19 34 71
O -23 -54 -37 5 14 -13 -5 -2 5 -12 2 23 102
C -42 -75 -59 -32 -5 27 -2 -6 -12 5 4 12 1 51
E -91 -125 -112 -83 -43 -8 -23 -24 -47 13 -6 -27 -49 2 34
F -73 -106 -95 -67 -32 0 -18 -6 -34 4 -2 -22 -31 19 24 48
D -87 -122 -105 -81 -45 13 -24 -32 -50 11 -11 -19 -43 19 21 20 49

J H I K N Q L G M B P A O C E F D

3.4 Structural substitution matrix

Sequence alignment is the main procedure of comparing sequences. Certain amino acid substitutions com-
monly occur in related proteins from different or same species. Amino acid substitution matrices, extracted
from our knowledge of most and least common changes in a large number of proteins, serve for the purpose
of sequence alignment. The popular BLOSUM matrix of Henikoff and Henikoff (1992) is derived from a large
set of conserved amino acid patterns without gaps representing various families. The frequency of amino
acid substitutions in alignments is counted in sequence alignments. These frequencies are then divided by
the expected frequency of finding the amino acids together in an alignment by chance. The ratio of the
observed to the expected counts is an odds score. The BLOSUM entries are logarithms of the odds scores
with the base 2 and multiplied by a scaling factor of 2.

To use our structural codes directly for the structural comparison, a score matrix similar to BLOSUM
is desired. There is a database of aligned structures, the FSSP of Holm and Sander (1997), which is
based on exhaustive all-against-all 3D structure comparison of protein structures in the PDB. The proteins
in the FSSP are divided into a representative set and sequence homologs of the representative set. The
representative set contains no pair which have more than 25% sequence identity. In the version of Oct 2001,
there are 2,860 sequence families representing 27,181 protein structures. A tree for the fold classification of
the representative set is constructed by a hierarchical clustering method based on the structural similarities.
Family indices of the FSSP are obtained by cutting the tree at levels of 2, 4, 8, 16, 32 and 64 standard
deviations above database average. We convert the structures of the representative set to their structural
code sequences. All the pair alignments of the FSSP for the proteins with the same first three family indices
in the representative set are collected for counting aligned pairs of structural codes. The total number of code
pairs are 1,143,911. The substitution matrix derived in the same way as the BLOSUM was obtained is shown
in Table 4, where a scaling factor of 20 instead of 2 is used to show more details. We call this conformation
letter substitution matrix CLESUM. Henikoff and Henikoff (1992) introduced for their BLOSUM the average
mutual information per amino acid pair H , which is the Kullback-Leibler distance between the joint model
of the alignment and the independent model. The value of H for our CLESUM equals 1.05, which is close
to that for BLOSUM83.
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4 Discussion

Biologically important modules have been repeatedly employed in protein evolution by gene duplication
and rearrangement mechanisms. They form components of fundamental units of structure and function.
The presence of modules provides a guide to classify proteins into module-based families, and helps the
structure prediction. The existence of such conservative recurrent segments sets a solid foundation for the
local analysis. We have discretized the combination of three psuedobond angles formed by four consecutive
Cα atoms to convert the local geometry to 17 coarse-grained conformational letters according to a mixture
model of the angle distribution.

4.1 The precision of the conformational codes

From the correlation between the conformational codes and the secondary structures (Table 2), it is not
surprising that there exists a propensity of the codes to amino acids. The coarse-graining would introduce
an error. It is then important to examine the precision of the codes. For this purpose, we randomly pick up
1,000 points for each code, and calculate the distance root mean squared deviation (drms) for each of the
total 499,500 pairs from their coordinates. The drms of structures a and b, without requiring a structure
alignment, is defined as the averaged distance pair difference

drms =





2

n(n− 1)

n
∑

i=2

i−1
∑

j=1

(|rai − raj | − |rbi − rbj |)
2





1/2

, (12)

where rai is the coordinate of atom i in structure a. The averaged coordinate pair difference, i.e. the
coordinate root mean squared deviation crms, is about 1.2 times of the drms.

The errors of the conformational codes are listed in Table 5. The most precise code H has an error
0.133± 0.060Å,while the vaguest code L has an error 0.604± 0.365Å. After averaging over the code relative
frequencies, the mean error is 0.330Å.

Table 5. The errors of the conformational codes.

Conformational code I J H K F E C D
Mean drms (Å) 0.244 0.246 0.133 0.452 0.398 0.307 0.392 0.262

Standard deviation (Å) 0.110 0.124 0.060 0.219 0.287 0.173 0.218 0.149

A B G L M N O P Q
0.347 0.322 0.390 0.604 0.481 0.551 0.538 0.252 0.506
0.163 0.197 0.192 0.365 0.231 0.321 0.318 0.134 0.287

4.2 The connection effect of sequential states

Compared with the HMM, the mixture model does not include the connection effect of sequential states.
The parameter number increases quadratically with the number of categories for a Markov model, while only
linearly for a mixture model. We have to compromise between precision and correlation. A mixture model
with fine categories is also promising.

Since the model training involves a global optimization the choice of a good initial trial plays an important
role. A careful exploration of the density distribution in the five-angle space corresponding to two consecutive
conformational states reveals that the peaks in the five-angle space give a finer picture of the peaks in the
three-angle space. That is, subpeaks in the three-angle space are easily recognizable from peaks in the
five-angle space. We have identified 17 intense peaks, which survive the later process of model training.
Camproux et al. (1999) found 12 modes for the four-residue unit by a HMM. Instead of angles, they used
a combination of four distances. Since only three of the four are independent their mode centers need not
correspond to a real conformation. However, we still can see the correspondence between their codes and
ours: α1-H , α2-J , α

′-K, α′

−
-O, α′

+-M , γ1-N , γ2-P , γβ-Q, γβα-A, γαβ-G, β2-D, and β1-E.
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4.3 Structure alignment via conformational codes

The conversion of a 3D structure of coordinates to its conformational codes requires little computation. To
distinguish from the amino acid sequence, we call the converted code sequence the code series, or simply series.
Once we transform 3D structures to 1D series, the structure comparison becomes the series comparison.
Tools for analyzing ordinary sequences can be directly applied. We have constructed the conformational
letter substitution matrix CLESUM from the alignments of the FSSP database. We shall examine the
performance of the conformational alphabet derived above.

Table 6. The alignment of 1urnA and 1ha1. The first two lines are their amino acid sequences
aligned according to the FSSP, while the last two lines are the global Needleman-Wunsch alignment
of the conformational code series. Lowercase letters of amino acids indicate structural nonequiva-
lence.

1urnA avpetRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRS

1ha1b ahLTVKKIFVGGIKEDT EEHHLRDYFEQYGKIEVIEIMTDRGS

CCPMCEALEEEENGCPJGCCIHHHHHHHHIKMJILQEPLDEEEBGAIK

...BBEBGEDEENMFNMLFA....HHHHHKKMJJLCEBLDEBCECAKK

1urnA LKMRGQAFVIFKEVSSATNALRSMqGFPFYDKPMRIQYAKTDSDIIAKM

1ha1b GKKRGFAFVTFDDHDSVDKIVIQ kYHTVNGHNCEVRKAL

...GNGEDBEEALAJHHHHHHIKKGNGCENOGCCEFECCALCCAHIJH

AGCPOLEDEEEALBJHHHHI.IJGALEEENOGBFDEECC.........

Holm and Sander (1998) gave an example of the α/β-meander cluster with four members showing different
levels of structural similarity. Their PDB-IDs are 1urnA, 1ha1, 2bopA and 1mli. The structure of 1urnA
was taken as the frame to superimpose the other structures. The structural similarity to 1urnA from high
to low are 1ha1, 2bopA and 1mli. Taking the scaling factor for the CLESUM to be 2, and using −12 for the
the gap-opening penalty and −4 for the gap extension, the global Needleman-Wunsch alignment of 1urnA
and 1ha1 is shown in Table 6, where, in the first two lines, the amino acid sequences aligned according to
the FSSP are also given. It is seen that, except for segment boundaries, the two alignments coincide. The
alignment of the FSSP and the code series alignment for 1urnA and 2bopA have three common segments
falling in positive score regions of the series alignment. In the alignments for 1urnA and 1mli two common
segments longer than 8 are still seen. As for the amino acid sequence alignment, in the case of 1urnA and
1ha1 two segments of lengths 13 and 21 of the sequence alignment coincide with the FSSP, but no coincidence
are seen in the other two cases.

The conformational codes are local. Even though a global alignment algorithm is used, this does not
guarantee that the found alignment corresponds to the optimal structure superposition. However, the code
series alignment does not affected by the domain move, is then good for analyzing the structure evolution.
For example, the first helix of 1ha1 is shorter than its counterpart in 1urnA by one turn. The FSSP aligns
the N -cap (with codes FA) of the 1ha1 helix to the helix (with codes HH) of 1urnA, but local structure
FA is closer to CC (with positive scores) than to HH (with negative scores).

The CLESUM includes only the structural information. When we compare two structures we usually
know also their amino acid sequences. Many papers considered a linear combination of structural alignment
score and sequence alignment score. This is an approximation of independency. From the FSSP, it is possible
to construct a substitution matrix in the joint space of the structure and sequence. However, such a matrix
would have about 6 × 104 parameters. When the structure is to be emphasized, we may use a reduced
amino acid alphabet (Zheng, 2004). For example, clustering 20 amino acids into 3 groups would reduce the
parameter number to about 103. We often want to compare a sequence with unknown structure to a known
structure. In this case, a rectangular substitution matrix of the type of (amino acid)×(conformational code)
to (amino acid) is useful. The construction of these matrices is our next task.

It is known that the sequence-structure relationships have not always been strong. Bystroff and Baker
(1998) have built a library of structure-sequence motifs, which are expected to correspond to functional
units recurring in different protein contexts and to be found in different combinations in distantly related or
functionally unrelated proteins. To identify the structural features that have strong sequence preferences is
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to locate peaks of density distribution in the joint structure-sequence space. Previously, the structure-based
clustering was a duty much heavier than the sequence-based clustering, so one had to start with a sequence-
based clustering, and was kept constantly to run between the structure and sequence subspaces. It is then
interesting to see whether the library can be improved by clustering directly in the joint structure-sequence
space with the help of conformational codes. This is under study.

This work was supported in part by the Special Funds for Major National Basic Research
Project and the National Natural Science Foundation of China.
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