Skip to main content

A Computable Version of Dini’s Theorem for Topological Spaces

  • Conference paper
Computer and Information Sciences - ISCIS 2005 (ISCIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3733))

Included in the following conference series:

Abstract

By Dini’s theorem on a compact metric space K any increasing sequence (g i )i ∈ ℕ of real-valued continuous functions converging pointwise to a continuous function f converges uniformly. In this article we prove a fully computable version of a generalization: a modulus of uniform convergence can be computed from a quasi-compact subset K of a computable T0-space with computable intersection, from an increasing sequence of lower semi-continuous real-valued functions on K and from an upper semi-continuous function to which the sequence converges. For formulating and proving we apply the representation approach to Computable Analysis (TTE) [1]. In particular, for the spaces of quasi-compact subsets and of the partial semi-continuous functions we use natural multi-representations [2]. Moreover, the operator computing a modulus of convergence is multi-valued.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Schröder, M.: Effectivity in spaces with admissible multirepresentations. Mathematical Logic Quarterly 48, 78–90 (2002)

    Article  MATH  Google Scholar 

  3. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1960)

    MATH  Google Scholar 

  4. Kamo, H.: Effective Dini’s theorem on effectively compact metric spaces. In: Brattka, V., Staiger, L., Weihrauch, K. (eds.) Computability and Complexity in Analysis, Sixth International Workshop, CCA 2004, Lutherstadt Wittenberg, Germany, August 16–20. Informatik Berichte., FernUniversität in Hagen, vol. 320, pp. 69–77 (2004)

    Google Scholar 

  5. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989)

    MATH  Google Scholar 

  6. Mori, T., Tsujii, Y., Yasugi, M.: Computability structures on metric spaces. In: Bridges, D.S., Calude, C.S., Gibbons, J., Reeves, S., Witten, I.H. (eds.) Combinatorics, Complexity, and Logic. Discrete Mathematics and Theoretical Computer Science, Proceedings of DMTCS 1996, Singapore, pp. 351–362. Springer, Heidelberg (1997)

    Google Scholar 

  7. Yasugi, M., Mori, T., Tsujii, Y.: Effective properties of sets and functions in metric spaces with computability structure. Theoretical Computer Science 219, 467–486 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)

    MATH  MathSciNet  Google Scholar 

  9. Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical Computer Science 38, 35–53 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chevillard, S.: About the effectivity of Dini’s Theorem. In: Talk at CCA 2004, Sixth International Workshop on Computability and Complexity in Analysis, Wittenberg (2004)

    Google Scholar 

  11. Weihrauch, K.: Considerations on higher level programming in Analysis (in preparation)

    Google Scholar 

  12. Engelking, R.: General Topology. Sigma series in pure mathematics, vol. 6. Heldermann, Berlin (1989)

    MATH  Google Scholar 

  13. Weihrauch, K.: Computability on computable metric spaces. Theoretical Computer Science 113, 191–210 (1993) (Fundamental Study)

    Google Scholar 

  14. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoretical Computer Science 305, 43–76 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Weihrauch, K.: Computational complexity on computable metric spaces. Mathematical Logic Quarterly 49, 3–21 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grubba, T., Weihrauch, K. (2005). A Computable Version of Dini’s Theorem for Topological Spaces. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds) Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in Computer Science, vol 3733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569596_94

Download citation

  • DOI: https://doi.org/10.1007/11569596_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29414-6

  • Online ISBN: 978-3-540-32085-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics