Skip to main content

Computer Vision Algorithms for Retinal Image Analysis: Current Results and Future Directions

  • Conference paper
Computer Vision for Biomedical Image Applications (CVBIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3765))

Abstract

Automated image analysis tools have the potential to play an important role in assisting in the diagnosis and treatment of retinal diseases. Problems that must be addressed in developing these tools include extraction of vascular and non-vascular features, segmentation of pathologies, unimodal and multimodal image registration, mosaic construction, and real-time systems. Research at Rensselaer Polytechnic Institute since the late 1990’s has focused on several of these problems. Most significantly, we have developed a series of registration and mosaic formation algorithms which have been validated on thousands of retinal images and have been extended beyond the retina application. While the core fundus image registration problem is essentially solved, important problems remain in many aspects of retinal image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aylward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height-ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging. 21, 61–75 (2002)

    Article  Google Scholar 

  2. Barrett, S.F., Wright, C.H.G., Jerath, M.R.: Computer-aided retinal photocoagulation system. J. Biomed. Optics 1, 83–91 (1996)

    Article  Google Scholar 

  3. Barrett, S.F., Wright, C.H.G., Zwick, H., Wilcox, M., Rockwell, B.A., Naess, E.: Efficiently tracking a moving object in two-dimensional image space. J. Electronic Imaging 10(3), 785–793 (2001)

    Article  Google Scholar 

  4. Berger, J.W., Leventon, M.E., Hata, N., Wells, W., Kikinis, R.: Design considerations for a computer-vision-enabled ophthalmic augmented reality environment. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 399–408. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Besl, P., McKay, N.: A method for registration of 3-d shapes. IEEE T. Pattern Anal. 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Brandon, L., Hoover, A.: Drusen detection in a retinal image using multi-level analysis. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 618–625. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Can, A., Shen, H., Turner, J.N., Tanenbaum, H.L., Roysam, B.: Rapid automated tracing and feature extraction from live high-resolution retinal fundus images using direct exploratory algorithms. IEEE Trans. on Inf. Tech. in Biomedicine 3(2), 125–138 (1999)

    Article  Google Scholar 

  8. Can, A., Stewart, C., Roysam, B.: Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina. In: Proc. CVPR, pp. 286–292 (1999)

    Google Scholar 

  9. Can, A., Stewart, C., Roysam, B., Tanenbaum, H.: A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE T. Pattern Anal. 24(3), 347–364 (2002)

    Article  Google Scholar 

  10. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging. 8(3), 263–269 (1989)

    Article  Google Scholar 

  11. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. IVC 10(3), 145–155 (1992)

    Google Scholar 

  12. Corona, E., Mitra, S., Wilson, M., Krile, T., Kwon, Y.H., Soliz, P.: Digital stereo image analyzer for generating automated 3-d measures of optic disc deformation in glaucoma. IEEE Trans. Med. Imaging. 21(10), 1244–1253 (2002)

    Article  Google Scholar 

  13. Fernández, D.C.: Delineating fluid-filled region boundaries in optical coherence tomography images of the retina. IEEE Trans. Med. Imaging. 24(8), 929–945 (2005)

    Article  Google Scholar 

  14. Foracchia, M., Grisan, E., Ruggeri, A.: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans. Med. Imaging. 23(10), 1189–1195 (2004)

    Article  Google Scholar 

  15. Frame, A., Undrill, P., Cree, M., Olson, J., McHardy, K., Sharp, P., Forrester, J.: A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comp. Bio. and Med., 225–238 (MAY 1998)

    Google Scholar 

  16. Frangi, A., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Google Scholar 

  17. Fritzsche, K., Can, A., Shen, H., Tsai, C., Turner, J., Tanenbuam, H., Stewart, C., Roysam, B.: Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images. In: Suri, J.S., Laxminarayan, S. (eds.) State-of-The-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, pp. 225–298. Academic Press, London (2003)

    Google Scholar 

  18. Fritzsche, K.H.: Computer Vision Algorithms for Retinal Vessel Detection and Width Change Detection. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York (December 2004)

    Google Scholar 

  19. Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging. 22(8), 951–958 (2003), http://www.parl.clemson.edu/stare/nerve/

    Article  Google Scholar 

  21. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging. 19(3), 203–210 (2000)

    Article  Google Scholar 

  22. Jomier, J., Wallace, D.K., Aylward, S.R.: Quantification of retinopathy of prematurity via vessel segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 620–626. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Koozekanani, D., Boyer, K., Roberts, C.: Retinal thickness measurements from optical coherence tomography using a markov boundary model. IEEE Trans. Med. Imaging. 20, 900–916 (2001)

    Article  Google Scholar 

  24. Li, H., Chutatape, O.: A model-based approach for automated feature extraction in fundus images. In: Proc. ICCV, pp. 394–399 (2003)

    Google Scholar 

  25. Lin, G., Stewart, C.V., Roysam, B., Fritzsche, K., Yang, G.: Predictive scheduling algorithms for real-time feature extraction and spatial referencing: Application to retinal image sequences. IEEE Trans. on Biomed. Eng. 51, 115–124 (2004)

    Article  Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  27. Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Fletcher, E.: Optic nerve head segmentation. IEEE Trans. Med. Imaging. 23(2), 256–264 (2004)

    Article  Google Scholar 

  28. Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Kennedy, R.: Measurement of retinal vessel widths from fundus images based on 2-D modeling. IEEE Trans. Med. Imaging. 23(10), 1196–1204 (2004)

    Article  Google Scholar 

  29. Matsopoulos, G.K., Mouravliansky, N.A., Delibasis, K.K., Nikita, K.S.: Automatic retinal image registration scheme using global optimization techniques. IEEE Trans. on Inf. Tech. in Biomedicine 3(1), 47–60 (1999)

    Article  Google Scholar 

  30. Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M., Abramoff, M.: Automatic detection of red lesions in digital color fundus photographs. IEEE Trans. Med. Imaging. 24(5), 584–592 (2005)

    Article  Google Scholar 

  31. Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Comparative exudate classification using support vector machines and neural networks. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 413–420. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  32. Pinz, A., Bernogger, S., Datlinger, P., Kruger, A.: Mapping the human retina. IEEE Trans. Med. Imaging. 17(4), 606–620 (1998)

    Article  Google Scholar 

  33. Rapantzikos, K., Zervakis, M., Balas, K.: Detection and segmentation of drusen deposits on human retina: Potential in the diagnosis of age-related macular degeneration. Med. Image Anal. 7(1), 95–108 (2003)

    Article  Google Scholar 

  34. Ritter, N., Owens, R., Cooper, J., Eikelboom, R., van Saarloos, P.: Registration of stereo and temporal images of the retina. IEEE Trans. Med. Imaging. 18(5), 404–418 (1999)

    Article  Google Scholar 

  35. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. Third Int. Conf. on 3DIM, pp. 224–231 (2001)

    Google Scholar 

  36. Sawhney, H., Hsu, S., Kumar, R.: Robust video mosaicing through topology inference and local to global alignment. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 103–119. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  37. Sbeh, Z.B., Cohen, L.D., Mimoun, G., Coscas, G.: A new approach for geodesic reconstruction in mathematical morphology and application to image segmentation and tracking in ophtalmology. IEEE Trans. Med. Imaging. 20(12), 1321–1333 (2001)

    Article  Google Scholar 

  38. Schmidt-Erfurth, U., et al.: Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch. Ophth. 117(9), 1177–1187 (1999)

    Google Scholar 

  39. Shen, H., Stewart, C., Roysam, B., Lin, G., Tanenbaum, H.: Frame-rate spatial referencing based on invariant indexing and alignment with application to laser retinal surgery. IEEE T. Pattern Anal. 25(3), 379–384 (2003)

    Article  Google Scholar 

  40. Shoemaker, J.A.: Vision problems in the U.S. Technical report, U.S. National Institute of Health (2002)

    Google Scholar 

  41. Sofka, M., Stewart, C.V.: Retinal vessel extraction using multiscale matched filters, confidence and edge measures. Technical Report 05-20, Department of Computer Science, Rensselaer Polytechnic Institute (2005)

    Google Scholar 

  42. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging. 23(4), 501–509 (2004)

    Article  Google Scholar 

  43. Stewart, C., Tsai, C.-L., Roysam, B.: The dual-bootstrap iterative closest point algorithm with application to retinal image registration. IEEE Trans. Med. Imaging. 22(11), 1379–1394 (2003)

    Article  Google Scholar 

  44. The Eye Diseases Prevalence Research Group. Prevalence of age-related macular degeneration in the united states 122(4), 564–572 (2004)

    Google Scholar 

  45. The Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the united states. Arch. Ophth. 122(4), 552–563 (2004)

    Google Scholar 

  46. The Eye Diseases Prevalence Research Group. Prevalence of open-angle glaucoma among adults in the united states. Arch. Ophth. 122(4), 532–538 (2004)

    Google Scholar 

  47. Tsai, C.-L., Majerovics, A., Stewart, C.V., Roysam, B.: Disease-oriented evaluation of dual-bootstrap retinal image registration. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 754–761. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  48. Tsai, C.-L., Stewart, C., Roysam, B., Tanenbaum, H.: Repeatable vascular landmark extraction from retinal fundus images using local vascular traces. In: IEEE Trans. on Inf. Tech. in Biomedicine (2003) (to appear)

    Google Scholar 

  49. Tyrrell, J.A., LaPre, J.M., Carothers, C.D., Roysam, B., Stewart, C.V.: Efficient migration of complex off-line computer vision software to real-time system implementation on generic computer hardware. IEEE Trans. on Inf. Tech. in Biomedicine 8(2), 142–153 (2004)

    Article  Google Scholar 

  50. Walter, T., Klein, J.-C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy - detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging. 21(10) (October 2002)

    Google Scholar 

  51. Yang, G., Stewart, C.V.: Covariance-driven mosaic formation from sparsely-overlapping image sets with application to retinal image mosaicing. In: Proc. CVPR, pp. 804–810 (2004)

    Google Scholar 

  52. Yang, G., Stewart, C.V., Sofka, M., Tsai, C.-L.: The Generalized Dual-Bootstrap ICP algorithm with application to registering challenging image pairs. Technical Report 05-19, Department of Computer Science, Rensselaer Polytechnic Institute (2005)

    Google Scholar 

  53. Zana, F., Klein, J.C.: A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. IEEE Trans. Med. Imaging. 18(5), 419–428 (1999)

    Article  Google Scholar 

  54. Zana, F., Klein, J.-C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)

    Article  MATH  Google Scholar 

  55. Zhang, X., Chutatape, A.: Top-down and bottom-up strategies in lesion detection of background diabetic retinopathy. In: Proc. CVPR, pp. 422–428 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stewart, C.V. (2005). Computer Vision Algorithms for Retinal Image Analysis: Current Results and Future Directions. In: Liu, Y., Jiang, T., Zhang, C. (eds) Computer Vision for Biomedical Image Applications. CVBIA 2005. Lecture Notes in Computer Science, vol 3765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_6

Download citation

  • DOI: https://doi.org/10.1007/11569541_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29411-5

  • Online ISBN: 978-3-540-32125-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics