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Abstract. Topological relationships between spatial objects in the two-
dimensional space have been investigated for a long time in a number of
disciplines like artificial intelligence, cognitive science, linguistics, and
robotics. In the context of spatial databases and geographical information
systems, as predicates they especially support the design of suitable query
languages for spatial data retrieval and analysis. But so far, they have only
been defined for simplified abstractions of spatial objects like continuous
lines and simple regions. With the introduction of complex spatial data
types in spatial data models and extensions of commercial database sys-
tems, an issue arises regarding the design, definition, and number of topo-
logical relationships operating on these complex types. This paper first
introduces a formally defined, conceptual model of general and versatile
spatial data types for complex lines and complex regions. Based on the well
known 9-intersection model, it then formally determines the complete set
of mutually exclusive topological relationships between complex lines and
complex regions. Completeness and mutual exclusion are shown by a proof
technique called proof-by-constraint-and-drawing.

Keywords: Topological predicate, topological constraint rule, proof-by-
constraint-and-drawing, complex spatial data type, 9-intersection model.

1 Introduction

For a long time, the study of topological relationships between objects in two-
dimensional space has been a multi-disciplinary research issue involving dis-
ciplines like artificial intelligence, cognitive science, geographical information
systems (GIS), linguistics, psychology, robotics, spatial database systems, and
qualitative spatial reasoning. From a database and GIS perspective, their de-
velopment has been stimulated by the necessity of formally defined topological
predicates as filter conditions for spatial selections and spatial joins in spatial
query languages and as a support for spatial data retrieval and analysis tasks.
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Topological relationships like overlap, inside, or meet describe purely qualita-
tive properties that characterize the relative positions of spatial objects and are
preserved under affine transformations. A restriction and shortcoming of current
topological models is that topological relationships have so far only been deter-
mined for simplified abstractions of spatial objects like simple lines and simple
regions. Simple lines are one-dimensional continuous features embedded in the
plane with two end points, and simple regions are two-dimensional point sets
topologically equivalent to a closed disc. Unfortunately, these simple geometric
structures are insufficient to cover the variety and complexity of geographic re-
ality. Universal and versatile type specifications are needed for (more) complex
spatial objects that can be leveraged in many different applications. With re-
gard to complex lines, we permit arbitrary, finite collections of one-dimensional
curves, i.e., spatially embedded networks possibly consisting of several disjoint
connected components, as line objects (e.g., to model the ramifications of the
Nile Delta). With regard to complex regions, the two main extensions relate to
separations of the exterior (holes) and to separations of the interior (multiple
components). For example, countries (like Italy) can be made up of multiple
components (like the mainland and the offshore islands) and can have holes (like
the Vatican). Hence, a first goal of this paper is to give a formal definition of
spatial data types for complex lines and complex regions.

With the integration of complex spatial data types into spatial type systems
from a formal perspective as well as into GIS and spatial extension packages of
commercial database systems from an application perspective, an issue arises
regarding the design, definition, and number of topological relationships operat-
ing on these complex types. This is of interest simply from a theoretical point
of view but has especially impact on the aforementioned disciplines and on spa-
tial selections and spatial joins. Hence, a second goal is to explore and derive
the possible topological relationships between all combinations of complex spa-
tial data types. In this paper, we show the derivation mechanism for complex
lines and complex regions on the basis of the well known 9-intersection model.
For this purpose, we draw up collections of constraints specifying conditions
for valid topological relationships and satisfying the properties of completeness
and exclusiveness. The property of completeness ensures a full coverage of all
topological situations on the basis of the 9-intersection model. The property of
exclusiveness ensures that two different relationships cannot hold for the same
two spatial objects.

The remainder of the paper is organized as follows: Section 2 discusses re-
lated work on complex lines, complex regions, and topological relationships.
Section 3 formalizes the spatial concepts of complex lines and complex regions.
Section 4 explains our general strategy, called the Proof-By-Constraint-And-
Drawing Method, for deriving topological relationships from the 9-intersection
model. As an example, Section 5 identifies all topological relationships between
complex lines and complex regions. Finally, Section 6 draws some conclusions
and discusses future work.
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2 Related Work

In the past, numerous data models and query languages for spatial data have
been proposed with the aim of formulating and processing spatial queries in
databases and GIS [7]. Spatial data types (see [10] for a survey) like point, line, or
region provide fundamental abstractions for modeling the structure of geometric
entities, their relationships, properties, and operations. A few models [1,8,9,10]
have been developed towards complex spatial objects. All these approaches allow
multiple object components. In some approaches object components are allowed
to intersect [1,9]. Some approaches are based on a finite geometric domain [8,10]
whereas we define our data types in the infinite Euclidean plane.

Topological predicates have so far only been determined for simple object
structures like continuous lines and simple regions. An important approach for
characterizing them rests on the so-called 9-intersection model [3], which lever-
ages point set theory and point set topology [6] as its formal framework. For
example, a complete collection of 19 mutually exclusive topological relation-
ships has been determined between a simple line and a simple region [4]. The
model is based on the nine possible intersections of boundary (∂A), interior (A◦),
and exterior (A−) of a spatial object A with the corresponding components of
another object B. Each intersection is tested with regard to the topologically
invariant criteria of emptiness and non-emptiness. The topological relationship
between two spatial objects A and B can be expressed by evaluating the well
known intersection matrix in Table 1. For this matrix 29 = 512 different configu-
rations are possible from which only a certain subset makes sense depending
on the definition and combination of spatial data types. For each combina-
tion of spatial types this means that each of its predicates is associated with
a unique intersection matrix so that all predicates are mutually exclusive and
complete with regard to the topologically invariant criteria of emptiness and
non-emptiness.

Table 1. The 9-intersection matrix
⎛
⎝

A◦ ∩ B◦ �= ∅ A◦ ∩ ∂B �= ∅ A◦ ∩ B− �= ∅

∂A ∩ B◦ �= ∅ ∂A ∩ ∂B �= ∅ ∂A ∩ B− �= ∅

A− ∩ B◦ �= ∅ A− ∩ ∂B �= ∅ A− ∩ B− �= ∅

⎞
⎠

Surprisingly, topological predicates have so far not been defined on complex
spatial objects. So far, two works [2,5] have given a definition of topological re-
lationships between two more complex regions. But either their region definition
only allows sets of disjoint simple regions without holes [2] or only single simple
regions with holes [5]. The results are also problematic in the sense that they
either depend on the number of components or on the number of holes.

3 Complex Lines and Complex Regions

This section defines the underlying spatial data model for our topological predi-
cates. We strive for a very general, abstract definition of complex lines and com-
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Fig. 1. Examples of a complex line object (a) and a complex region object (b)

plex regions (see Figure 1) in the Euclidean plane R
2. Our formal framework

are basic concepts of point set theory and point set topology [6]. The task is to
determine those point sets that are admissible for complex line (Section 3.1) and
complex region (Section 3.2) objects. The definitions we give contribute to an
“unstructured” object definition which solely determines the point set of a line
or region. Due to space restrictions, we do not identify structural components.
But a complex line represents a spatially embedded network possibly consisting
of several connected components, and a complex region represents a multi-part
region possibly with holes. For both spatial data types we specify the topological
notions of boundary, interior, exterior, and closure since these notions are later
needed for the specification of topological relationships.

3.1 Complex Lines

Before we start with a definition for complex lines (Figure 1a), we need a few
definitions of some well-known and needed topological concepts. We assume the
existence of the Euclidean distance function d : R

2 × R
2 → R with d(p, q) =

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2. With the notion of distance, we
can now proceed to define what is meant by a neighborhood of a point in R

2.

Definition 1. Let q ∈ R
2 and ε ∈ R

+. The set Nε(q) = {p ∈ R
2 | d(p, q) < ε} is

called the open neighborhood of radius ε and center q. Any open neighborhood
with center q is denoted by N(q). �

We are now able to define the notion of a continuous mapping which preserves
neighborhood relations between mapped points in two spaces of the plane. Hence,
the property of continuity of this mapping ensures the maintenance of the closure
and connectivity of the mapping domain for its image. These mappings are also
called topological transformations and include translation, rotation, and scaling.

Definition 2. Let X ⊂ R and f : X → R
2. Then f is said to be continuous

at a point x0 ∈ X if, given an arbitrary number ε > 0, there exists a number
δ > 0 (usually depending on ε) such that for every x ∈ Nδ(x0) ∩ X we obtain
that f(x) ∈ Nε(f(x0)). The mapping f is said to be continuous on X if it is
continuous at every point of X. �

For a function f : X → Y and a set A ⊆ X we introduce the notation
f(A) = {f(x) |x ∈ A}. Definition 2 enables us to give an unstructured definition
for complex lines as the union of the images of a finite number of continuous
mappings.
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Definition 3. The spatial data type line is defined as

line = {L ⊂ R
2 | (i) L =

⋃n
i=1 fi([0, 1]) with n ∈ N0

(ii) ∀ 1 ≤ i ≤ n : fi : [0, 1] → R
2 is a continuous mapping

(iii) ∀ 1 ≤ i ≤ n : |fi([0, 1])| > 1}
We call a value of this type complex line and the image of a continuous mapping
continuous line. �

The first condition also allows a line object to be the empty point set (n = 0
in Definition 3). The third condition avoids degenerate line objects consisting
only of a single point.

The boundary of a complex line L is the set of its end points minus those
end points that are shared by several continuous lines. The shared points belong
to the interior of a complex line. Based on Definition 3, let E(L) =

⋃n
i=1{fi(0),

fi(1)} be the set of end points of all continuous lines. We obtain

∂L = E(L) − {p ∈ E(L) | card({fi | 1 ≤ i ≤ m ∧ fi(0) = p}) +
card({fi | 1 ≤ i ≤ m ∧ fi(1) = p}) 	= 1}

Let L 	= ∅. It is possible that ∂L is empty (e.g., if L is a closed continuous line).
The closure L of L is the set of all points of L including the end points. Therefore
L = L holds. For the interior of L we obtain L◦ = L − ∂L = L − ∂L 	= ∅, and
for the exterior we get L− = R

2 − L, since R
2 is the embedding space.

3.2 Complex Regions

Regions are embedded into the two-dimensional Euclidean space R
2 and modeled

as special infinite point sets. We briefly introduce some needed concepts from
point set topology in R

2.

Definition 4. Let X ⊆ R
2 and q ∈ R

2. q is an interior point of X if there
exists a neighborhood N such that N(q) ⊆ X. q is an exterior point of X if
there exists a neighborhood N such that N(q) ∩ X = ∅. q is a boundary point
of X if q is neither an interior nor exterior point of X. q is a closure point of
X if q is either an interior or boundary point of X.

The set of all interior points of X is called the interior of X and is denoted
by X◦. The set of all exterior points of X is called the exterior of X and is
denoted by X−. The set of all boundary points of X is called the boundary of
X and is denoted by ∂X. The set of all closure points of X is called the closure
of X and is denoted by X.

A point q is a limit point of X if for every neighborhood N(q) holds that
(N − {q}) ∩ X 	= ∅. X is called an open set in R

2 if X = X◦. X is called a
closed set in R

2 if every limit point of X is a point of X. �

It follows from the definition that every interior point of X is a limit point
of X . Thus, limit points need not be boundary points. The converse is also true.
A boundary point of X need not be a limit point; it is then called an isolated
point of X . For the closure of X we obtain that X = ∂X ∪ X◦.
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Fig. 2. Examples of possible geometric anomalies of a region object

It is obvious that arbitrary point sets do not necessarily form a region. But
open and closed point sets in R

2 are also inadequate models for complex regions
since they can suffer from undesired geometric anomalies (Figure 2). A complex
region defined as an open point set runs into the problem that it may have
missing lines and points in the form of cuts and punctures. At any rate, its
boundary is missing. A complex region defined as a closed point set admits
isolated or dangling point and line features. Regular closed point sets [12] avoid
these anomalies.

Definition 5. Let X ⊆ R
2. X is called a regular closed set if, and only if,

X = X◦. �

The effect of the interior operation is to eliminate dangling points, dangling
lines, and boundary parts. The effect of the closure operation is to eliminate cuts
and punctures by appropriately supplementing points and to add the boundary.

For the specification of the region data type, definitions are needed for
bounded and connected sets.

Definition 6. (i) Two sets X, Y ⊆ R
2 are said to be separated if, and only if,

X ∩ Y = ∅ = X ∩ Y . A set X ⊆ R
2 is connected if, and only if, it is not the

union of two non-empty separated sets. (ii) Let q = (x, y) ∈ R
2. Then the length

or norm of q is defined as ||q|| =
√

x2 + y2. (iii) A set X ⊆ R
2 is said to be

bounded if there exists a number r ∈ R
+ such that ||q|| < r for every q ∈ X. �

We are now able to give an unstructured type definition for complex regions:

Definition 7. The spatial data type region is defined as

region = {R ⊂ R
2 | (i) R is regular closed

(ii) R is bounded
(iii) The number of connected sets of R is finite}

We call a value of this type complex region. �

A region object can also be the empty object (empty set). Let F =
⋃n

i=1 Fi

be a non-empty region with faces {F1, . . ., Fn}. Then the boundary of F is given
as ∂F =

⋃n
i=1 ∂Fi (	= ∅), and the interior of F is given as F ◦ =

⋃n
i=1 F ◦

i =
F − ∂F (	= ∅). Further, we obtain F = ∂F ∪ F ◦ = F and F− = R

2 − F =
R

2 − F (	= ∅).
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4 The Proof-by-Constraint-and-Drawing Method

An apparently promising approach to deriving topological relationships is to
leverage the component view of a spatial object. But research on region objects
in this direction reveals that considering components leads to rather complicated
and impractical models. We demonstrate this by first considering two simple
regions A and B with n and m holes, respectively. If we take into account the
regions A and B without holes and call them A∗ and B∗, respectively, the total
number of topological relationships that can be specified between A∗ and its
holes with B∗ and its holes amounts to (n + m + 2)2 [5]. It has also been shown
in [5] that this number can be reduced to mn + m + n + 1. The problems of
this approach are the dependency on the number of holes and the resulting large
number of topological relationships.

We are confronted with a similar problem if we take another strategy and
have a look on the topological relationships between two complex regions A and
B with n and m faces, respectively, possibly with holes. Each face of A is in
relationship with any face of B. This gives us a total of 8n·m possible topological
configurations if we take the eight topological relationships between two simple
regions with holes, as they are specified in [11], as the basis. As a result, the
total number of relationships between the faces of two complex regions depends
on the numbers of faces, is therefore not bounded by a constant, and increases
in an exponential way. This approach is obviously not manageable and thus not
acceptable.

Hence, the comparison of structural components of the objects with respect
to their topological relationships does not seem to be an adequate and efficient
method. Often, such a detailed investigation is not desired and thus even un-
necessary. For instance, if two regions intersect (according to some definition),
the number of intersecting face pairs, as long as it is greater than 0, is irrelevant
since it does not influence the fact of intersection. Consequently, the analysis of
topological relationships between two complex spatial objects requires a more
general strategy.

Our strategy is simple and yet very general and expressive. Instead of ap-
plying the 9-intersection model to point sets belonging to simple spatial objects,
we extend it to point sets belonging to complex spatial objects. Due to the spe-
cial features of the objects (point, linear, areal properties), the embedding space
(here: R

2), the relation between the objects and the embedding space (e.g., it
makes a difference whether we consider a point in R or in R

2), and the employed
spatial data model (e.g., discrete, continuous), a number of topological configu-
rations cannot exist and have to be excluded. For each pair of complex spatial
data types, our goal is to determine topological constraints that have to be sat-
isfied. These serve as criteria for excluding all impossible configurations. The
approach taken employs a proof technique which we call Proof-By-Constraint-
And-Drawing. It starts with the 512 possible matrices and is a two-step process:
(i) For each type combination we give the formalization of a collection of topo-

logical constraint rules for existing relationships in terms of the nine inter-
sections. For each constraint rule we give reasons for its validity, correctness,
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and meaningfulness. The evaluation of each constraint rule gradually reduces
the set of the currently valid matrices by all those matrices not fulfilling the
constraint rule under consideration.

(ii) The existence of topological relationships given by the remaining matrices
is verified by realizing prototypical spatial configurations in R

2, i.e., these
configurations can be drawn in the plane.

Still open issues relate to the evaluation order, completeness, and minimality
of the collection of constraint rules. Each constraint rule is a predicate that is
matched with all intersection matrices under consideration. All constraint rules
must be satisfied together so that they represent a conjunction of predicates. To
say it in other words, constraint rules are all formulated in conjunctive normal
form. Since the conjunction (logical and) operator is commutative and associa-
tive, the evaluation order of the constraint rules is irrelevant; the final result is
always the same.

The completeness of the collection of constraints is directly ensured by the
second step of the two-step process provided that spatial configurations for all
remaining matrices can be drawn.

The aspect of minimality addresses the possible redundancy of constraint
rules. Redundancy can arise for two reasons. First, several constraint rules may
be correlated in the sense that one of them is more general than the others, i.e.,
it eliminates at least the matrices excluded by all the other, covered constraints.
This can be easily checked by analyzing the constraint rules themselves and
searching for the most non-restrictive and common constraint rule. Even then
the same matrix can be excluded by several constraint rules simultaneously.
Second, a constraint rule can be covered by some combination of other constraint
rules. This can be checked by a comparison of the matrix collection fulfilling all
n constraint rules with the matrix collection fulfilling n − 1 constraint rules. If
both collections are equal, then the omitted constraint rule was implied by the
combination of the other constraint rules and is therefore redundant. In this
paper, we are not so much interested in the aspect of minimality since our goal
is to identify the topologically invalid intersection matrices (predicates) so that
the valid matrices remain.

5 Topological Relationships for the Complex
Line/Complex Region Case

Leveraging the proof technique developed in the last section, we develop con-
straint rules for the identification of all topological relationships between a com-
plex line and a complex region. In the following, we assume that A is a non-empty
object of type line and B is a non-empty object of type region.

Lemma 1. The exteriors of a complex line and a complex region always inter-
sect with each other, i.e.,

A− ∩ B− 	= ∅
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Proof. We know that A ∪A− = R
2 and B ∪ B− = R

2. Hence, A− ∩ B− is only
empty if either (i) A = R

2, or (ii) B = R
2, or (iii) A ∪ B = R

2. The situations
are all impossible, since A, B, and hence A∪B are bounded, but the Euclidean
plane R

2 is unbounded. �

Lemma 2. The interior of a complex region always intersects the exterior of a
complex line, i.e.,

A− ∩ B◦ 	= ∅

Proof. Assuming that this constraint rule is wrong. Then A− ∩ B◦ = ∅, and
we can conclude that A ⊇ B◦. From this we obtain that ∀ p ∈ B◦ ∃ ε ∈ R

+ :
Nε(p) ⊆ B◦ ⇒ Nε(p) ⊆ A. This leads to a contradiction since ∀ p ∈ B◦ ∀ ε ∈
R

+ : Nε(p) 	⊆ A. �

Intuitively, a line object as a one-dimensional, linear entity cannot cover a
region object, which is a two-dimensional, areal entity.

Lemma 3. The interior or the exterior of a complex line intersects the boundary
of a complex region, i.e.,

A◦ ∩ ∂B 	= ∅ ∨ A− ∩ ∂B 	= ∅

Proof. We know that ∂B 	= ∅ and that hence R
2 ∩ ∂B 	= ∅. Since A◦ ∪

∂A ∪ A− = R
2, we obtain that (A◦ ∪ ∂A ∪ A−) ∩ ∂B 	= ∅. This leads to

A◦ ∩ ∂B 	= ∅ ∨ ∂A ∩ ∂B 	= ∅ ∨ A− ∩ ∂B 	= ∅. Since ∂A is a finite point set
and ∂B is an infinite point set, either ∂A ⊂ ∂B or ∂A ∩ ∂B = ∅. This means
that the constraint rule A◦ ∩ ∂B 	= ∅ ∨ A− ∩ ∂B 	= ∅ must hold. �

Lemma 4. The interior of a complex line intersects at least one part of a com-
plex region, i.e.,

A◦ ∩ ∂B 	= ∅ ∨ A◦ ∩ B◦ 	= ∅ ∨ A◦ ∩ B− 	= ∅

Proof. We know that A◦ ∪ A− = R
2 and that ∂B ∪ B◦ ∪ B− = R

2. Since
only non-empty object parts of both objects are taken into account, we obtain
A◦ ∩ R

2 = A◦ ∩ (∂B ∪ B◦ ∪ B−) 	= ∅. This statement is equivalent to the
constraint rule. �

Lemma 5. If the boundary of a complex line intersects the interior of a complex
region, also its interior intersects the interior of the complex region, i.e.,

(∂A ∩ B◦ 	= ∅ ⇒ A◦ ∩ B◦ 	= ∅)
⇔ (∂A ∩ B◦ = ∅ ∨ A◦ ∩ B◦ 	= ∅)

Proof. Without loss of generality, let p ∈ ∂A ∩ B◦. Since p ∈ B◦, an ε ∈ R
+

exists such that Nε(p) ⊂ B◦. Fixing such an ε, and because a continuous curve
with an infinite number of points starts in p, we obtain that Nε(p) ∩ A◦ 	= ∅.
This leads to the conclusion that A◦ ∩ B◦ 	= ∅. �

Lemma 6. If the boundary of a complex line intersects the exterior of a complex
region, also its interior intersects the exterior of the complex region, i.e.,
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(∂A ∩ B− 	= ∅ ⇒ A◦ ∩ B− 	= ∅)
⇔ (∂A ∩ B− = ∅ ∨ A◦ ∩ B− 	= ∅)

Proof. The argumentation is analogous to the argumentation for the constraint
rule in Lemma 5. �

Lemma 7. If the boundary of a complex line intersects the boundary of a com-
plex region, also its exterior intersects the boundary of the complex region, i.e.,

(∂A ∩ ∂B 	= ∅ ⇒ A− ∩ ∂B 	= ∅)
⇔ (∂A ∩ ∂B = ∅ ∨ A− ∩ ∂B 	= ∅)

Proof. The boundary of a region B is a line object L whose components are all
closed curves. Hence, this line object only consists of interior points (L = L◦).
Without loss of generality, let P be an endpoint of the boundary of A located
on L. From P exactly one curve of A starts or ends. Either P divides a curve of
L into two subcurves, or P is endpoint of more than one curve of L. Hence, in
P at least two curves of L end. Since the curve of A can coincide with at most
one of the curves of L, at least one of the curves of L must be situated in the
exterior of A. �

An evaluation of all 512 3 × 3-intersection matrices against these seven con-
straint rules with the aid of a simple test program reveals that 43 matrices satisfy
these rules and thus represent the possible topological relationships between a
complex line and a complex region. The matrices and their geometric interpre-
tations are shown in Table 2. Between a simple line and a simple region we
can distinguish 19 topological relationships [3]. These topological predicates are
contained in the 43 general ones and correspond to the matrices 2-4, 7, 11-13,
15-17, 28, 30, 31, 35-37, 39, 41, and 42, respectively.

Finally, we can summarize our result as follows:

Theorem 1. Based on the 9-intersection model, 43 different topological rela-
tionships can be identified between a complex line object and a complex region
object.

Proof. The argumentation is based on the Proof-By-Constraint-And-Drawing
method described in Section 4. The constraint rules, whose correctness has been
shown in Lemmas 1 to 7, reduce the number of the 512 possible intersection
matrices to 43 matrices. The ability to draw prototypes of the corresponding 43
topological configurations proves that the constraint rules are complete. �

Table 2 in the Appendix shows for each topological predicate a prototypical
configuration as a drawing.

6 Conclusions and Future Work

In this paper we have given a very general definition of spatial data types for
complex lines and complex regions in the two-dimensional Euclidean space on
the basis of point set theory and point set topology. Further, we have developed
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a proof technique called Proof-By-Constraint-And-Drawing which enables the
derivation of a complete collection of mutually exclusive topological relationships
between all combinations of complex spatial data types. We have demonstrated
this mechanism by deriving all 43 topological relationships between a complex
line and a complex region.

Future work will relate to the derivation of topological predicates for all other
combinations of complex spatial data types. Further, the efficient implementation
of the large numbers of predicates that have to be expected will be another topic.
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Appendix

Table 2. The 43 topological relationships between a complex line and a complex region

Matrix 1
⎛
⎝

0 0 1
0 0 0
1 1 1

⎞
⎠

Matrix 2
⎛
⎝

0 0 1
0 0 1
1 1 1

⎞
⎠

Matrix 3
⎛
⎝

0 0 1
0 1 0
1 1 1

⎞
⎠

Matrix 4
⎛
⎝

0 0 1
0 1 1
1 1 1

⎞
⎠

Matrix 5
⎛
⎝

0 1 0
0 0 0
1 0 1

⎞
⎠

Matrix 6
⎛
⎝

0 1 0
0 0 0
1 1 1

⎞
⎠

Matrix 7
⎛
⎝

0 1 0
0 1 0
1 1 1

⎞
⎠

Matrix 8
⎛
⎝

0 1 1
0 0 0
1 0 1

⎞
⎠

Matrix 9
⎛
⎝

0 1 1
0 0 0
1 1 1

⎞
⎠

Matrix 10
⎛
⎝

0 1 1
0 0 1
1 0 1

⎞
⎠

Matrix 11
⎛
⎝

0 1 1
0 0 1
1 1 1

⎞
⎠

Matrix 12
⎛
⎝

0 1 1
0 1 0
1 1 1

⎞
⎠

Matrix 13
⎛
⎝

0 1 1
0 1 1
1 1 1

⎞
⎠

Matrix 14
⎛
⎝

1 0 0
0 0 0
1 1 1

⎞
⎠

Matrix 15
⎛
⎝

1 0 0
0 1 0
1 1 1

⎞
⎠

Matrix 16
⎛
⎝

1 0 0
1 0 0
1 1 1

⎞
⎠
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Matrix 17⎛
⎝

1 0 0
1 1 0
1 1 1

⎞
⎠

Matrix 18⎛
⎝

1 0 1
0 0 0
1 1 1

⎞
⎠

Matrix 19⎛
⎝

1 0 1
0 0 1
1 1 1

⎞
⎠

Matrix 20⎛
⎝

1 0 1
0 1 0
1 1 1

⎞
⎠

Matrix 21⎛
⎝

1 0 1
0 1 1
1 1 1

⎞
⎠

Matrix 22⎛
⎝

1 0 1
1 0 0
1 1 1

⎞
⎠

Matrix 23⎛
⎝

1 0 1
1 0 1
1 1 1

⎞
⎠

Matrix 24⎛
⎝

1 0 1
1 1 0
1 1 1

⎞
⎠

Matrix 25⎛
⎝

1 0 1
1 1 1
1 1 1

⎞
⎠

Matrix 26⎛
⎝

1 1 0
0 0 0
1 0 1

⎞
⎠

Matrix 27⎛
⎝

1 1 0
0 0 0
1 1 1

⎞
⎠

Matrix 28⎛
⎝

1 1 0
0 1 0
1 1 1

⎞
⎠

Matrix 29⎛
⎝

1 1 0
1 0 0
1 0 1

⎞
⎠

Matrix 30⎛
⎝

1 1 0
1 0 0
1 1 1

⎞
⎠

Matrix 31⎛
⎝

1 1 0
1 1 0
1 1 1

⎞
⎠

Matrix 32⎛
⎝

1 1 1
0 0 0
1 0 1

⎞
⎠
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Matrix 33⎛
⎝

1 1 1
0 0 0
1 1 1

⎞
⎠

Matrix 34⎛
⎝

1 1 1
0 0 1
1 0 1

⎞
⎠

Matrix 35⎛
⎝

1 1 1
0 0 1
1 1 1

⎞
⎠

Matrix 36⎛
⎝

1 1 1
0 1 0
1 1 1

⎞
⎠

Matrix 37⎛
⎝

1 1 1
0 1 1
1 1 1

⎞
⎠

Matrix 38⎛
⎝

1 1 1
1 0 0
1 0 1

⎞
⎠

Matrix 39⎛
⎝

1 1 1
1 0 0
1 1 1

⎞
⎠

Matrix 40⎛
⎝

1 1 1
1 0 1
1 0 1

⎞
⎠

Matrix 41⎛
⎝

1 1 1
1 0 1
1 1 1

⎞
⎠

Matrix 42⎛
⎝

1 1 1
1 1 0
1 1 1

⎞
⎠

Matrix 43⎛
⎝

1 1 1
1 1 1
1 1 1

⎞
⎠
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