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Abstract. Though AdaBoost has been widely used for feature selection and classifier learning, many 
of the selected features, or weak classifiers, are redundant. By incorporating mutual information into 
AdaBoost, we propose an improved boosting algorithm in this paper. The proposed method fully ex-
amines the redundancy between candidate classifiers and selected classifiers. The classifiers thus se-
lected are both accurate and non-redundant. Experimental results show that the strong classifier 
learned using the proposed algorithm achieves a lower training error rate than AdaBoost. The pro-
posed algorithm has also been applied to select discriminative Gabor features for face recognition. 
Even with the simple correlation distance measure and 1-NN classifier, the selected Gabor features 
achieve quite high recognition accuracy on the FERET database, where both expression and illumina-
tion variance exists. When only 140 features are used, the selected features achieve as high as 95.5% 
accuracy, which is about 2.5% higher than that of features selected by AdaBoost. 

1   Introduction 

Introduced by Freud and Schapire [1], AdaBoost has been successfully applied to object detection [2;3] 
and face recognition [4]. The essence of AdaBoost is to learn a number of very simple weak classifiers, 
which are then linearly combined into a single strong classifier. Whilst using only weak classifiers, rec-
ognition performance is just slightly better than random guessing. AdaBoost learning minimizes the up-
per bound on both training and generalization errors [5]. AdaBoost has been applied in applications to 
select Haar-like features [3] for face detection and recognition [4] as well as proving suitable for Gabor 
feature selection [6;7] for classification. Since minimizing the classification error rate is the ultimate 
objective of AdaBoost learning, the weak classifier with smallest weighted error is selected at each itera-
tion. As a result, the learned classifiers are “individually” best and hence the combined strong classifier 
may not necessarily be optimum choice [8].  For feature selection, classifiers using similar features are 
more likely to be selected and redundancy will exist among some selected features. Stanz. Li etc. [8] 
proposed a floating search based algorithm, named FloatBoost, to eliminate these non-effective weak 
classifiers. A backtracking mechanism is applied to identify the unfavorable weak classifiers in terms of 
the classification error rate. The learned strong classifier thus consists of fewer weak classifiers and 
shows improved classification performance. During the learning process, each of the previously selected 
weak classifiers is individually removed from the combined strong classifier and the results analyzed for 
improvements in the classification error rate. As a result of this, FloatBoosts computational requirements 
are approximately five times greater than that of AdaBoost. When the number of features is large 
(160,000+), as is normal in implementation scenarios utilising Gabor features, the FloatBoost training 
process could be unmanageable. A boosting algorithm, which is both effective in eliminating the non-
effective classifiers and is computationally efficient, is required. 

We propose in this paper a novel approach to address this issue. The proposed boosting algorithm 
uses the idea of mutual information for redundancy elimination. During the learning process, the mutual 
information between the candidate weak classifier and the selected weak classifiers is examined. As a 
result, the non-effective classifiers carrying information already captured by the selected fea-
ture/classifiers will be excluded. Since the mutual information is checked for only those candidate classi-
fiers with small errors, the additional computation cost above that already required by AdaBoost is very 
low. In addition, mutual information is statistically calculated, which enables our technique to be classi-
fier and decision method independent. It should be noted that several important distinctions exist between 
the method presented here and the InfoBoost algorithm [9]. While InfoBoost used the mutual information 
between the weak classifier and the class label for updating weights and weak classifier selection, our 
work still uses the classification error for learning, but introduces the idea of using mutual information 



between weak classifiers as an additional criteria. A threshold is used such that those classifiers with 
mutual information outside the given threshold, even with low classification error, are not selected. The 
experimental results show that the proposed boosting algorithm achieves a lower training error rate with 
fewer classifiers than other methods.  Better performance has also been observed when the selected Ga-
bor features are applied for face recognition. 

2   AdaBoost learning 

Since the introduction of the original discrete AdaBoost algorithm, more general versions have been 
proposed. Where RealBoost was proposed to boost weak classifiers with real value output [10], 
AdaBoost.M1 and AdaBoost.MH [5] address the multi class problem. Here we focus on two class prob-
lems only, where weak classifiers take a discrete Boolean value. However, our method could be easily 
incorporated into the RealBoost or AdaBoost.MH algorithms to solve more general problems. 

For the two class problem, a set of N labeled training samples is given as Niyx ii ,..,2,1),,( = , where 
{ }1,0∈iy  is the class label associated with the sample n

i Rx ∈ . A large number of weak classifiers )(xh  
could be generated to form the classifier learning pool, where }1,0{)( ∈xh . The weak classifier could be 
very simple, for example, a threshold function on the kth  coordinate of x  in the n-dimensional space. 
The algorithm focuses on difficult training patterns, increasing their representation in successive training 
sets. Over a number of T rounds, T weak classifiers are selected to form the final strong classifier. In each 
of the iterations, the space of all possible weak classifiers is searched exhaustively to find the one with 
the lowest weighted classification error. This error is then used to update the weights such that the 
wrongly classified samples get their weights increased. The resulting strong classifier is a weighted linear 
combination of all T selected weak classifiers. See [1] for the listing of the AdaBoost algorithm.  

3   Improved AdaBoost learning 

3.1   Entropy and Mutual Information (MI) 
As a basic concept in information theory, entropy )(XH  is used to measure the uncertainty of a random 
variable (r.v.) X . If X  is a discrete r.v., )(XH  can be defined as below: 

∑ ==−=
x

xXpxXpXH ))(lg()()(     (1) 

Mutual information );( XYI  is a measure of general interdependence between two random variables 
X and Y : 

),()()();( YXHYHXHXYI −+=       (2) 
Using Bayes rule on conditional probabilities, Equation 2 can be rewritten as: 

)|()()|()();( XYHYHYXHXHXYI −=−=   (3) 
Since )(YH  measures the priori uncertainty of Y and )|( XYH measures the conditional posteriori un-
certainty of Y after X is observed, the mutual information );( XYI  measures how much the uncertainty 
of Y  is reduced if X  has been observed. It can be easily shown that if X and Y  are independent, 

)()(),( YHXHYXH +=  and consequently their mutual information is zero. 
The estimation of MI requires the value of marginal distribution )(Xp , )(Yp  and the joint probabil-

ity distribution ),( XYp . For a r.v. with discrete values, the probability could be estimated by simply 
counting the number of possible cases and dividing that number with the total number of training samples. 
For a continuous r.v., its pdf could either be discretized by histogram estimation, or be approximated by 
Gaussian distribution. 

3.2   The Proposed Algorithm 

The proposed boosting algorithm incorporates the idea of MI to eliminate those non-effective weak clas-
sifiers. Each weak classifier }1,0{)( ∈xh  is now considered as a r.v.. Before a new weak classifier is 
added, the MI between the new classifier and each of the selected ones is examined to make sure that the 
information carried by the new classifier has not been captured before. Given stage T where T-1 weak 



classifiers L,,{ )2()1( vv hh  })1( −Tvh  have been selected, the function to measure the MI )( jhR  between a 
candidate classifier jh  and the selected classifiers can be defined as follows: 

1,2,1),,(max)( )( −== TthhIhR tvjtj L  (4) 
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Figure 1  Details of proposed boosting algorithm 

The value of )( jhR can be directly used to decide whether the new classifier is redundant or not. The 
value is compared with a pre-defined Threshold Mutual Information (TMI) value, if it is bigger than the 
TMI, we can deduce that the information carried by the classifier has already been captured. Besides MI, 
the classification error of the weak classifier is also taken in to consideration, i.e., only those classifiers 
with small errors are selected. The classifiers thus selected will be both accurate and informative. When 
all the non-redundant classifiers are combined to form a strong classifier, better performance will be 
achieved. See Figure 1 for details of the algorithm. 

4   Application for Gabor Feature Selection 

Motivated by the functional similarity of Gabor filters with the cells in the visual cortex of human and 
mammalian visual systems, Daugman [11] presented evidence that such visual neurons could optimize 
the general uncertainty relations for resolution in space, spatial frequency and orientation. From an in-
formation theoretic viewpoint, Okajima [12] derived Gabor functions as solutions for a certain mutual-
information maximization problem. The work shows that the Gabor-type receptive field can extract the 
maximum possible information from local image regions. Researchers have also shown that Gabor fea-
tures, when appropriately designed, are invariant against translation, rotation and scale [13]. Successful 
applications of Gabor filters in face recognition can be found in the FERET evaluation [14], where the 
Elastic Bunch Graph Matching method [15] gave the best performance. More recently, results from the 
face verification competition 2004 [16] also demonstrated the success of Gabor filter based approaches 
since both of the top two approaches apply Gabor filters for feature extraction. For face recognition ap-
plications, the number of Gabor filters used to convolve face images varies between applications, but 
usually 40 filters (5 scales and 8 orientations) are used [15;17-19]. However, due to the large number of 



convolution operations, the computation cost is quite high. Even when a parallel computer system has 
been used, it was reported in [17] that the convolution of a 128×128 pixel image with 40 Gabor filters 
took about 7 seconds. For global methods, the dimension of the feature vectors extracted are also incredi-
bly large, e.g., 163,840 for images with a size of 64×64. Similar to the work of Viola and Jones [2], 
where AdaBoost was used to select Haar-like features for face detection, the task here is to select the 
most discriminative Gabor features for face recognition. 

4.1 Gabor Features and the Personal Difference Space 

Give a bank of 40 Gabor filters ),,({ , yxvuϕ  }7,...0,4,...,0 == vu , image features at different locations, 
frequency and orientation can be extracted by convolving the image ),( yxI with the filters: 

),(),(),( ,, yxyxIyxO vuvu ϕ∗=   (5) 

The resultant Gabor feature set thus consists of the convolution results of an input image ),( yxI with 
all of the 40 Gabor filters: 

}7,...,0{},4,...,0{:),({ , ∈∈= vuyxOS vu  (6) 
Figure 2 shows the magnitudes of Gabor representations of a face image with 5 scales and 8 orienta-

tions. A series of row vectors vu ,O could be converted out of ),(, yxO vu by concatenating its rows or col-
umns, which are then concatenated together to generate a discriminative Gabor feature vector: 

)   ()( 7,41,00,0 OOOO L==IG   (7) 
Take an image with size 64×64 as an example, the convolution result will give 64×64×5×8=163,840 

features. Since Gabor filter parameters are chosen empirically, it is our belief that a lot of redundant in-
formation is included, and therefore a feature selection mechanism should be used to choose the most 
useful features for classification. 

 

 

 

Figure 2 Convolution result  - (magnitude and real part) of an image with 40 Gabor filters 

To apply the proposed boosting algorithm, the difference space proposed in [20] is used here to con-
vert the face recognition problem into a two class problem. Two classes, dissimilarities between faces of 
the same person (intra-personal space) and dissimilarities between faces of the different people (extra-
personal space) are defined. The two Gabor feature difference sets: CI  (intra-personal difference) and 
CE  (extra-personal difference) can be defined as: 

{ }
{ }qpIGIGCE

qpIGIGCI

qp

qp

≠−=

=−=

,)()(

,)()(
  (8) 

where pI  and qI  are the facial images from people p  and q  respectively, and )(⋅G  is the Gabor feature 
extraction operation as defined in (7). A set of M training samples in the difference space can now be 
described as { }),,),,(),,( 11 MMii ygygyg LL , =ig  ][ 21 Nn xxxx LL , }1,0{∈iy , where iy is the class 
label (intra-personal or extra-personal) associated with sample ig , N is the dimension of extracted Gabor 

features and ( ) ( ) =−==
nqpnn IGIGgx )()(  ( )

nqp OO − . 

5   Experimental Results 

5.1 Datasets 
We analyze the performance of our algorithm using a subset of the FERET database, which is a standard 
test-bed for face recognition technologies [14]. 600 frontal face images corresponding to 200 subjects are 



extracted from the database for the experiments - each subject has three images of size 256×384 with 256 
gray levels. The images were captured at different photo sessions so that they display variations in illu-
mination and facial expression. Two images of each subject are randomly chosen for training, and the 
remaining one is used for testing. The following procedures were applied to normalize the face images 
prior to the experiments: 

• The centres of the eyes of each image are manually marked  
• Each image is rotated and scaled to align the centre of the eyes 
• Each face image is cropped to the size of 64×64 to extract the facial region 
• Each cropped face image is normalized to zero mean and unit variance 
 
Figure 3 shows the sample images from the database. The first two rows are the example training im-

ages while the third row shows the example test images. We are trying to select the most discriminative 
Gabor features using the 400 (2 images per subject) training images, which are then applied to recognize 
the 200 test images. As a result, 200 intra-personal and 1600 extra-personal Gabor feature difference 
samples are randomly generated. Once a small set of discriminative Gabor features are learned by apply-
ing AdaBoost or our proposed algorithm on the training samples, they are used for face recognition. 
 

         

         

             
Figure 3 Sample images used in experiments 

5.2 Selected Gabor Features 

We first applied AdaBoost on the training samples to select 200 Gabor features for intra-personal and 
extra-personal difference classification. To show the existence of redundancy among AdaBoost selected 
features (weak classifiers), the MI )( jhR for each selected feature is shown in Figure 4a. It can be ob-
served from the figure that some of the features are highly redundant, e.g. the MI of features with num-
bers 149, 177 and 180 is greater than 0.99. The redundancy among selected features increases with the 
number of features, it is this undesired redundancy that we aim to eliminate or reduce. We have also 
shown the MI data for features selected with our proposed algorithm in Figure 4b (with TMI=0.1). Due 
to the introduction of TMI, all the selected features now show MI values of less than 0.1 and thus we can 
conclude that the features are informative and non-redundant. 

 
(a)      (b) 

Figure 4 MI of features selected by AdaBoost a); Proposed algorithm b) 
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Figure 5  First five selected Gabor features (a)-(e); and the 200 feature points selected by our al-
gorithm (f); and AdaBoost (g) 

Figure 5 (a)-(e) show the first five Gabor features selected by the proposed algorithm, with locations 
of the first 200 Gabor features selected by our algorithm and AdaBoost shown in (f) and (g) respectively. 
The features are overlapped on a typical face image in the database. It is interesting to see that most of the 
selected Gabor features are located around the prominent facial features such as eyebrows, eyes, nose and 
the chin. This indicates that these regions are more robust against the variations is expression and illumi-
nation. This result is agrees with the fact that the eye and eyebrow regions remain relatively stable when a 
persons expression changes. While almost all of the AdaBoost selected Gabor features are crowded in the 
eyebrow and eye regions, the features selected by the proposed algorithm are more widely distributed 
with some of the  features located around the nose also being included.  

5.3  Recognition Performance Comparison 

Once the most discriminant Gabor features are selected, we are now able to apply them to the face recog-
nition problem. In this experiment, 200 Gabor features selected by AdaBoost and by our proposed algo-
rithm (TMI=0.1) are directly used for a similarity comparison, without any further processing. The nor-
malized correlation distance measure and the nearest neighbor classifier are used. Figure 6 shows the 
recognition performance of Gabor features selected by both AdaBoost and our algorithm on the 200 test 
images. When 140 features are used, the highest accuracy achieved by AdaBoost and the proposed algo-
rithm, are 93% and 95.5% respectively. Since the MI values for all of the first 60 features are quite small, 
the proposed algorithm starts by picking up much the same features as AdaBoost. However, once the 
number of features increases, AdaBoost starts to pick highly redundant features. The improved recogni-
tion rate accuracy over AdaBoost caused by the use of features selected using the proposed algorithm 
proves the usefulness of our techniques in eliminating redundancy. 

 
Figure 6   Recognition performance 

5.4 Algorithm Complexity and Determination of TMI 

Due to the introduction of mutual information, the proposed boosting algorithm required longer training 
time than that required by AdaBoost. However, the only computation cost added to AdaBoost is the loop 
to calculate MI values for redundancy checking, see Figure 1 for details. Table 1 shows the Average 
Number of Loops (ANL) required in each iteration and the corresponding TMI. The table shows that the 
computation burden added by the introduction of MI is actually very low (ANL is normally less than 10). 
As a result, the training time required by the proposed algorithm in our experiments is only about 0.1 
times greater than that of AdaBoost. 



TMI 0.08 0.09 0.10 0.11 0.12 
ANL 8.42 8.07 7.25 5.43 3.25 

Table 1  ANL for different TMI 

As seen from the table, the higher the value of TMI, the less ANL required, i.e. the faster training 
speed. Actually AdaBoost can be seen as a special case of our algorithm when the value of TMI is set as 
1. In this case, the features, or weak classifiers selected by the proposed algorithm will be exactly the 
same as those chosen by AdaBoost. The value of TMI needs to be selected appropriately to make sure 
that selected features are both non-redundant and useful for classification. A cross-validation set could be 
used to determine the TMI for common classification problems. As shown in Figure 4, since the redun-
dancy increases with the number of selected features, an adaptive TMI, which increases with the number 
of features, might be more suitable. 

6 Conclusions 

A new and novel boosting algorithm has been proposed in this paper. By examining the mutual informa-
tion between the candidate classifier and the selected weak classifiers, redundant classifiers can be ex-
cluded.  The proposed algorithm has also been applied to select discriminant Gabor features for face 
recognition. The results show the advantage of features selected using our techniques over those learned 
by AdaBoost, specifically, Gabor features selected using our method are both non-redundant and achieve 
higher recognition accuracy on the subset of FERET database used for testing. Though the proposed 
algorithm addresses weak classifiers with discrete values only, it can be easily extended to classifiers 
with continuous values, where histogram estimation could be used to estimate the probability distribution. 
Whilst the selected features/classifiers are non-redundant and thus achieve higher accuracy for classifica-
tion, the computation burden added to AdaBoost is very low. In our experiments, the training time of the 
proposed algorithm is only about 0.1 times longer than that of AdaBoost.  

It should also be noted that though the face images are normalized manually in this paper, the work in 
[21] proved the robustness of non-redundant features against the mis-alignment of automatic face detec-
tion system. We aim to prove the tolerance of our system against the localized in the future. Currently, we 
are working on designing an adaptive TMI determination algorithm to improve the proposed boosting 
algorithm further. 
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