Skip to main content

Optimal Fuzzy CLOS Guidance Law Design Using Ant Colony Optimization

  • Conference paper
Stochastic Algorithms: Foundations and Applications (SAGA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3777))

Included in the following conference series:

  • 784 Accesses

Abstract

The well-known ant colony optimization meta-heuristic is applied to design a new command to line-of-sight guidance law. In this regard, the lately developed continuous ant colony system is used to optimize the parameters of a pre-constructed fuzzy sliding mode controller. The performance of the resulting guidance law is evaluated at different engagement scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garnell, P.: Guided Weapon Control Systems, 2nd edn., ch. 7. Pergamon Press, Oxford (1980)

    Google Scholar 

  2. Zarchan, P.: Tactical and Strategic Missile Guidance, 3rd edn. AIAA Education Series, vol. 176, pp. 193–205 (1997)

    Google Scholar 

  3. Kain, J.E., Yost, D.J.: Command to Line-of-Sight Guidance: A Stochastic Optimal Control problem. In: AIAA Guidance and Control Conference Proceedings, pp. 356–364 (1976)

    Google Scholar 

  4. Ha, I.J., Chong, S.: Design of a CLOS Guidance Law via Feedback Linearization. IEEE Transactions on Aerospace and Electronic Systems 28(1), 51–62 (1992)

    Article  Google Scholar 

  5. Parkes, N.E., Roberts, A.P.: Application of Polynomial Methods to Design of Controllers for CLOS Guidance. In: IEEE Conference on Control Applications, vol. 2, pp. 1453–1458 (1994)

    Google Scholar 

  6. Pourtakdoust, S.H., Nobahari, H.: Optimization of LOS Guidance for Surface-to-Air Missiles. In: Iranian Aerospace Organization Conference, vol. 2, pp. 245–257 (2000)

    Google Scholar 

  7. Arvan, M.R., Moshiri, B.: Optimal Fuzzy Controller Design for an Anti-Tank Missile. In: International Conference on Intelligent and Cognitive Systems, pp. 123–128 (1996)

    Google Scholar 

  8. Lin, C.M., Hsu, C.F.: Guidance Law Design by Adaptive Fuzzy Sliding Mode Control. Journal of Guidance, Control and Dynamics 25(2), 248–256 (2002)

    Article  MathSciNet  Google Scholar 

  9. Nobahari, H., Alasty, A., Pourtakdoust, S.H.: Design of a Supervisory Controller for CLOS Guidance with Lead Angle. In: AIAA Guidance, Navigation and Control Conference, AIAA-2005-6156 (2005)

    Google Scholar 

  10. Palm, R.: Robust Control by Fuzzy Sliding Mode. Automatica 30(9), 1429–1437 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, C.L., Chang, M.H.: Optimal Design of Fuzzy Sliding-Mode Control: A Comparative Study. Fuzzy Sets and Systems 93, 37–48 (1998)

    Article  Google Scholar 

  12. Choi, B.J., Kwak, S.W., Kim, B.K.: Design of a Single-Input Fuzzy Logic Controller and Its Properties. Fuzzy Sets and Systems 106(3), 299–308 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Procyk, T.J., Mamdani, E.H.: A linguistic self-organizing process controller. Automatica, IFAC 15, 15–30 (1979)

    Article  MATH  Google Scholar 

  14. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man and Cybernetics 15, 116–132 (1985)

    MATH  Google Scholar 

  15. Nomura, H., Hayashi, I., Wakami, N.: A Self Tuning Method of Fuzzy Control by Descent Method. In: Proceedings of the International Fuzzy Systems Association, IFSA 1991, Bruxelles, pp. 155–158 (1991)

    Google Scholar 

  16. Siarry, P., Guely, F.: A Genetic Algorithm for Optimizing Takagi-Sugeno Fuzzy Rule Bases. Fuzzy Sets and Systems 99, 37–47 (1998)

    Article  Google Scholar 

  17. Nobahari, H., Pourtakdoust, S.H.: Optimization of Fuzzy Rule Bases Using Continuous Ant Colony System. In: Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E., ICMSAO, vol. 243, pp. 1–6 (2005)

    Google Scholar 

  18. Pourtakdoust, S.H., Nobahari, H.: An Extension of Ant Colony System to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Slotine, J.J.E., Li, W.: Applied Nonlinear Control, ch. 7. Prentice-Hall, Upper Saddle River (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nobahari, H., Pourtakdoust, S.H. (2005). Optimal Fuzzy CLOS Guidance Law Design Using Ant Colony Optimization. In: Lupanov, O.B., Kasim-Zade, O.M., Chaskin, A.V., Steinhöfel, K. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2005. Lecture Notes in Computer Science, vol 3777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11571155_10

Download citation

  • DOI: https://doi.org/10.1007/11571155_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29498-6

  • Online ISBN: 978-3-540-32245-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics