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Abstract. This paper delineates the results gained throughout the de-
velopment of a cryptographic multiprecisiorﬂ integer library, CRYMPIX.
To obtain the know-how for cryptographic computation and thus be-
ing able to create the high level cryptographic protocols in an in-house-
fashion are the main reasons of this development. CRYMPIX is mainly
designed to supply code readability and portability plus an increased
performance over other similar libraries. The whole work is achieved by
detailed investigation of current algorithms and multi-precision libraries.
The selected algorithms are discussed by means of efficiency and various
implementation techniques. The comparative performance measurements
of CRYMPIX against other multiprecision libraries show that the overall
performance of CRYMPIX is not behind its predecessors if not superior.

1 Introduction

The efficiency of a cryptographic implementation considerably depends on its
low-level multiprecision library. A cryptographic library is said to be competi-
tive among its alternatives if it is engineered with not only the advanced level
of coding but also with the careful selection of algorithms concerning their theo-
retical complexities and their inclination to the underlying hardware. However,
finding the best tuning is always a tedious job because one has to switch between
various algorithms with respect to some threshold values. On the other hand,
once the library is developed, it is relatively easier to perform further scientific
studies and go deeper inside the computational aspects of the cryptographic
world. With this motivation, we strongly advise to code at least some functions
if not all of a cryptographic library for every researcher who is in the field of
cryptology.

Either designed for cryptographic use or not, most of the current multi-
precision libraries implement arithmetic, logic and number theoretic routines.
CRYMPIX also offers those capabilities. What makes CRYMPIX different from
its alternatives is its design criteria as well as its performance. Our measure-
ments showed that the overall performance is not behind the other libraries. In

! Arbitrary-precision, multiprecision and bignum are synonyms. In the subsequent
parts of this text, the term multiprecision is preferred to address the multiple-
precision.
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this paper, we explain the principles of which CRYMPIX is developed by plus
will compare its performance with the others.

It is known that the asymmetrical cryptosystems require multiprecision arith-
metic when they are run on fixed precision processors. For instance, if an RSA
implementation uses 4096-bit key size then at least 128 computer words is needed
to store and process this key on 32 bit architecture. To address this necessity,
many libraries are developed up to now. The most popular ones among these
libraries are GNU GMP, Shamus Software MIRACL, LibTomMath, PARI/GP,
BigNum, Java Biglnteger, Bouncy Castle, Magma, Maple, Mathematica, and
MuPAD. All of these are implemented for related but different purposes. There-
fore, it is quite likely that one needs several of them to satisfy the one’s specific
scientific research needs.

Excluding the scientific interpreters, the efficiency of a cryptographic library
is directly proportional to the overall performance of some well known number
theoretical routines such as modular powering, greatest common divisor and
multiplication. Therefore, almost all of these libraries contain specialized parts
for several different architectures. So, it is clear that the implementation has a
tendency of multiplying very rapidly in terms of coding efforts which in turn
requires handling of multiple libraries in one project thus the growing pains of
code management.

In this study, we discuss how to minimize the development effort without
causing any performance degradation. Finally, we compare the outcome of our
design decisions with that of some other libraries.

2 Basic Design Criteria

Common design criteria of most multiprecision libraries are representation of
numbers, programming language selection, memory management, portability,
and functionality [I]. A well designed library is expected to satisfy optimum de-
cisions and utilize the underlying hardware at its peak. In the following sections,
we describe the design parameters of CRYMPIX and compare and contrast it
with that of the corresponding parameters of other libraries.

2.1 Representation of Numbers

Almost all multiprecision libraries use positive integer vectors that are analogous
to the radix representation that is given in below equation [l

n—1

r = (xn—lvxn—%xn—&-~-7x0)6 = sz ﬁz (1>
=0

CRYMPIX also uses this representation. The number is partitioned into com-
partments and is laid along a memory space with the first variable being set to
the least significant digit of the number. Radix representation is further explained
in [7].
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2.2 Programming Language

The preferred languages in multiprecision library development are Assembly, C,
C++, FORTRAN, and Java. Excluding Assembly, the performance of any given
cryptographic library depends on the coding talents of developer as well as the
chosen design criteria. It is clear that performance of Assembly will always be
one step ahead hence the exclusion.

ANSI C is selected as the development language of CRYMPIX. Pointer arith-
metic and structural features and portability of ANSI C code play the most
important role in our decision. Easy integration with Message Passing Interface
(MPI) is also a distinguishing factor. In most of the other cryptographic libraries
some inner-most loops are delivered to user with Assembly on the compile time
as an answer to the demand of high speed computation. We are going to limit
our discussion only with C and the C based versions of other libraries in this
paper since CRYMPIX aims to be an educational library in which the most
suitable algorithms are being implemented for cryptographic use. Nevertheless,
we have included a performance table that may give the reader an idea of how
Assembly affects the performance in Table [I1

On Table [l MIRACL 4.8, GMP 4.1.4, Java BigInteger and CRYMPIX are
benchmarked via their integer multiplication function. We prepared test suits of

Table 1. Integer Multiplication benchmark results. (microseconds).

. CRYMPIX MIRACL GMP Java
1ze .

C, vl G, v2 C C+Asm C C+Asm Biglnteger
1K 21 11 17 6 23 4 32
2K 69 41 68 2 74 15 132
4K 219 133 277 104 235 47 512
8K 673 410 1097 411 731 154 2630

—— CRYMPIX vZ

—=— CRYMPIX v1

—— GMNU-GMP

Speedup Values

—— MIRACL

¢ i 1 —m— Java Biglneeger

1K 2K 4K 8K

Fig. 1. Speedup values obtained by the results in Table[d]
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1K, 2K, 4K, and 8K each having 1000 randomly selected inputs. We decoupled
the I/O time to get more accurate results. Excluding Java BigInteger, all tests
are done with GNU GCC compiler at optimization levels O0, O1, and O2. The
whole test is repeated on Intel Centrino M 1400 Mhz, Intel P4 1700 Mhz, and
IBM RISC RS/6000 133 Mhz processors with no options on memory. As an oper-
ating system we used YellowDog 2.3 Linux on IBM RISC RS/6000 machine and
Redhat Linux 9.0 and Microsoft Windows XP/SP2 on Intel machines. To port
GNU GCC compiler to Windows we used CYGWIN platform. Java BigInteger
benchmark is done on Java Virtual Machine (JVM) of Sun Microsystems, Inc.,
Java2 Standard Development Kit (J2SDK) v1.4.2 and applied on Intel boxes
and on both Redhat Linux and Microsoft Windows XP. The whole measure-
ments have provided us with so much data and since the speedup values are
nearly constant we give results of only Intel Centrino M 1400 MHz processor
with Redhat Linux operating system. The above defined test environment is
used throughout this study.

ISO C’99 standard has introduced a new data type, namely long long, which
enabled full length single-precision multiplication with C language. CRYMPIX
v2 and MIRACL takes the advantage of the new double-precision data type.
CRYMPIX vl and GMP don’t use this facility. What separates CRYMPIX v1
and CRYMPIX v2 is a simple compile time macro. We merely include this feature
to do fair comparisons with the other libraries. Fig. [l indicates that CRYMPIX
is competitive on all test beds. MIRACL has an embedded Karatsuba/Comb
routine but it is used for more costly operations such as modular exponentia-
tion, thus it is relatively slower in this experiment. The overall performance of
Java Biglnteger varies with respect to the JVM but this library is slower in all
circumstances and it is developed with the basecase algorithms in most cases.
On the other hand, it is far easier to develop applications on such an object
oriented environment. We used this library only to generate the test beds data.
In Fig. [l we have provided the performance comparison of libraries for C only
built at optimization level 2 (excluding Java BigInteger).

2.3 Memory Management

Since all asymmetrical cryptosystems uses modular arithmetic, we are able to
know how much the numbers grow. In this case, it is possible to prevent memory
fragmentation if we fix the size of each number. Furthermore, memory alloca-
tion cost can be further decreased if a specialized kernel layer is utilized for
the implementation. The kernel is responsible for fast memory allocation and
subsequent release service. The whole memory needed by the application is allo-
cated when the system initialized. This type of approach is crucial in embedded
and/or real-time systems. To prevent the system run out of memory, exceeding
allocations can be made by malloc() function. In other words, system starts
dynamic memory allocations if and when necessary.

MIRACL’s design is partially similar to above discussion. The space need for
each number is fixed and is declared to the system as a runtime parameter. The
memory allocation is done via malloc() function. Each number that is passed
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to a function is assumed to be initialized. To overcome the slowness of malloc()
function, MIRACL uses an inner workspace. This approach prevents exhaustive
memory allocation and release problem.

Memory allocation in GMP is done with malloc() function. The system au-
tomatically increase memory space for each number when needed. This approach
is open to memory fragmentation which slows down GMP. However, GMP reme-
dies this omission by using the stack memory. If the overall performance does not
satisfy the requirements, the user is allowed to do custom memory allocation.

Java Biglnteger is designed to meet object oriented programming criteria.
There is no limitation or space preallocation for the numbers. JVM and its
garbage collector determine the overall performance. When compared to C li-
braries, Biglnteger is slower; on the other hand, code development is far easier.

CRYMPIX is designed to manage its own memory. Stack memory is not
used for manipulating multiprecision numbers. The whole memory, needed by
the application, is reserved by an initialization function. A tiny kernel supplies a
fast memory allocation and release service on the preallocated space. The kernel
uses a circular array data structure to speed up the allocation and release oper-
ations. Size of each number is fixed to prevent memory fragmentation. There is
no built-in garbage collector mechanism in C so that programmer is responsible
for the life cycle of each number. The code below introduces CRYMPIX with an
integer addition example.

CRYMPIX Code Example for Integer Addition.

CZ a, b, c;
crympix_init (100, 20); // Max words, max instances.

a = cz_init();
cz_init();

cz_init () ;

c
cz_add(c, a, b); // c=a+b.

cz_kill(a);
cz_kill(b);
cz_kill(c);

crympix_finalize();

2.4 Code Readability and Portability

Code readability has been one of the major concerns in CRYMPIX library right
from the start. Therefore, function bodies are written as plain as possible and the
code organization, a standardized naming and indentation are applied through-
out the development. We have observed that there are three major code porta-
bility styles in the libraries mentioned above. In the first style; which is a naive
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approach, the architecture-depended code is blended together with the origi-
nal one. They are separated with compile time pragmas. This approach is open
to spaghetti-like coding. The second approach is to place architecture-depended
code in separate files. This approach is used in GMP library. Since GMP is de-
veloped by collection of volunteer people, no code support problem arises. A
third approach is to decouple architecture-depended codes via C macros. This
approach is used partially in GMP. CRYMPIX’s design is solely based on this
above mentioned third approach. At the lowest level, we handle single-precision
arithmetic operations with C macros. A vector layer; which is on top of that, ma-
nipulates the operations between a positive integer array and a single-precision
operand. The below code provides an idea about the vector layer.

Vector Layer Code example.

#define ccm_inc_n_mul_1(_carry, _zn, _an, _al, _b, _pad)if(1){ \
DPUP _t; \
POS _i; \
_t.spulHIGH] = _pad; \
for(_i =0; _i < _al; _i++){ \
cvm_mul_2_add_2(_t, _an[_i], _b, _zn[_il, _t.spul[HIGH]); \
_zn[_i] = _t.spulLOW]; \
LA\
_carry = _t.spulHIGH]; \
}

At the low-level function layer which comes after vector layer, the arithmetic
functions are implemented and the relevant code example is given below.

Low-level Function Layer Code example.

void cz_mul_basecase(P0OS *z, P0OS *a, POS al, POS *b, POS bl){
POS i;

ccm_mul_1(z[bl], z, b, bl, al0], 0);
for(i = 1; i < al; i++){
cem_inc_n_mul_1(z[i + bl], (z + i), b, bl, alil, 0);
}
}

The layered approach simplifies the function bodies, prevents code repetitions;
hence less tedious development phase.

2.5 Selection of Algorithms

Almost all libraries use the similar algorithms in high speed multiprecision arith-
metic. Therefore, we limit our decisions with algorithm selection criteria.
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Table 2. Algorithms in use for multiprecision multiplication

Algorithm Complexity Interval
Basecase O(n?) 0-1K
Karatsuba O(n*>%) 1-6K
Toom-Cook 3—Way  O(n' %) 6 — 24K
FFT Based O(n~+4) 24K —larger

Addition, Subtraction and Shift. Addition and subtraction are done as they
are explained by Knuth in [5] and Menezes in [7]. The operation starts from the
least significant word and carry/borrow bits are transferred to the following
steps of the algorithm. For shifting multiprecision numbers the basic bitwise
operators of C language are convenient to use. Generally, operations such as
addition, subtraction, clone, shift, and compare are relatively cheaper therefore
all of the cryptographic libraries employ the similar suites.

Multiplication. The efficiency of most cryptographic libraries depend on the
cost, of multiprecision multiplication operation. Table [2] summarizes the popular
multiplication methods, their complexities, and of their usage intervals.

In the cryptographic applications Basecase [Bl7] and Karatsuba [5/6] multipli-
cation algorithms are frequently used. Although the above seen FFT algorithm
is asymptotically faster, it is more costly as far as the cryptographic applications
concerned.

Division. CRYMPIX uses basecase division algorithm explained in Knuth [5]. If
numbers get slightly larger than 1500 bits, then Divide-and-conquer algorithm [2]
which is a recursive variant of the basecase division, gets to be utilized often and
GMP includes it too.

Greatest Common Divisor (GCD), Extended Greatest Common Divi-
sor. The basic algorithm for GCD computation is Euclid’s algorithm with O(n?)
complexity. The algorithm is modified by Lehmer to fit the fixed-precision proces-
sors. Another method of GCD computation is the Binary GCD algorithm. This
algorithm is faster when the numbers are few words long. For larger numbers
Binary GCD algorithm is modified by many researchers. Jebelean and Weber
proposed Accelerated/Generalized GCD algorithm which is faster than Lehmer
GCD algorithm [48] by a factor of 1,45. CRYMPIX includes a slightly modified
version of Lehmer GCD algorithm. It is used both for GCD and Extended GCD
computations. We have provided a comparison between Lehmer GCD algorithm
and its modified variant proposed by Jebelean [3] in Table Bl We have used
approximative condition of GCD and double-precision techniques. The speedup
values are given in Fig.

We also provided the performance comparison of CRYMPIX Lehmer GCD
and GMP Generalized GCD in Table[l The expected value is a constant speedup
around 0, 75 which is actually a slow down factor. This is depicted in Fig.[3l The
lower performance of CRYMPIX below the expected value in smaller operands
is due to the absence of binary GCD implementation.
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Table 3. Standard Lehmer GCD vs. Modified Lehmer GCD (microseconds)

Length 1K 2K 4K 8K
Standard Lehmer 201 557 1746 6228
Modified Lehmer 158 351 921 3131

Table 4. CRYMPIX Lehmer GCD vs. GMP Generalized GCD. (microseconds)

Length 1K 2K 4K 8K 16K

CRYMPIX vl GCD 186 474 1372 4449 15767
CRYMPIX v2 GCD 157 368 957 2802 9161
GNU-GMP GCD 88 266 874 3101 11592

188

—+—Modified Lehmer GCD

Speedup Values

=w= Standard Lehmer GCD

Fig. 2. Speedup values for Modified Lehmer GCD over Standard Lehmer GCD, derived
from Table

—4— CRYMPIX v2

=
)

—k— CRYMPIX w1

Speedup Values
=

- -# - Expacted Speadup

=
=

o
b

—m— GNU-GMP

-

1K 2K 4K 8K 16K

Fig. 3. Speedup values for CRYMPIX Lehmer GCD over GMP Generalized GCD,
derived from Table @]
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Table 5. Modular exponentiation for GMP, CRYMPIX, and MIRACL (milliseconds)

Length 1K 2K 4K 8K

GMP Mod. Exp. 54 389 2841 16734
MIRACL-KCM Mod. Exp. 31 204 1298 8132
CRYMPIX v1 Mod. Exp. 49 363 2650 19526
CRYMPIX v2 Mod. Exp. 27 195 1423 10411

.__'_‘__,,.-qv” ]
17 " ]
—a—MIRACL

17 L 107 1.07 . —a= CRYMPIX vZ

Speadup Values

—— CRYMPIX v

- GHU-GMP

Fig. 4. Speedup values for CRYMPIX and MIRACL over GMP in modular exponen-

tiation

Modular Exponentiation. Modular exponentiation is the most expensive op-
eration among the other multi-precision operations. A competitive implemen-
tation takes the advantage of almost all techniques to speedup the operation.
CRYMPIX uses successive squaring algorithm with left-to-right exponent scan-
ning and variable-length-window-sliding technique with variable window size and
Montgomery’s multiplication with Karatsuba algorithm. MIRACL-KCM is the
generated code for embedded systems. The speed underlying MIRACL-KCM ref-
erences from the recursive implementation of Montgomery REDC function with
half multiplication technique. In the 8K test bed, GMP triggers ToomCook-3-
way multiplication hence all speedup values tend to decrease in 8K test bed.
CRYMPIX will be updated to benefit such techniques in the future. We con-
structed Table 5 with time measurements of modular powering for 1K, 2K, 4K
and 8K numbers with GMP, CRYMPIX, and MIRACL. Fig. @ provides corre-
sponding speedup values.

3 Results and Contribution

In this study, we have introduced a new cryptographic multiprecision library,
CRYMPIX. We also provided a fair performance comparison between some li-
braries by providing technical comments. CRYMPIX which is developed in ANSI
C, is able to take the advantage of long long data type of ISO C’99 whenever
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possible. CRYMPIX includes low level routines for multiprecision arithmetic in
prime fields. The overall performance of CRYMPIX is equal to its predecessors
and in some instances even superior. The first release is expected to include all
functions significant for cryptography. Support for specific processors is not in
the short term schedule. After the first stable release, the project is going to
be extended over binary field arithmetic. Our next study will be on the layered
adaptation of this library to distributed environments.
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