Skip to main content

3D Statistical Shape Models to Embed Spatial Relationship Information

  • Conference paper
Computer Vision for Biomedical Image Applications (CVBIA 2005)

Abstract

This paper presents the creation of 3D statistical shape models of the knee bones and their use to embed information into a segmentation system for MRIs of the knee. We propose utilising the strong spatial relationship between the cartilages and the bones in the knee by embedding this information into the created models. This information can then be used to automate the initialisation of segmentation algorithms for the cartilages. The approach used to automatically generate the 3D statistical shape models of the bones is based on the point distribution model optimisation framework of Davies. Our implementation of this scheme uses a parameterized surface extraction algorithm, which is used as the basis for the optimisation scheme that automatically creates the 3D statistical shape models. The current approach is illustrated by generating 3D statistical shape models of the patella, tibia and femoral bones from a segmented database of the knee. The use of these models to embed spatial relationship information to aid in the automation of segmentation algorithms for the cartilages is then illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hargreaves, B.A., Gold, G.E., Beaulieu, C.F., Vasanawala, S.S., Nishimura, D.G., Pauly, J.M.: Comparison of new sequences for high resolution cartilage imaging. Magnetic Resonance in Medicine 49, 700–709 (2003)

    Article  Google Scholar 

  2. Cohen, Z.A., McCarthy, D.M., Kwak, S.D., Legrand, P., Fogarasi, F., Ciaccio, E.J., Ateshian, G.A.: Knee cartilage topology, thickness and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis Cartilage 7, 95–109 (1999)

    Article  Google Scholar 

  3. Williams, T.G., Taylor, C.J., Gao, Z., Waterton, J.C.: Corresponding articular cartilage thickness measurements in the knee joint by modelling the underlying bone. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 480–487. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Wluka, A.E., Stuckey, A., Snaddon, J., Cicuttini, F.: The determinants of change in tibial cartilage volume in osteoarthritic knees. Arthritis and Rheumatism 46, 2065–2072 (2002)

    Article  Google Scholar 

  5. Hohe, J., Ateshian, G., Reiser, M., Englmeier, K.H., Eckson, F.: Surface size, curvature analysis and assessment of knee joint incongruity with MRI in vivo. Magnetic Resonance in Medicine 47, 554–561 (2002)

    Article  Google Scholar 

  6. Eckstein, F., Schnier, M., Haubner, M., Priebsch, J., Glaser, C., Englmeier, K.H., Reiser, M.: Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging. Clinical Orthopaedics and related research 352, 137–148 (1998)

    Article  Google Scholar 

  7. Solloway, S., Hutchinson, C., Waterton, J., Taylor, C.: The use of active shape models for making thickness measurements of articular cartilage from MR images. Magnetic Resonance in Medicine 37, 943–952 (1997)

    Article  Google Scholar 

  8. Lynch, J., Zaim, S., Zhao, J., Stork, A., Peterfly, C.G., Genant, H.: Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours. SPIE 3979, 925–935 (2000)

    Article  Google Scholar 

  9. Gougoutas, A., Wheaton, A., Borthakur, A., Shapiro, E., Kneeland, J., Udupa, J., Reddy, R.: Cartilage volume quantification via live wire segmentation. Academic Radiology 11, 1389–1395 (2004)

    Article  Google Scholar 

  10. Kapur, T., Beardsley, P., Gibson, S., Grimson, W., Wells, W.: Model-based segmentation of clinical knee MRI. In: Proc. IEEE Int’l Workshop on Model-Based 3D Image Analysis, pp. 97–106 (1998)

    Google Scholar 

  11. Ghosh, S., Beuf, O., Ries, M., Lane, N., Steinbach, L.S., Majumdar, S.: Watershed segmentation of high resolution magnetic resonance images of articular cartilage of the knee. Engineering in Medicine and Biology Society 4, 3174–3176 (2000)

    Google Scholar 

  12. Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, template moderated, spatially varying statistical classification. Medical Image Analysis 4, 43–55 (2000)

    Article  Google Scholar 

  13. Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., Warfield, S.: Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging 23, 447–458 (2004)

    Article  Google Scholar 

  14. Hamarneh, G., McInerney, T., Terpzopoulos, D.: Intelligent deformable organisms: An artificial life approach to medical image analysis. Technical report CSRG-432 (2001)

    Google Scholar 

  15. Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: 3D statistical shape models using direct optimisation of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–21. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Undertanding 61, 38–59 (1995)

    Article  Google Scholar 

  17. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3d statistical shape models using non-rigid registration. IEEE Transactions on Medical Imaging 22, 1014–1025 (2003)

    Article  Google Scholar 

  18. Siers, M., Frangi, A., Kaus, M., Niessen, W.: Comparison of two 3D automatic landmarking methods for a large training set of cardiac MR images (citeseer), citeseer.ist.psu.edu/529161.html

  19. Kobbeltm, L., Vorsatz, J., Labsik, U., Seidel, H.: A Shrink Wrapping Approach to Remeshing Polygonal Surfaces. In: Proceedings of the 20th Annual Conference ot the European Association of Computer Graphics (Eurographics 1999) (1999)

    Google Scholar 

  20. Lee, S.L., Horkaew, P., Darzi, A., Yang, G.Z.: Statistical Shape Modelling of the Levator Ani with Thickness Variation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 258–265. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fripp, J., Bourgeat, P., Mewes, A.J.U., Warfield, S.K., Crozier, S., Ourselin, S. (2005). 3D Statistical Shape Models to Embed Spatial Relationship Information. In: Liu, Y., Jiang, T., Zhang, C. (eds) Computer Vision for Biomedical Image Applications. CVBIA 2005. Lecture Notes in Computer Science, vol 3765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_7

Download citation

  • DOI: https://doi.org/10.1007/11569541_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29411-5

  • Online ISBN: 978-3-540-32125-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics