Abstract
The well-known ant colony optimization meta-heuristic is applied to design a new command to line-of-sight guidance law. In this regard, the lately developed continuous ant colony system is used to optimize the parameters of a pre-constructed fuzzy sliding mode controller. The performance of the resulting guidance law is evaluated at different engagement scenarios.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Garnell, P.: Guided Weapon Control Systems, 2nd edn., ch. 7. Pergamon Press, Oxford (1980)
Zarchan, P.: Tactical and Strategic Missile Guidance, 3rd edn. AIAA Education Series, vol. 176, pp. 193–205 (1997)
Kain, J.E., Yost, D.J.: Command to Line-of-Sight Guidance: A Stochastic Optimal Control problem. In: AIAA Guidance and Control Conference Proceedings, pp. 356–364 (1976)
Ha, I.J., Chong, S.: Design of a CLOS Guidance Law via Feedback Linearization. IEEE Transactions on Aerospace and Electronic Systems 28(1), 51–62 (1992)
Parkes, N.E., Roberts, A.P.: Application of Polynomial Methods to Design of Controllers for CLOS Guidance. In: IEEE Conference on Control Applications, vol. 2, pp. 1453–1458 (1994)
Pourtakdoust, S.H., Nobahari, H.: Optimization of LOS Guidance for Surface-to-Air Missiles. In: Iranian Aerospace Organization Conference, vol. 2, pp. 245–257 (2000)
Arvan, M.R., Moshiri, B.: Optimal Fuzzy Controller Design for an Anti-Tank Missile. In: International Conference on Intelligent and Cognitive Systems, pp. 123–128 (1996)
Lin, C.M., Hsu, C.F.: Guidance Law Design by Adaptive Fuzzy Sliding Mode Control. Journal of Guidance, Control and Dynamics 25(2), 248–256 (2002)
Nobahari, H., Alasty, A., Pourtakdoust, S.H.: Design of a Supervisory Controller for CLOS Guidance with Lead Angle. In: AIAA Guidance, Navigation and Control Conference, AIAA-2005-6156 (2005)
Palm, R.: Robust Control by Fuzzy Sliding Mode. Automatica 30(9), 1429–1437 (1994)
Chen, C.L., Chang, M.H.: Optimal Design of Fuzzy Sliding-Mode Control: A Comparative Study. Fuzzy Sets and Systems 93, 37–48 (1998)
Choi, B.J., Kwak, S.W., Kim, B.K.: Design of a Single-Input Fuzzy Logic Controller and Its Properties. Fuzzy Sets and Systems 106(3), 299–308 (1999)
Procyk, T.J., Mamdani, E.H.: A linguistic self-organizing process controller. Automatica, IFAC 15, 15–30 (1979)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man and Cybernetics 15, 116–132 (1985)
Nomura, H., Hayashi, I., Wakami, N.: A Self Tuning Method of Fuzzy Control by Descent Method. In: Proceedings of the International Fuzzy Systems Association, IFSA 1991, Bruxelles, pp. 155–158 (1991)
Siarry, P., Guely, F.: A Genetic Algorithm for Optimizing Takagi-Sugeno Fuzzy Rule Bases. Fuzzy Sets and Systems 99, 37–47 (1998)
Nobahari, H., Pourtakdoust, S.H.: Optimization of Fuzzy Rule Bases Using Continuous Ant Colony System. In: Proceeding of the First International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E., ICMSAO, vol. 243, pp. 1–6 (2005)
Pourtakdoust, S.H., Nobahari, H.: An Extension of Ant Colony System to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004)
Slotine, J.J.E., Li, W.: Applied Nonlinear Control, ch. 7. Prentice-Hall, Upper Saddle River (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nobahari, H., Pourtakdoust, S.H. (2005). Optimal Fuzzy CLOS Guidance Law Design Using Ant Colony Optimization. In: Lupanov, O.B., Kasim-Zade, O.M., Chaskin, A.V., Steinhöfel, K. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2005. Lecture Notes in Computer Science, vol 3777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11571155_10
Download citation
DOI: https://doi.org/10.1007/11571155_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29498-6
Online ISBN: 978-3-540-32245-0
eBook Packages: Computer ScienceComputer Science (R0)