Skip to main content

Gabor Feature Selection for Face Recognition Using Improved AdaBoost Learning

  • Conference paper
Advances in Biometric Person Authentication (IWBRS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3781))

Included in the following conference series:

  • 1048 Accesses

Abstract

Though AdaBoost has been widely used for feature selection and classifier learning, many of the selected features, or weak classifiers, are redundant. By incorporating mutual information into AdaBoost, we propose an improved boosting algorithm in this paper. The proposed method fully examines the redundancy between candidate classifiers and selected classifiers. The classifiers thus selected are both accurate and non-redundant. Experimental results show that the strong classifier learned using the proposed algorithm achieves a lower training error rate than AdaBoost. The proposed algorithm has also been applied to select discriminative Gabor features for face recognition. Even with the simple correlation distance measure and 1-NN classifier, the selected Gabor features achieve quite high recognition accuracy on the FERET database, where both expression and illumination variance exists. When only 140 features are used, the selected features achieve as high as 95.5% accuracy, which is about 2.5% higher than that of features selected by AdaBoost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Freund, Y., Schapire, R.: A decision-theoristic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (2000)

    Article  MathSciNet  Google Scholar 

  2. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition Kauai, Hawaii (2001)

    Google Scholar 

  3. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proc. IEEE Conference on Image Processing 2002, pp. 900–903 (2002)

    Google Scholar 

  4. Michael, J., Viola, P.: Face recognition using boosted local features. In: Proc. of International Conference on Computer Vision, ICCV (2003)

    Google Scholar 

  5. Freund, Y., Schapire, R.: A short introduction to boosting. Journal of Japanese Society for Artifical Intelligence 14(5), 771–780 (1999)

    Google Scholar 

  6. Shen, L., Bai, L.: AdaBoost Gabor Feature Selection for Classification. In: Proc. of Image and Vision Computing NewZealand, pp. 77–83 (2004)

    Google Scholar 

  7. Yang, P., Shan, S.G., Gao, W., Li, S.Z., Zhang, D.: Face recognition using ada-boosted gabor features. In: Sixth IEEE International Conference on Proceedings Automatic Face and Gesture Recognition, pp. 356–361 (2004)

    Google Scholar 

  8. Li, S.Z., Zhang, Z.Q.: FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  9. Aslam, J.: Improving Algorithms for Boosting. In: Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, pp. 200–207 (2000)

    Google Scholar 

  10. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  11. Daugman, J.G.: Uncertainty Relation for Resolution in Space, Spatial- Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters. Journal of the Optical Society of America A-Optics Image Science and Vision 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  12. Okajima, K.: Two-dimensional Gabor-type receptive field as derived by mutual information maximization. Neural Networks 11(3), 441–447 (1998)

    Article  Google Scholar 

  13. Kyrki, V., Kamarainen, J.K., Kalviainen, H.: Simple Gabor feature space for invariant object recognition. Pattern Recognition Letters 25(3), 311–318 (2004)

    Article  Google Scholar 

  14. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  15. Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)

    Article  Google Scholar 

  16. Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostin, A., Cardinaux, F., Marcel, S., Bengio, S., Sanderson, C., Poh, N., Rondriguez, Y., Czyz, J., Vandendorpe, L., McCool, C., Lowther, S., Sridharan, S., Chandran, V., Palacios, R.P., Vidal, E., Bai, L., Shen, L., Wang, Y., Chiang, Y.H., Liu, H.C., Huang, Y.P., Heinrichs, A., Miiller, M., Tewes, A., Malsburg, C.V.D., Wiirtz, R., Wang, Z.G., Xue, F., Ma, Y., Yang, Q., Fang, C., Ding, X.Q., Lucey, S., Goss, R., Schneiderman, H.: Face authentication test on the BANCA database. In: Proc. of International Conference on Pattern Recognition Cambridge, UK (2004)

    Google Scholar 

  17. Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., Vandermalsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the Dynamic Link Architecture. IEEE Transactions on Computers 42(3), 300–311 (1993)

    Article  Google Scholar 

  18. Liu, C.J., Wechsler, H.: Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing 11(4), 467–476 (2002)

    Article  Google Scholar 

  19. Shen, L., Bai, L.: Face recognition based on Gabor features using kernel methods. In: Proc. of the 6th IEEE Conference on Face and Gesture Recognition Korea, pp. 170–175 (2004)

    Google Scholar 

  20. Phillips, P.J.: Support vector machines applied to face recognition. In: Proceedings of the 1998 conference on Advances in neural information processing systems II, pp. 803–809. MIT press, Cambridge (1999)

    Google Scholar 

  21. Littlewort, G., Bartlett, M.S., Fasel, I.R., Chenu, J., Movellan, J.R.: Analysis of machine learning methods for real-time recognition of expressions from video (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, L., Bai, L., Bardsley, D., Wang, Y. (2005). Gabor Feature Selection for Face Recognition Using Improved AdaBoost Learning. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds) Advances in Biometric Person Authentication. IWBRS 2005. Lecture Notes in Computer Science, vol 3781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569947_6

Download citation

  • DOI: https://doi.org/10.1007/11569947_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29431-3

  • Online ISBN: 978-3-540-32248-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics