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SUMMARY 

 

As emerging portable multimedia applications demand more and more 

tremendous computational throughput with limited energy consumption, the need for 

high-efficient, high-throughput embedded processing is becoming an important challenge 

in computer architecture. In this regard, this dissertation addresses application-, 

architecture-, and technology-level issues in existing processing systems to provide 

efficient processing of multimedia in many, or ideally all, of its form. In particular, this 

dissertation explores color imaging in multimedia while focusing on two architectural 

enhancements for memory- and performance-hungry embedded applications: (1) a pixel-

truncation technique and (2) a color-aware multimedia instruction set extension (CAX) 

for embedded multimedia systems. The pixel-truncation technique differs from similar 

techniques (e.g., 4:2:2 and 4:2:0 subsampling) used in image and video compression 

applications (e.g., JPEG and MPEG) in that it reduces information content in individual 

pixel word sizes rather than in each dimension. Thus, this technique drastically reduces 

the bandwidth and memory required to transport and store color images without a 

perceivable distortion of color. At the same time, it maintains the pixel storage format of 

color image processing in which each pixel computation is simultaneously performed on 

3-D YCbCr components, which are widely used in the image and video processing 

community. On the other hand, utilizing parallelism within the human perceptual YCbCr 

space, CAX supports parallel operations on two-packed, truncated 16-bit (6:5:5) YCbCr 

data on a 32-bit datapath processor, providing greater concurrency and efficiency for 

processing color image sequences. Thus, CAX, coupled with the pixel-truncation 
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technique, provides an efficient mechanism for performance- and memory-hungry 

embedded applications. 

This dissertation presents the impact of CAX on both processing performance and 

cost for color imaging applications in three major processor architectures: dynamically 

scheduled (superscalar), statically scheduled (very long instruction word, VLIW), and 

embedded single instruction, multiple data (SIMD) media processors. Unlike typical 

multimedia extensions (e.g., MMX, VIS, and MDMX), CAX obtains substantial 

performance and code density improvements through direct support for color data  

processing rather than depending solely on generic subword parallelism. In addition, 

CAX’s ability to reduce data format size reduces system cost. The reduction in data 

bandwidth also simplifies system design. Experimental results on a dynamically 

scheduled, 4-way issue processor indicate that CAX achieves a speedup ranging from 3× 

to 5.8× over the baseline performance. This is in contrast to MDMX (a representative 

MIPS multimedia extension), which achieves a speedup ranging from only 1.6× to 3.2× 

over the baseline. CAX also outperforms MDMX in energy reduction (68% to 83% 

reduction with CAX, but only 39% to 69% reduction with MDMX over the baseline 

version). Furthermore, CAX exhibits higher relative performance for low-issue rates. For 

example, CAX achieves an average speedup of 4.7× over the baseline 1-way issue 

performance, but 3× over the baseline 16-way issue performance. These results 

demonstrate that CAX is an ideal candidate for embedded imaging systems in which high 

issue rates and out-of-order execution are too expensive. Similar performance results are 

observed for statistically scheduled processors. CAX achieves a speedup ranging from 
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3.3× to 6.5×, while MDMX achieves a speedup ranging from only 1.7× to 3.6× over the 

baseline performance on the same statistically scheduled, 4-way issue processor.  

The effectiveness of CAX is much more obvious in application-specific 

embedded systems (e.g., embedded SIMD arrays) that aim at providing sufficient 

computational power for specific applications but impose strict constraint on 

implementation chip area and energy consumption. Experimental results using cycle 

accurate simulation and technology modeling indicate that CAX outperforms MDMX in 

speedup (5.2× to 8.9× with CAX, but only 3× to 5× with MDMX over the baseline 

performance) on the same representative data parallel SIMD execution platform. CAX 

also outperforms MDMX in both area efficiency (a 75% increase versus a 25% increase) 

and energy efficiency (a 75% increase versus a 24% increase), resulting in better 

component utilization and sustainable battery life for given system capabilities. 

Furthermore, CAX improves the performance and efficiency with a mere 3% increase in 

system area and a 5% increase in system power, while MDMX requires a 14% increase in 

system area and a 16% increase in system power. Overall, CAX, coupled with the pixel-

truncation technique, has the potential to meet the computational requirements and cost 

goals for future portable multimedia products. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

With the proliferation of color output and recording devices (e.g., digital cameras, 

scanners, and monitors) and color images on the World Wide Web (WWW), a user can 

easily record an image, display it on a monitor, and send it to another person over the 

Internet. However, the original image, the image on the monitor, and the received image 

through the Internet usually do not match because of faulty display or channel 

transmission errors. Color image processing methods offer solutions to many of the 

problems that occur in recording, transmitting, and creating color images. Moreover, 

understanding the characteristics of the color imaging application domain provides new 

opportunities to define an efficient architecture for embedded multimedia systems.   

Early digital color image processing was often approached as an extension of 

monochrome image processing, in which each color channel was treated as an 

independent monochrome image [84]. However, this approach may not be able to extract 

certain crucial information conveyed by color since it fails to take into account the 

correlation between color channels. Clearly, color cannot be treated as just another dimension, 

and the relationship between color channels is much more complex because of the 

definition of color space and human color perception.  

This dissertation explores color imaging for multimedia with respect to the 

following issues (see Chapter 2): 
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• Which color specification model is most suitable for achieving a natural 

extension of the operation? 

• What are the advantages and disadvantages of the use of color information in 

multimedia applications using a vector approach in which each pixel 

computation is performed simultaneously on three color channels?  

• Are there any efficient techniques that support 3-D vector computation?  

Color imaging applications demand tremendous computational throughput. 

Moreover, increasing user demand for color-multimedia-over-wireless capabilities on 

embedded systems places additional constraints on power, size, and weight.  

Application-specific integrated circuits (dedicated ASICs) can meet the needed 

performance and cost goals for such embedded imaging systems. However, they provide 

limited, if any, programmability or flexibility required by emerging imaging applications.  

General-purpose microprocessors (GPPs) offer the necessary flexibility and 

inexpensive processing elements, and multimedia extensions to GPPs have improved the 

performance of multimedia applications with little added cost to the processors. 

Examples include Intel MMXTM [67], SSETM, and SSE-2 [70], Hewlett Packard MAX-2 

for the PA-RISC architecture [53], Sun VIS for SPARC [80], MIPS MDMX [60], Alpha 

MVI [75], and Motorola ALTIVEC for PowerPCTM architecture [63]. These extensions 

exploit subword parallelism by packing several small data elements (e.g., eight-bit pixels) 

into a single wide register (e.g., 32-, 64-, and 128-bit) while processing these separate 

elements in parallel within the context of a dynamically scheduled superscalar machine. 

The designers of digital signal processors (DSPs), such as the Texas Instruments 

TMS320C64x families [82] and the Analog Devices TigerSharc processor [31], have 
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followed the trend. While the improvement in performance has been exciting and 

encouraging, their performance is limited in dealing with both color data that are not 

aligned on boundaries that are powers of two (e.g., visually adjacent pixels from each 

band are spaced three bytes apart) and storage data types that are inappropriate for 

computation (necessitating conversion overhead before and usually following the 

computation) [77]. Although the band separated format (e.g., the red data for adjacent 

pixels are adjacent in memory) is the most convenient for single instruction, multiple data 

(SIMD) processing, a significant amount of overhead for data alignment is expected prior 

to SIMD processing. Even if the SIMD multimedia extensions store the pixel information 

as a packed 32-bit word composed of an eight-bit red (R), green (G), blue (B), and 

unused (U) field (band interleaved format) in a 32-bit wide register, subword parallelism 

can not be exploited on the operand of the unused field. Moreover, since the RGB space 

does not model the perceptual attributes of human vision well, the RGB to YCbCr (a 

human perceptual color space that is widely used in the image and video processing 

community) conversion is necessary for further color image and video processing 

[85][36]. Although the SIMD multimedia extensions can handle the color conversion 

process in software, the hardware approach would be much more efficient.   

This dissertation proposes a color-aware instruction set extension (CAX) as a 

solution to the problems inherent to packed RGB extensions by supporting two-packed 

16-bit (6:5:5) YCbCr data in a 32-bit register while processing these separate color data 

in parallel. The YCbCr space allows coding schemes that exploit the properties of human 

vision by truncating some of the less important data in every color pixel and allocating 

fewer bits to the high-frequency chrominance components that are perceptually less 
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significant. Thus, the compact 16-bit color representation consisting of a six-bit 

luminance (Y) and two five-bit chrominance (Cb and Cr) components provides 

satisfactory image quality [45][46]. This pixel-truncation technique differs from similar 

techniques (e.g., 4:2:2 and 4:2:0 subsampling) used in image and video compression 

applications [85] in that it reduces information contents in individual pixel word sizes,  

rather than in each dimension, while inheriting the chrominance components of the 

luminance for the vector process. In addition, CAX offers greater concurrency with 

minimal hardware modification. Figure 1 shows an example of how a 32-bit ALU 

functional unit can be used to perform either a 32-bit baseline ALU or two 6:5:5-bit 

ALUs. The 32-bit ALU is divided into two six-bit ALUs and four five-bit ALUs. When 

the output carry (Cout) is blocked (i.e., Cin = 0), the six smaller ALUs can be performed 

in parallel. Chapter 3 presents the impact of CAX on both performance and energy 

consumption for color imaging applications on dynamically scheduled superscalar 

processors. 
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CAX
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051015212631
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32-bit ALU

CAX
Or

Base

5-bit ALU

Cb4 Y4Cr4 Cb3 Y3Cr3
051015212631

Cb4 Y4Cr4 Cb3 Y3Cr3Cb4 Y4Cr4 Cb3 Y3Cr3
051015212631

Cb2 Y2Cr2 Cb1 Y1Cr1
051015212631

Cb2 Y2Cr2 Cb1 Y1Cr1Cb2 Y2Cr2 Cb1 Y1Cr1
051015212631

0

Cin
muxCout 0

Cin
muxCout0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout0

Cin
muxCout 0

Cin
muxCout

Cb’’ Y’’Cr’’ Cb’ Y’Cr’Cb’’ Y’’Cr’’ Cb’ Y’Cr’

5-bit ALU6-bit ALU 5-bit ALU5-bit ALU 6-bit ALU

 

Figure 1. An example of a partitioned ALU functional unit that exploits color 
subword parallelism.  
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Despite some performance improvements through multimedia extensions, neither 

GPPs nor DSPs will be able to meet the higher levels of performance required by 

emerging multimedia applications on higher resolution images. This is because they lack 

the ability to exploit the full data parallelism available in these applications.  

Among many computationally efficient models available for imaging applications, 

SIMD arrays are promising candidates for application-specific embedded systems since 

they replicate the datapath, data memory, and I/O to provide high processing performance 

with low node cost. Whereas instruction-level or thread-level processors use silicon area 

for large multiported register files, large caches, and deeply pipelined functional units, 

SIMD arrays increase the number of simple processing elements (PEs) for the same 

silicon area. As a result, SIMD arrays often employ thousands of PEs while possibly 

distributing and co-locating PEs with the data I/O to minimize storage and data 

communication requirements. The SIMD Pixel (SIMPil) processor [13][34][8] being 

developed at Georgia Tech, for example, is a low memory, monolithically integrated 

SIMD architecture that benefits from the efficient exploitation of data parallelism in a 

SIMD array, short wire lengths, and specialized microarchitecture to provide a significant 

improvement in energy efficiency. While 2-D SIMD arrays, including SIMPil, are well 

suited for many imaging tasks that require processing of pixel data with respect to either 

nearest-neighbor or other 2-D patterns exhibiting locality or regularity, they are less 

amenable to the vector processing of 3-D color channels. More specifically, since the 3-D 

vector computation is performed within innermost loops, its performance does not scale 

with larger PE arrays.  
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CAX efficiently eliminate this performance limitation by including parallel 

operations on two-packed 16-bit YCbCr data in the instruction set architecture (ISA) of 

the 32-bit datapath SIMD array. In addition to greater concurrency and efficiency for 

processing color image sequences, the ability to reduce data format size reduces system 

cost. The reduction in data bandwidth also simplifies system design. This dissertation 

presents the impact of CAX on processing performance and on both area and energy 

efficiency for color imaging applications in a representative SIMD array architecture with 

respect to the following issues (see Chapter 4): 

• Existing multimedia extensions have been successful at achieving subword 

parallelism between loop iterations in the innermost loops of multimedia 

applications. What performance is possible with CAX in comparison to a 

representative multimedia extension, MDMX, an extension of MIPS? MDMX 

is chosen as a basis of comparison because it provides an effective way of 

dealing with reduction operations by using a wide packed accumulator that 

successively accumulate the results produced by operations done with 

multimedia vector registers. Other multimedia extensions poorly support 

vector processing in a 32-bit datapath processor without accumulators. To 

handle vector processing on a 64-bit or 128-bit datapath, they require frequent 

packing/unpacking of operand data, deteriorating their performance.  

• For portable embedded systems, chip size and battery life are as critical as 

processing performance. The addition of a CAX or MDMX execution unit 

into a simple PE or an entire array may lead to substantial system area and 
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power overheads. What percentage of the system area and power overheads 

for the CAX and MDMX ISAs is added to the SIMD array?  

• Which ISA extension between CAX and MDMX achieves higher area 

efficiency [Gops/(sec⋅mm2)] and energy efficiency [Gops/Joule]?   

Another significant issue for such embedded SIMD array architectures is 

determining the ideal grain size that provides sufficient processing performance with the 

lowest cost and the longest battery life for target applications. In color imaging 

applications, the grain size of the PEs determines the number of vector pixels that are 

mapped to each PE, which is called the vector-pixel-per-processing-element (VPPE) 

ratio. The VPPE ratio has a significant impact on the overall area and energy efficiency 

of the computational array. This dissertation evaluates the effects of different VPPE 

ratios on performance and efficiency for a specified PE architecture and implementation 

technology (see Chapter 5). The impact of CAX on each VPPE configuration is also 

evaluated to identify optimal grain sizes that yield the most efficient PE granularity.  

Overall, the research presented in this dissertation explores color imaging for 

multimedia in existing processing systems while focusing on two architectural techniques 

for memory- and performance-hungry embedded applications: (1) a pixel-truncation 

technique and (2) a new color-aware multimedia instruction set extension (CAX) for 

embedded multimedia systems.  

 

1.2 Problem Statement and Contributions 

Color image and video processing has garnered considerable interest over the past 

few years since color features are valuable in sensing the environment, recognizing 
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objects, and conveying crucial information. As a result, color imaging applications now 

define a significant portion of the computing market. However, the behavior of color 

imaging for multimedia on existing processing systems is not well understood, as 

discussed in the previous section. Thus, the efficient processing of color image sequences 

is one of the key issues in the multimedia processing application domain. Designing 

“color-aware” embedded systems requires a study of applications, architectures, and 

technologies to provide efficient processing of color multimedia in many, or ideally all, 

of its forms. The research presented in this dissertation addresses application-, 

architecture-, and technology-level issues in existing processing systems to support color 

image and video processing with the following approaches: 

• Evaluate several color specification models to identify the most suitable 

model that achieves a natural extension of the operation.  

• Investigate the use of color information in multimedia applications using a 

vector approach. 

• Evaluate several color representations with varying pixel word sizes through a 

pixel-truncation technique to determine the most efficient representation in 

terms of storage requirements and color accuracy.  

• Develop an efficient color-aware instruction set extension (CAX) for 

embedded color image and video processing. 

• Introduce the CAX plus pixel-truncation technique to modern processor 

architectures, including dynamically scheduled, statistically scheduled, and 

embedded SIMD array processors. 
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• Model the new technique through detailed execution-driven simulators and 

evaluate the performance of the new approach. 

• Develop a hardware implementation cost model of the new approach using 

architectural and technology modeling tools. 

• Combine the execution performance and implementation cost of the new 

approach to determine overall processing performance, area efficiency, and 

energy efficiency.  

 

1.2.1 Exploring Color Imaging for Multimedia 

With the proliferation of color imaging devices and wireless computer networks, 

consumer demand for color-multimedia-over-wireless capabilities on embedded systems 

is growing rapidly. As a result, the requirements of color imaging applications in terms of 

computations, storage, and communications pose a new set of design constraints on 

existing systems. Thus, understanding the characteristics of color imaging for multimedia 

provides new opportunities to define an efficient and reconfigurable architecture for 

embedded multimedia systems.    

In this research, several color specification models are evaluated to determine the 

most advantageous model that achieves the most effective results in color image 

processing. In addition, the use of color information in multimedia applications using a 

vector approach is investigated, improving the accuracy of the process and overall image 

quality. Furthermore, several color representations with varying pixel word sizes are 

evaluated to identify the most efficient representation in terms of storage requirements 

and color accuracy. In particular, a 16-bit (6:5:5) YCbCr representation is examined for 
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reduced-memory, embedded video processing. The 16-bit YCbCr representation reduces 

pixel word storage by 33% over the baseline 24-bit YCbCr representation. Overall image 

quality remains high, and color imaging applications continue to perform well using the 

reduced storage format.  

  

1.2.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors 

Application-specific extensions of a processor provide an efficient mechanism to 

meet the growing performance demands of multimedia applications. In this research, a 

new color-aware instruction set extension (CAX) for dynamically scheduled superscalar 

processors is presented to improve the performance of color imaging applications. Unlike 

typical multimedia extensions (e.g., MMX, VIS, and MDMX), CAX obtains substantial 

performance and code density improvements by direct support for color data processing. 

Rather than depending solely on generic subword parallelism, CAX supports parallel 

operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit datapath processor, 

providing greater concurrency and efficiency for processing color image sequences. 

Some of the key findings follow. CAX achieves a speedup ranging from 3× to 5.8× over 

the baseline performance on a dynamically scheduled, 4-way issue superscalar processor. 

This is contrast to MDMX (a representative MIPS multimedia extension), which achieves 

a speedup ranging from only 1.6× to 3.2× over the baseline. CAX also outperforms 

MDMX in energy reduction (68% to 83% reduction with CAX, but only 39% to 69% 

reduction with MDMX over the baseline version). Moreover, CAX exhibits higher 

relative performance for low-issue rates. For example, CAX achieves an average speedup 

of 4.7× over the baseline 1-way issue performance, but 3× over the baseline 16-way issue 
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performance. These results demonstrate that CAX is an ideal candidate for embedded 

multimedia systems in which high issue rates and out-of-order execution are too 

expensive. 

 

1.2.3 Implementation and Evaluation of the Color-Aware Instruction Set for Low-
Memory, Embedded Video Processing in Data Parallel Architectures 

Future embedded imaging products must achieve greater processing performance 

while maintaining low cost and low energy consumption. Data parallel architectures (e.g., 

embedded SIMD arrays) have demonstrated the potential to meet the computational 

requirements and cost goals by employing thousands of inexpensive processing elements 

and possibly distributing and collocating PEs with the data I/O to minimize storage and 

data communication requirements. While 2-D SIMD arrays exploit massive data 

parallelism inherent in image sequences by operating the same instruction sequences 

simultaneously on a large number of discrete data sets, they are less amenable to the 

vector processing of 3-D YCbCr channels, which are widely used in image and video 

processing community. In particular, since the 3-D vector computation is performed 

within innermost loops, its performance does not scale with increasing PEs in the 

computational array.  

CAX is presented as a solution to this performance limitation by adding parallel 

operations on two-packed 16-bit (6:5:5) YCbCr data to the instruction set architecture of 

the 32-bit datapath SIMD array. In addition to greater concurrency, the ability to reduce 

data format size reduces system cost. The major findings are the following: 
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• CAX outperforms MDMX across all the selected programs in speedup (5.2× 

to 8.9× with CAX, but only 3× to 5× with MDMX over the baseline 

performance) on the same data parallel SIMD execution platform.  

• CAX also outperforms MDMX in both area efficiency (a 75% increase versus 

a 25% increase) and energy efficiency (a 75% increase versus a 24% increase), 

resulting in better component utilization and sustainable battery life. 

• Furthermore, CAX improves the performance and efficiency with a mere 3% 

increase in the system area and a 5% increase in the system power, while 

MDMX requires a 14% increase in the system area and a 16% increase in the 

system power. These results demonstrate that CAX is a suitable candidate for 

application-specific embedded systems. 

 

1.2.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD 
Architectures 

Reconfigurable silicon area usage within an integrated pixel processing array is a 

key issue for focal-plane SIMD imaging architectures because of limited chip resources 

and varying application requirements. This research explores the effects of varying the 

VPPE ratio (number of vector pixels mapped to each processor within a SIMD 

architecture) on processing performance and on both area and energy efficiency for a 

specified PE architecture and implementation technology. The impact of CAX on each 

VPPE configuration is also evaluated to identify the most efficient PE granularity. 

Experimental results using cycle accurate simulation and technology modeling indicate 

that CAX outperforms MDMX for all the configurations for full search vector 

quantization in terms of processing performance, area efficiency, and energy reduction. 
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The results also indicate that high processing performance with the lowest cost is 

achieved at VPPE = 16 with CAX.    

  

1.2.5 Static versus Dynamic Scheduling 

With limited amounts of memory and register sizes tailored for specific 

applications and low cost, early media processor designs have followed the digital signal 

processor design philosophy, building processors with predominantly static architectures, 

such as VLIW architectures. However, as media processors progress to higher 

frequencies and a higher degree of parallelism with the increasing number of gates made 

available as predicted by Moore’s Law, the dynamic aspects of processing are becoming 

more pronounced. Architectures employing dynamic scheduling, such as superscalar 

architectures, may be conducive to emerging multimedia applications [32].  

This research compares the performance of static versus dynamic architectures 

with and without CAX or MDMX for color imaging applications through a common 

simulation framework. Experimental results using the Simplescalar-based simulator and a 

retargeting tool indicate that the dynamic approach with a four-way issue achieves an 

average speedup of 2.7× over the static approach with a four-way issue. This is primarily 

because the static code schedules are poorly adapted to the run-time conditions of the 

processor. CAX achieves an additional speedup of 7.6×, while MDMX achieves an 

additional speedup of 2.7×. 
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1.3 Contribution Summary 

The contributions made in this dissertation include the study of color imaging 

algorithms, architectures, and technologies to provide efficient processing of color 

multimedia in many, or ideally all, of its forms on embedded multimedia systems. The 

contributions are outlined in the five categories below.  

 

1.3.1 Exploring Color Imaging for Multimedia  

• Evaluation of several color specification models for determining the most suitable 

color space model that achieves a natural extension of the operation. 

• Investigation of the use of color information in multimedia applications using a 

vector approach, improving the accuracy of the process and overall image quality. 

• Evaluation of color representations (e.g., YCbCr) with varying pixel word sizes 

for identifying the most efficient color representation in terms of storage 

requirements and color accuracy.  

 

1.3.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors 

• Design and definition of the CAX instruction set for dynamically scheduled 

processor architectures. 

• Validation of CAX effectiveness in capturing the intended workload. 

• Evaluation of the CAX instruction set on performance and energy consumption 

through detailed execution-driven simulators (e.g., Simplescalar out-of-order 

superscalar modeling and Wattch power modeling).   
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• Comparison of the execution performance and energy consumption of CAX 

versus MDMX (a representative MIPS multimedia extension). 

 

1.3.3 Implementation and Evaluation of the Color-Aware Instruction Set for Low-
Memory, Embedded Video Processing in Data Parallel Architectures 

• Design and definition of the CAX instruction set for embedded SIMD array 

architectures. 

• Development of a detailed execution-driven SIMD simulator that supports CAX 

and MDMX instruction set extensions. 

• Validation of CAX effectiveness in capturing target applications. 

• Evaluation of the impact of CAX on processing performance and on both area and 

energy efficiency with respect to color imaging applications.    

• Performance, area efficiency, and energy efficiency comparisons against MDMX 

on the same data parallel SIMD architecture. 

 

1.3.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD 
Architectures 

• Introduction of a vector-pixel-per-processing-element (VPPE) ratio. 

