Abstract
By Dini’s theorem on a compact metric space K any increasing sequence (g i )i ∈ ℕ of real-valued continuous functions converging pointwise to a continuous function f converges uniformly. In this article we prove a fully computable version of a generalization: a modulus of uniform convergence can be computed from a quasi-compact subset K of a computable T0-space with computable intersection, from an increasing sequence of lower semi-continuous real-valued functions on K and from an upper semi-continuous function to which the sequence converges. For formulating and proving we apply the representation approach to Computable Analysis (TTE) [1]. In particular, for the spaces of quasi-compact subsets and of the partial semi-continuous functions we use natural multi-representations [2]. Moreover, the operator computing a modulus of convergence is multi-valued.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
Schröder, M.: Effectivity in spaces with admissible multirepresentations. Mathematical Logic Quarterly 48, 78–90 (2002)
Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1960)
Kamo, H.: Effective Dini’s theorem on effectively compact metric spaces. In: Brattka, V., Staiger, L., Weihrauch, K. (eds.) Computability and Complexity in Analysis, Sixth International Workshop, CCA 2004, Lutherstadt Wittenberg, Germany, August 16–20. Informatik Berichte., FernUniversität in Hagen, vol. 320, pp. 69–77 (2004)
Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989)
Mori, T., Tsujii, Y., Yasugi, M.: Computability structures on metric spaces. In: Bridges, D.S., Calude, C.S., Gibbons, J., Reeves, S., Witten, I.H. (eds.) Combinatorics, Complexity, and Logic. Discrete Mathematics and Theoretical Computer Science, Proceedings of DMTCS 1996, Singapore, pp. 351–362. Springer, Heidelberg (1997)
Yasugi, M., Mori, T., Tsujii, Y.: Effective properties of sets and functions in metric spaces with computability structure. Theoretical Computer Science 219, 467–486 (1999)
Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)
Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical Computer Science 38, 35–53 (1985)
Chevillard, S.: About the effectivity of Dini’s Theorem. In: Talk at CCA 2004, Sixth International Workshop on Computability and Complexity in Analysis, Wittenberg (2004)
Weihrauch, K.: Considerations on higher level programming in Analysis (in preparation)
Engelking, R.: General Topology. Sigma series in pure mathematics, vol. 6. Heldermann, Berlin (1989)
Weihrauch, K.: Computability on computable metric spaces. Theoretical Computer Science 113, 191–210 (1993) (Fundamental Study)
Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoretical Computer Science 305, 43–76 (2003)
Weihrauch, K.: Computational complexity on computable metric spaces. Mathematical Logic Quarterly 49, 3–21 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grubba, T., Weihrauch, K. (2005). A Computable Version of Dini’s Theorem for Topological Spaces. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds) Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in Computer Science, vol 3733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569596_94
Download citation
DOI: https://doi.org/10.1007/11569596_94
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29414-6
Online ISBN: 978-3-540-32085-2
eBook Packages: Computer ScienceComputer Science (R0)