• Illustration of the correlation among problem size, VPPE ratio, and PE 

architecture.      

• Modification of the cycle-accurate SIMD simulator to support a different VPPE 

ratio and a different amount of local memory. 

• Application mapping for different VPPE values, with and without CAX or 

MDMX, and simulations. 
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• Evaluation of the performance, area efficiency, and energy efficiency for each 

VPPE configuration with and without CAX or MDMX extensions.  

• Identification of the most efficient PE granularity that delivers sufficient 

processing performance with the lowest cost under technology constraints. 

 

1.3.5 Dynamic versus Static Scheduling 

• Development of a common framework infrastructure that consists of the 

Simplescalar-based simulator and a retargeting tool.  

• Performance evaluation and comparison of dynamic versus static architectures, 

both with and without CAX or MDMX extensions. 

 

1.4 Overview of Content 

The rest of this dissertation is organized as follows. Chapter 2 explores color 

imaging for multimedia. Several color space representations are first evaluated to identify 

the most advantageous color space that achieves the most effective results in color image 

processing. The use of color information in multimedia applications is then investigated 

along with three important imaging applications (e.g., the vector median filter, color edge 

detection, and motion estimation). Several color representations with varying pixel word 

sizes are also evaluated to determine the most efficient representation in terms of storage 

requirements and color accuracy.  

Chapter 3 presents a color-aware instruction set extension (CAX) for dynamically 

scheduled superscalar processors to support the vector processing of color image 

sequences. Existing multimedia extensions are first presented along with research efforts 
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using the multimedia extensions. An overview of CAX is then introduced along with 

pictorial examples. Then the effectiveness of CAX is evaluated with respect to a set of 

color imaging applications. CAX is also compared with MDMX in terms of processing 

performance and energy consumption.  

Chapter 4 presents the implementation and evaluation of the CAX instruction set 

for low-memory, embedded video processing in data parallel architectures. Research 

dealing with harnessing data-level parallelism (DLP) inherent in color imaging 

applications is first presented. The modeled architectures and a methodology 

infrastructure are then illustrated for the evaluation of CAX. Then the impact of CAX on 

processing performance and on both area and energy efficiency on a representative SIMD 

array is evaluated using cycle accurate simulation and technology modeling. Processing 

performance, area efficiency, and energy efficiency comparisons against MDMX are also 

provided.  

Chapter 5 presents an analytical study for determining optimal grain sizes for a 

specified PE architecture and implementation technology. A summary of related research 

regarding the grain size design is first presented. The correlation among problem size, 

VPPE ratio, and PE architecture is then illustrated to quantify the amount of image data 

directly mapped to each processing element. Then the effects of varying VPPE ratio on 

processing performance and efficiency are evaluated. The impact of CAX is also 

evaluated on each VPPE configuration to identify the most efficient PE granularity that 

provides sufficient processing performance with the lowest cost and the longest battery 

life. 
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Chapter 6 presents a summary of this dissertation along with a list of 

contributions and results. A list of future research is also provided. 

Appendix A presents a performance comparison of static versus dynamic 

architectures with and without CAX or MDMX. A methodology infrastructure is first 

introduced that allows both dynamically and statically scheduled simulations. The 

execution performance of the dynamic approach is then compared with that of the static 

approach. The impact of CAX on performance for both statically and dynamically 

scheduled programs is also provided.    

Appendix B presents an in-depth description of CAX along with programming 

models. 
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CHAPTER 2 

EXPLORING COLOR IMAGING FOR MULTIMEDIA 

  

2.1 Introduction   

Color image and video processing has garnered considerable interest over the past 

few years since color features are valuable in sensing the environment, recognizing 

objects, and conveying crucial information [69]. As a result, color imaging applications 

now define a significant portion of the computing market. Thus, understanding the 

characteristics of the color imaging application domain provides new opportunities to 

define an efficient architecture for embedded multimedia systems.  

Early digital color image processing was often approached as an extension of 

monochrome image processing, in which each color channel was treated as an 

independent monochrome image [84]. However, this approach may not be able to extract 

certain crucial information conveyed by color because it fails to account for the 

correlation between color channels. Clearly, color cannot be treated as just another dimension, 

and the relationship between color components is much more complex due to the 

definition of color spaces and human perception of color.  

This chapter first evaluates several color specification models with varying 

subsampling factors to determine the most suitable color space that consistently reduces 

pixel information while providing satisfactory image quality. Experimental results 

indicate that the luminance-chrominance (YCbCr) space performs the best out of several 

well-known color models (e.g., RGB, YCbCr, HSV, and L*a*b*) for all test images 

because the human eye is less sensitive to high frequencies in chrominance. Another 
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implication is that the luminance (Y) component of an image can be processed 

independently from its chrominance components. As a result, separate channel processing 

and luminance-only-processing are widely used in color imaging applications, yielding 

usable results [37][47][19][50]. However, both of these approaches fail to extract certain 

crucial information conveyed by color, reducing the accuracy of the process. It is clear 

that a proper vector approach to color manipulation is potentially much more beneficial. 

This chapter investigates the use of color information in multimedia applications 

using the vector approach, improving the accuracy of the process and overall image 

quality. However, the major disadvantage of the vector approach is adding computational 

complexity to the process since the relationship between color channels is much more 

complex. The computational burden is further exacerbated by higher imaging resolutions, 

which also demand larger storage requirements. Since this storage (buffers, registers, and 

caches) consumes a large percentage of silicon area, the ability to reduce data format size 

can provide a reduction in system cost. The reduction in data bandwidth can also simplify 

system design. 

This chapter evaluates several color representations using a pixel-truncation 

technique to identify the most efficient representation in terms of storage requirements 

and color accuracy. The pixel-truncation differs from similar techniques (e.g., 4:2:2 and 

4:2:0 subsampling) [85] in that it reduces information content in individual pixel word 

sizes rather than in each dimension while inheriting the chrominance components of the 

luminance. Hence, this technique drastically reduces the bandwidth and memory required 

to transport and store color images while maintaining the data structure of vector 

processing. In particular, a 16-bit (6:5:5) YCbCr representation is examined for reduced-
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memory, embedded video processing. The 16-bit YCbCr representation reduces pixel 

word storage by 33% over the 24-bit YCbCr representation while maintaining acceptable 

performance with respect to peak signal-to-noise ratio (PSNR). Moreover, this reduced 

pixel format is useful for an efficient color-aware instruction set (CAX) design. CAX 

supports parallel operations on two-packed 16-bit YCbCr data in a 32-bit datapath 

processor, providing greater concurrency and efficiency for processing color image 

sequences.  

The rest of this chapter is organized as follows. Section 2.2 presents color 

specification models and their applications. Section 2.3 evaluates these color space 

models with varying subsampling factors to determine the most suitable color space that 

consistently reduces pixel information without perceivable distortion in color. Section 2.4 

investigates the use of color information in multimedia applications using a vector 

approach. Section 2.5 evaluates several color representations with varying pixel word 

sizes to identify the most efficient representation in terms of storage requirements and 

color accuracy. Section 2.6 concludes this chapter.  

 

2.2 Color Specification Models and Applications 

Most color space models in use today are oriented toward either hardware or 

applications in which color manipulation is a goal. The models can be classified into two 

types: additive and subtractive. Additive color models produce color through the 

combination of the three primary colors: red (R), green (G), and blue (B). Examples that 

use additive color models include cathode-ray tube (CRT) and projection video systems. 

Unlike additive color models, subtractive color models create new color by subtracting 
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unwanted spectral components from white. Thus, subtractive environments are reflective 

in nature (i.e., color is displayed by reflecting light from an external source). Examples 

that use subtractive color models include color printers and color slides. Table 1 

summarizes the most popular color space models and some of their applications. More 

information is available in [69]. 

Table 1. Color space models and their applications. 

Color Space Models Applications 

♦non-uniform spaces 

RGB, YIQ, YUV, YCbCr 
storage, color TV broadcasting, processing, 
analysis coding 

Hardware-oriented 
♦uniform spaces 

L*a*b*, L*u*v* 
color difference analysis, color 
management systems  

Application-oriented HIS, HSV, LHS color image manipulations, computer 
graphics  

 

The RGB Color Space 

The most commonly used hardware-oriented color space is the RGB 

representation, which is widely used in color monitors and color video cameras. RGB, an 

additive color space, is created by mapping the three primary colors onto a 3-D Cartesian 

coordinate system. Color imaging files using the RGB space represent each pixel as a 

color triplet that consists of three numerical values in the form (R,G,B). For a 24-bit color, 

the triplet (0,0,0) represents black, while (255,255,255) represents white. While the RGB 

space is widely used to represent the image, it does not model the human perception of 

color well. Applying image processing techniques in the RGB space often produces color 

distortion and artifacts [87].   
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The YCbCr Color Space 

Another commonly used hardware-oriented color space is the YCbCr 

representation, which is widely used in commercial color TV broadcasting and video 

systems. In the YCbCr space, Y corresponds to the luminance, and Cb and Cr are 

chrominance components that are used to represent hue and saturation. The YCbCr space 

is defined as a linear transformation applied to RGB values. Since the YCbCr space 

allows coding schemes to exploit the properties of human vision by allocating 

significantly less bandwidth to high frequency chrominance information that is 

perceptually less significant, the chrominance information can be subsampled without 

introducing a perceivable distortion of color. Another implication is that the luminance 

(Y) component of an image can be processed independently from its chrominance 

components (Cb and Cr). Other similar color spaces include YUV and YIQ in which U, 

V, I, and Q are chromatic components. 

The L*a*b* Color Space 

The L*a*b* space is very useful in applications in which precise quantification of 

perceptual distance between two colors is necessary [69]. The three parameters represent 

the perceived lightness (L*), its position between red and green (a*) and its position 

between yellow and blue (b*). The L*a*b* space is the uniform color space standardized 

by CIE, and it is designed to map perceived color differences into a Euclidean color 

distance metric [61].  

The HSI Color Space 

The commonly used application-oriented color space is the hue, saturation, and 

intensity (HSI) representation, which is useful for the user specification and recognition 
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of color. As in the YCbCr space, the intensity (I) component in the HSI space is 

decoupled from the chrominance information represented as hue (H) and saturation (S). 

Moreover, the H and S components are intimately related to the way in which human 

beings perceive color [36]. Thus, the HSI space is an ideal color space model for image 

processing applications in which the hue and saturation components are of important 

rather than the overall color perception. The hue, saturation, and value (HSV) space and 

the hue, saturation, and luminosity (HSL) space are similar to HSI in that they produce 

color by altering hue and saturation with the intensity.  

 

2.3 Evaluating Color Specification Models 

Color specification models are of paramount importance in applications in which 

efficient manipulation and communication of image frames are required [69]. This 

section evaluates several color space models with varying subsampling factors to identify 

the most suitable color space that consistently reduces pixel information while providing 

satisfactory image quality. Several empirical metrics and subjective comparisons are 

considered. 

 

2.3.1 An Experimental Comparison of Color Space Models 

A color imaging simulator, called “CISim”, has been developed to evaluate color 

space models with varying subsampling factors using MATLAB [58]. CISim, shown in 

Figure 2, allows the displaying input and output images, the calculating the mean square 

error (MSE) and peak signal-to-noise ratio (PSNR) values, the converting color spaces, 

and the subsampling of any of the three components of an image. Horizontal and vertical 
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subsampling can reduce the resolution by averaging squares of length two, four, eight, or 

sixteen pixels. CISim also allows truncating pixel word sizes and processing of the three 

different versions (e.g., vector processing, separate channel processing, and luminance 

only processing) of color imaging applications, which are presented in Sections 2.5 and 

2.4, respectively. 

 
Figure 2. A screenshot of the color imaging simulator. 

 

2.3.1.1 Experimental Results 

In the first experiment, subsampling by a factor of four both vertically and 

horizontally is performed on each channel for each color space.  

The RGB Color Space 

The effect of subsampling is noticeable in each of the images, shown in Figure 3. 

As expected, the image subsampled in the green (G) channel is more distorted than that 

subsampled in the red (R) or blue (B) because the human eye is more sensitive to high 

frequencies in the G channel.  
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(a) 

 
(b) 

 
(c) 

Figure 3. Subsampled images [21] with a subsampling factor of four in each 
direction for each component: (a) red, (b) green, and (c) blue. 
 

The YCbCr Color Space 

Distortion is hardly noticeable when the chrominance channels (Cb and Cr) are 

subsampled, shown in Figures 4(b) and (c). This is because the human eye is less 

sensitive to chrominance components. However, the image is noticeably distorted when 

subsampling is performed on the luminance (Y) component, shown in Figure 4(a).  

 
(a) (b) (c) 

Figure 4. Subsampled images [21] with a subsampling factor of four in each 
direction for each component: (a) Y, (b) Cb, and (c) Cr. 
 

The L*a*b* Color Space 

The results are similar to the YCbCr results. The image is affected by the 

subsampling process in the luminance (L*). However, the effect of subsampling is hardly 
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noticeable when the chrominance components (a* and b*) are subsampled, shown in 

Figure 5.   

 
(a) 

 
(b) 

 
(c) 

Figure 5. Subsampled images [21] with a subsampling factor of four in each 
direction for each component: (a) L*, (b) a*, and (c) b*. 
 

The HSI Color Space 

The effect of subsampling is significantly noticeable when the hue (H) is 

subsampled, shown in Figure 6(a). This is because perceptually different colors lie close 

to one another in the Euclidean plane. However, the image is slightly distorted when the 

intensity (I) component is subsampled, and a little distortion is observed when 

subsampling is performed on the saturation (S) component, shown in Figures 6(c) and (b), 

respectively.   

 
(a) 

 
(b) (c) 

Figure 6. Subsampled images [21] with a subsampling factor of four in each 
direction for each component: (a) H, (b) S, and (c) I. 
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In the next experiment, two components (RB in RGB, SI in HSI, CbCr in YCbCr, 

and a*b* in L*a*b*) in each color space are simultaneously subsampled by a factor of 

four both vertically and horizontally. In other words, the subsampling components are 

formed by blocks of 4 × 4 pixels that have the same value. Figure 7 shows subsampling 

results for each color space. From the previous experiment, the HSI space is ruled out 

because of significant distortion in color when the hue (H) channel is subsampled. Even 

if the S and I components are subsampled, the effect of subsampling is even more 

noticeable, shown in Figure 7(c). Significant distortion is also observed when the R and B 

components in the RGB space are subsampled. This is because each R, G, and B 

component is highly correlated with each other. On the other hand, the image is only 

slightly distorted when subsampling is performed in the chrominance channels (a*, b*, 

Cb, and Cr) of the L*a*b* or YCbCr spaces. However, as the subsampling coefficient 

increases, color at the edges is distorted for the L*a*b* space, shown in Figure 7(d). The 

same results have been observed for other test images, which are available at [21].  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Subsampled images [21] with a subsampling factor of four for two 
components simultaneously in each color space: (a) RGB, (b) YCbCr, (c) HSI, and 
(d) L*a*b*. 

 

2.3.1.2 Summary 

Four commonly used color space models with varying subsampling factors have 

been evaluated to determine the most efficient color space that consistently reduces pixel 

information without perceivable color distortion. Although the RGB space is widely 

employed in many consumer products, it does not model the human perception of color 

well. On the other hand, the YCbCr space performs the best for all test images since the 

human eye is less sensitive to high frequencies in chrominance.  
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2.4 Investigating the use of Color Information in Multimedia Applications 

 In multichannel pixel coding, standard color images represent vector-valued 

image signals in which each pixel can be considered to be a vector of three components 

(e.g., RGB). However, as illustrated in the previous section, the RGB color space is ill-

suited for the human perception of color. As a result, applying image processing 

techniques in the RGB space often produce color distortion and artifacts [87]. In addition, 

each R, G, and B component is highly correlated and thus not well-suited for independent 

coding. To overcome these problems, the image and video processing community widely 

uses the YCbCr color space, a human perceptual color space. Since the human eye is less 

sensitive to high frequencies in chrominance, chrominance components (Cb and Cr) can 

be subsampled while providing satisfactory image quality.  Moreover, the YCbCr space 

allows luminance processing independent of chrominance channels. Because of these 

properties, the processing of color images can proceed by manipulating the luminance 

only component, shown in Figure 8(a), or each color component separately, shown in 

Figure 8(b). In general, these approaches provide sufficient information for the imaging 

process [37][47][19][50]. However, both of these approaches fail to extract crucial 

information conveyed by color because they do not account for the correlation between 

color channels, reducing the accuracy of the process. It is clear that a proper vector 

approach to color manipulation is potentially much more beneficial, shown in Figure 

8(c). The rest of this section presents the effectiveness of the vector approach with three 

important applications: (1) the vector median filter, (2) color edge detection, and (3) 

motion estimation.  
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Figure 8. Three different coding schemes for color channels: (a) luminance only 
processing, (b) separate processing of each channel, and (c) vector processing.  
 

2.4.1 The Vector Median Filter in the YCbCr Color Space   

Impulse noise can corrupt color images due to faulty sensors or channel 

transmission errors. Noise reduction is an important step in color image and video 

processing. The most common way to filter out noise from color images is nonlinear 

median processing that is based on the ordering of vectors in a predefined sliding window 

(e.g., the well-known vector median filter proposed by Astola et al. [1]). The vector 

median filter (VMF), which is particularly effective at suppressing impulse noise in color 

image sequences, performed in the RGB space, does not correspond to the perceptual 

attributes of human vision. Therefore, this research implements the VMF on the YCbCr 

space to compare the YCbCr-based VMF with the luminance only median filter (LOMF) 

and the scalar median filter (SMF). The YCbCr-based VMF is defined as follows. 
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Consider a window W that is represented as a set of N color vectors C = {p1, p2, …, pN}, 

where each vector pi = (Yi, Cbi, Cri), i∈N. This VMF computes the median pixel pVM in 

the window, defined as   

},...,,{ 21 NVM pppp ∈ , (1)

and for all j = 1, …, N, 
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where ||⋅||1 denotes the L-1 norm.  

The MATLAB tool is used to evaluate the effectiveness of the YCbCr-based 

VMF over the SMF and LOMF at suppressing impulse noise in color images. In the 

experiment, a test color frame of the News sequence of three-band CIF resolution (352 × 

288 pixels) is corrupted by impulse noise ranging from 2% to 20% with the step size of 

2% for each R, G, and B channel. The filtering results are evaluated by commonly used 

metrics such as the mean absolute error (MAE), the mean square error (MSE), and the 

normalized color distance (NCD) [69], which reflect signal preservation, noise 

suppression, and color chromaticity preservation, respectively. Mathematically, the 

MAE, the MSE, and the NCD are given by  
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where oi is the original image pixel, xi is the filtered image pixel, and Yi
oCbi

oCri
o and 

Yi
xCbi

xCri
x are values of the luminance and two chrominance components of the original 

image sample oi, and the filtered image sample xi, respectively. 

The experimental results indicate that the LOMF performs well when a small 

amount of impulse noise is added to an image. However, as the noise ratio increases, 

some noise remains at the edges, shown in Figure 9(b). Unlike the LOMF, the SMF is 

performed on the three color channels independently while combining the three resultant 

images, providing better performance at attenuating impulse noise, shown Figure 9(c). 

However, the SMF internally generates new vector pixels caused by the composition of 

reordered channel samples. Because of this, the SMF increases the MAE, MSE, and NCD 

values, shown in Figure 10. On the other hand, the YCbCr-based VMF takes into account 

the correlation between color channels, outperforming either of these approaches in the 

MAE, MSE, and NCD metrics, shown in Figure 10. These results demonstrate that the 

vector approach is necessary to provide reliable YCbCr signals for further color image 

and video processing.  
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(a) (b) 

(c) (d) 

Figure 9. A corrupted image with recovered output images using relevant filters 
(available in color at [21]): (a) 1st frame of News corrupted by 8% impulse noise, 
(b) the luminance only median filter, (c) the scalar median filter, and (c) the 
YCbCr-based VMF.  
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Figure 10. Objective criteria in dependence on impulse noise percentage: (a) MAE, 
(b) MSE, and (c) NCD. 
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2.4.2  Color Edge Detection using both Luminance and Chrominance Components  

Edge detection is a fundamental task in image processing. Many imaging 

applications, such as segmentation, registration, and identification of objects in a scene, 

depend on the accuracy of edge detection. An edge corresponds to object boundaries or 

changes in the physical properties such as illumination or reflectance in a monochrome 

image [36]. Monochrome edge detection, however, may not correspond to the set of 

edges existing in a color image when neighboring objects have different hues but equal 

intensities. The additional boundary information provided by color is crucial for 

applications such as object recognition and image segmentation.  

For color edge detection purposes, several different approaches have been tested 

in [47]. The most straightforward approach is to apply monochrome edge detection to the 

three color channels independently. The edge results of the three channels are then 

combined by using a certain logical operator (e.g., fused by means of a logical or 

operator) to obtain more complete edge information. Consider, for example, the Sobel 

operator. The Sobel operator is implemented by convolving a pixel and its eight 

neighbors with two 3 × 3 convolution filters, defined as 
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The two filters are applied to each color channel independently to highlight 

horizontal and vertical edges, and the three resulting edge images are combined by using 

a logical or operator. Because of this, the Sobel operator provides more edge information 

when compared to the luminance only Sobel operator, shown in Figure 11(c). However, 
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this approach fails to account for the correlation between color channels, resulting in the 

loss of crucial information provided by color (e.g., edges that have the same strength but 

have opposite color components).  

Unlike the scalar Sobel operator, a vector Sobel operator using the two filters 

shown in (7) produces vectors corresponding to the local average colors by using the 

Euclidean norm, shown in (8). 
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where ||·|| denotes the Euclidean norm, and the scalars ||∆V(x0, y0)|| and  ||∆H(x0, y0)|| 

provide the variation rate at pixel location (x0, y0) in orthogonal directions (i.e., the 

amounts of color contrast that can be obtained in the vertical and horizontal directions).  

The local average colors at pixel location (x0, y0) are calculated as follows: 
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where c(x0, y0) denotes the YCbCr color vector (Y, Cb, Cr) at the image location (x0, y0), 

∆V(x0, y0) represents vectors corresponding to the vertical average colors, and ∆H(x0, y0) 

represents vectors corresponding to the horizontal average colors. 
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If the local changes are combined by simply adding the Y, Cb, and Cr 

components of ∆V and ∆H, this may lead to a mutual canceling out effect (e.g., when 

contrast is in phase opposition in different channels). 

Figure 11 shows a performance comparison of the three different 3×3 edge 

detection algorithms: (1) the luminance only Sobel operator (LSobel), (2) the scalar Sobel 

operator (SSobel), and (3) the vector Sobel operator (VSobel). The qualitative results 

indicate that the VSobel operator provides more accurate edge information than the 

LSobel and SSobel operators, shown in Figure 11. Other various approaches proposed 

consider the problem of color edge detection in vector space [69].  

  
(a) (b) 

  
(c) (d) 

Figure 11. Obtained output images using edge detection techniques: (a) 1st frame 
of News, (b) the luminance only Sobel operator, (c) a scalar Sobel operator, and 
(d) a vector Sobel operator.  
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2.4.3 Simultaneous Motion Estimation of All Color Components  

The most important step in estimating the quality of color video frames is that of 

motion estimation, one of the most computationally intensive tasks in today’s 

compression standards [19]. Motion estimation is typically done by block matching that 

subdivides the current frame into small reference blocks and then finds the best match for 

each block among available blocks in the previous frame. The standard full search block 

matching algorithm (FSBMA) for motion estimation uses only the luminance or intensity 

information of video signals to reduce the computational complexity of the process. In 

general, the use of only the luminance component in estimating the motion field of a 

color sequence provides sufficient information for the operations [50]. However, for 

color video frames that have low luminance or detailed color information, accurate 

motion estimation requires chrominance components, in which this chapter investigates. 

In particular, a vector approach, called the full search vector BMA (FSVBMA), uses both 

luminance and chrominance components while arriving at one motion vector for all 

components. The matching criterion of the VFSBMA is defined as 
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where x(i,j) is the reference block of size M × N pixels at coordinates (i,j), y(i+m,j+n) is 

the candidate block within a search area in the previous frame, (m,n) represents the 

candidate displacement vector, and v is the motion vector.  

To evaluate the effectiveness of the FSVBMA, two motion estimations (e.g., the 

standard FSBMA and the FSVBMA) are implemented and simulated using MATLAB for 

three well-known color videos (Foreman, News, and Football). Each video contains forty 

frames of three-band CIF resolution (352×288) pixels. In the experiment, a macroblock 

of 16×16 pixels and a search range of ±8 are used. The search area in the previous frame 

is explored for each reference block in the current frame to find the closest matching 

block to a selected error criterion. Figures 12, 13, and 14 present the sum of absolute 

errors for the FSVBMA, normalized to the standard FSBMA for motion estimation. The 

results indicate that the FSVBMA outperforms the luminance only motion estimation in 

the sum of absolute errors for all test videos, improving the accuracy of the process and 

overall video quality.  
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Figure 12. Sum of absolute errors of the FSVBMA for the Foreman video, 
normalized to the standard FSBMA. 
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Figure 13. Sum of absolute errors of the FSVBMA for the News video, normalized 
to the standard FSBMA. 
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Figure 14. Sum of absolute errors of the FSVBMA for the Football video, 
normalized to the standard FSBMA. 

 

Overall, vector processing outperforms either separate channel processing or 

luminance only processing in terms of the accuracy of the process and overall image 

quality. However, the main disadvantage of the vector approach is the addition of 

computational complexity to the process since the relationship between color components 

is much more complex. The computational burden is further exacerbated by higher 

imaging resolutions. Higher resolution images also require larger storage. The next two 

sections address these problems by introducing two architectural enhancements for 
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memory- and performance-hungry embedded applications: (1) a pixel-truncation 

technique and (2) a color-aware instruction set for embedded multimedia systems.  

 

2.5 Determining an Efficient Color Representation using a Pixel-Truncation 
Technique for Low-Memory, Embedded Video Processing 

Multimedia-on-a-chip solutions offer greater integration and processor-memory 

bandwidth. However, the trend towards higher resolution images results in higher data 

rates and increasing storage requirements of processors. Since this storage (buffer, 

registers, and caches) consumes a large percentage of silicon area, the ability to reduce 

data format size can provide a reduction in system cost. The reduction in data bandwidth 

can also simplify system design and packaging. This section evaluates several YCbCr 

representations with varying pixel word sizes through a pixel-truncation technique to 

identify the most efficient representation in terms of storage requirements and color 

accuracy. The pixel-truncation technique differs from similar techniques (e.g., 4:2:2 and 

4:2:0 subsampling) used in image and video compression applications in that it reduces 

information content in individual pixel word sizes rather than in each dimension while 

inheriting the chrominance components of the luminance for the vector process. Several 

empirical metrics and subjective comparisons are considered.  

 

2.5.1 Analysis of the YCbCr Representations with varying Pixel Word Sizes 

Figures 15 and 16 show the MSE and PSNR values [3], respectively, from seven 

original images for various pixel word sizes of the YCbCr data. The results indicate that 

for those having greater than or equal to five bits in all three channels, the MSE values 
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are quite small, and the PSNR values are reasonably high (more than 33 dB for each R, 

G, and B component).  
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Figure 15. MSEs for various pixel word sizes. The form (n,m,l) represents n, m, and 
l bits for Y, Cb, and Cr, respectively.  
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Figure 16. PSNRs for various pixel word sizes.  
 

In addition to the quantitative evaluation, a qualitative evaluation must be done 

because a visual assessment of the processed image is the best subjective measure for 

determining the efficiency of the method. Figures 17, 18, and 19 show original images 

with converted output images for various pixel word sizes (available in color at [21]). As 

can be seen, the converted images having greater than or equal to five bits in all three 

channels provide satisfactory image quality. For those having less than five bits for at 
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least one color channel, however, significant image degradation occurs. Moreover, too 

much truncation affects contouring, making the image cartoon-like.  
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Figure 17. Original Tank image with converted output images for various pixel word 
sizes. 
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Figure 18. Original Lena image with converted output images for various pixel word 
sizes. 
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Figure 19. Original News frame with converted output images for various pixel 
word sizes. 
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Out of several acceptable color representations, the rest of this dissertation 

focuses on the 16-bit (6:5:5) YCbCr representation for reduced-memory, embedded video 

processing. The 16-bit YCbCr representation reduces the average per pixel word storage 

requirements by 33% over the 24-bit representation while maintaining acceptable PSNR 

performance. The next section evaluates the 16-bit YCbCr representation on motion 

estimation. 

 

2.5.2 Motion Estimation using the 16-bit YCbCr Representation 

The effectiveness of the 16-bit (6:5:5) YCbCr representation is evaluated using 

motion estimation (ME). In this experiment, the two implementations of ME are executed 

using MATLAB for a test suite of two color videos, each containing 40 frames of three-

band CIF resolution (352×288) pixels. One implementation uses 24-bit YCbCr data, 

while the other uses 16-bit YCbCr data. In the experiment, a macroblock of 16×16 pixels 

and a search range of ±8 are considered. 

Figures 20 and 21 show the PSNR values versus frame number for the 24- and 

16-bit implementations of ME. The reported PSNR is the average PSNR of the three 

channels (e.g., RGB). Experimental results indicate that the overall quality of ME using 

the 16-bit YCbCr data format is comparable to the 24-bit YCbCr ME performance, 

indicating 30.9 dB versus 31.6 dB for the Foreman video and 32.2 dB versus 32.6 dB for 

the News video. 
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Figure 20. PSNR versus frame number for the Foreman video using motion 
estimation. 
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Figure 21. PSNR versus frame number for the News video using motion estimation. 
 

The vector median filter (VMF) also has been examined with similar results, 

shown in Table 2 and Figure 22. In this experiment, each video frame was corrupted with 

a 4% impulse noise for each R, G, and B channel. In addition, this reduced pixel format is 

efficiently computed in an existing color converter without changing its circuitry, which 

is presented next.  
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Table 2. An average PSNR of the Foreman and News videos using the VMF. 

 Foreman News 
16-bit VMF implementation 29.5 dB 31.7 dB 
24-bit VMF implementation 29.7 dB 32 dB  

 

(a) (b) (c) 

(d) (e) (f) 

Figure 22. Corrupted images with recovered output images using the VMF 
(available in color at [21]): (a) and (d) 4% impulse noise; (b) and (e) the VMF for 
24-bit YCbCr data; and (c) and (e) the VMF for 16-bit YCbCr data. 

 

2.5.3 Implementation Costs 

The 16-bit (6:5:5) YCbCr representation can be computed from 24-bit RGB pixel 

data using existing color conversion hardware. The conversion is defined in (14), where 

Y assumes values between [0, 63], and Cb and Cr assume values between [0, 31]. 
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This color transformation matrix can be computed with nine cycle latency and a 

three cycle per pixel throughput using the pipelined datapath, shown in Figure 23 (from 

[3]). For example, 0.0748 in the upper left-hand corner in (14) can be approximated by 

the sum 2-4+2-7+2-8+2-11, and 0.0748R is represented by the sum R(4)+R(7)+R(8)+R(11), 

in which R(n) denotes a right shift of R by n bits. Following the same procedure, the 6-bit 

Y data can be obtained from  

Y = R(4) + R(7) + R(8) + R(11) + 

      G(3) + G(6) + G(8) + G(9) + 

        B(6) + B(7) + B(8) + B(10). 

(15)

The barrel shifter in Figure 23 then loads four data values at a time. For example, 

[R(4), R(7), R(8), R(11)] are loaded in the first cycle, [G(3), G(6), G(8), G(9)] are loaded 

in the second cycle, and so on. Using pipelining, a color pixel transformation can be 

completed every three cycles. To obtain the RGB values from a set of YCbCr values, the 

same hardware can also be used for the inverse matrix operation. Thus, the 24-bit RGB to 

16-bit YCbCr (6:5:5) conversion can be computed in a simple datapath without the need 

for area intense multiplication hardware.  
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Figure 23. A block diagram of a color converter. 
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2.5.4 Other Benefits from the 16-bit YCbCr Representation 

In addition to reducing pixel storage requirements, the 16-bit YCbCr 

representation is useful for an efficient color-aware instruction set (CAX) design. 

Employing this reduced pixel format, CAX supports parallel operations on two-packed 

16-bit YCbCr data in a 32-bit datapath processor, shown in Figure 24, providing greater 

concurrency for processing color image sequences. Chapters 3 through 5 and Appendix A 

present the impact of CAX on processing performance and cost for color imaging 

applications in three major processor architectures: superscalar, very long instruction 

word (VLIW), and embedded single instruction, multiple data (SIMD) array processors. 
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Figure 24. A 32-bit CAX operation. 

 

2.6 Conclusion 

This chapter has explored color imaging for multimedia to provide new 

opportunities to define an efficient architecture for embedded multimedia systems. 

Several color space models with varying subsampling factors have been evaluated to 

determine the most efficient color space that consistently reduces pixel information while 

maintaining image quality. The YCbCr space performs the best for all test images out of 

four well-known color space models since the human eye is less sensitive to chrominance 

channels. This chapter has also investigated the use of color information in multimedia 

applications using a vector approach. The vector approach improves the accuracy of the 
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process and overall image quality since it takes into account the correlation between color 

channels. Furthermore, several color representations with varying pixel word sizes have 

been evaluated to identify the most efficient representation in terms of storage 

requirements and color accuracy. In particular, a 16-bit (6:5:5) YCbCr representation has 

been examined for reduced-memory, embedded video processing. The 16-bit YCbCr 

representation reduces the average per pixel word storage requirements by 33% over the 

24-bit YCbCr representation while maintaining acceptable PSNR performance. Moreover, 

employing this reduced pixel format, an efficient color-aware instruction set has been 

introduced that supports parallel operations on two-packed, quantized 16-bit YCbCr data 

in a 32-bit datapath processor, providing greater concurrency and efficiency for 

processing color image sequences. The next chapter presents the impact of CAX on 

processing performance and energy consumption for color imaging applications in 

superscalar ILP processors. 
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CHAPTER 3 

UTILIZING COLOR SUBWORD PARALLELISM IN SUPERSCALAR ILP 
PROCESSORS 

 

3.1 Introduction 

As digital multimedia is rapidly revolutionizing our society, its applications, 

including color image and video processing, are becoming some of the dominant 

computing workloads [24]. These applications, however, demand tremendous 

computational and I/O throughput. The abundant data parallelism inherent to these 

applications has motivated the development of multimedia extensions on general-purpose 

processors (GPPs) to improve the performance of media-centric applications. Examples 

include Intel MMXTM [67], SSETM and SSE-2 [70], Hewlett Packard MAX2 for the PA-

RISC architecture [53], Sun VIS for SPARC [80], MIPS MDMX [60], Alpha MVI [75], 

and Motorola ALTIVEC for PowerPCTM architecture [63]. These extensions exploit 

subword parallelism by packing several small data elements (e.g., eight-bit pixels) into a 

single wide register (32-, 64-, or 128-bit) while processing these separate data elements in 

parallel without requiring extra registers or operations. While the improvement in 

performance has been exciting and encouraging, they poorly support the vector 

processing of color image sequences in which each pixel computation is simultaneously 

performed on 3-D YCbCr channels. In particular, their performance is limited in dealing 

with both color pixel data that are not aligned on boundaries that are powers of two (e.g., 

visually adjacent pixels from each band are spaced three bytes apart) and storage data 

types that are inappropriate for computation (necessitating conversion overhead before 

and usually following the computation) [77]. Although the band separated format (e.g., 
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the red data for adjacent pixels are adjacent in memory) is the most convenient for single 

instruction, multiple data (SIMD) processing, a significant amount of overhead for data 

alignment is expected prior to SIMD processing. Even if the SIMD multimedia 

extensions store the pixel information as a packed 32-bit word composed of an eight-bit 

R, G, and B, and unused (U) field (band-interleaved format) in a 32-bit wide register, 

subword parallelism cannot be exploited on the operand of the unused field. Moreover, 

since the RGB space does not model the perceptual attributes of human vision well, the 

RGB to YCbCr conversion is necessary for further color image and video processing 

[85][36]. Although the SIMD multimedia extensions can handle the color conversion 

process in software, the hardware approach would be much more efficient. 

A new color-aware instruction set extension (CAX) for superscalar instruction-

level parallel (ILP) processors is presented to solve the problems inherent to RGB 

extensions by supporting parallel operations on two-packed 16-bit (6:5:5) YCbCr data in 

a 32-bit datapath processor. As illustrated in the previous chapter, the YCbCr space 

allows coding schemes that exploit the properties of human vision by truncating some of 

the less important data in every color pixel and allocating fewer bits to the high-

frequency chrominance components that are perceptually less significant. Thus, the 16-bit 

YCbCr representation provides satisfactory image quality. In addition, CAX employs 

color-packed accumulators that provide a solution to overflow and other issues caused by 

packing data as tightly as possible by implicit width promotion and adequate space.  

This chapter evaluates CAX in comparison to a representative multimedia 

extension, MDMX, an extension of MIPS. MDMX was chosen as a basis of comparison 

because it provides an effective way of dealing with reduction operations by using a wide 



 56

packed accumulator that successively accumulates the results produced by operations on 

multimedia vector registers. Other multimedia extensions poorly support vector 

processing in a 32-bit datapath processor without accumulators. To handle vector 

processing on a 64-bit or 128-bit datapath, they require frequent packing/unpacking of 

operand data, deteriorating their performance.  

Experimental results show that CAX outperforms MDMX in speedup (3× to 5.8× 

with CAX, but only 1.6× to 3.2×  with MDMX over the baseline performance) on the 

same dynamically scheduled, four-way issue superscalar processor. CAX also 

outperforms MDMX in energy reduction (68% to 83% reduction with CAX, but only 

39% to 69% reduction with MDMX over the baseline version). Furthermore, CAX 

exhibits higher relative performance for low-issue rates. For example, CAX achieves an 

average speedup of 4.7× over the baseline 1-way issue performance, but 3× over the 

baseline 16-way issue performance. These results demonstrate that CAX is an ideal 

candidate for embedded multimedia systems in which high issue rates and out-of-order 

execution are too expensive. 

Performance achieved by CAX is further enhanced through loop unrolling (LU) 

[26][86], an optimization technique that reorganizes and reschedules the loop body, 

which contains the most critical code segments for color imaging applications. In 

particular, LU reduces loop overhead while exposing ILP for machines with multiple 

functional units within the loops. Experimental results indicate that LU (by a factor of 

three for three programs and four for other programs) provides an additional 4%, 19%, 

and 21% performance improvement for the baseline, MDMX, and CAX versions, 
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respectively. These results suggest that the CAX plus LU technique has the potential to 

provide the higher performance required by emerging color imaging applications.  

The rest of this chapter is organized as follows. Section 3.2 presents multimedia 

extensions to general-purpose processors along with research efforts using the 

multimedia extensions. Section 3.3 presents a summary of the CAX instruction set along 

with pictorial examples. Section 3.4 describes the selected color imaging applications, the 

modeled architectures, and the simulation methodology for the evaluation of CAX. 

Section 3.5 presents the experimental results and their analysis, and Section 3.6 

concludes this chapter. 

 

3.2 Related Research  

3.2.1 Multimedia Extensions to General-Purpose Processors 

Manufactures of general-purpose processors (GPPs) have included multimedia 

extensions to their instruction set architectures (ISAs) to support multimedia applications. 

The main idea in the extensions is exploiting subword parallelism within the context of a 

dynamically scheduled superscalar ILP machine. Table 3 shows the list of all major 

microprocessor vendors and shipped/announced multimedia instruction set extensions for 

their architectures [76]. These multimedia extensions support many instructions that 

enable simultaneous processing of several small data elements (e.g., eight-bit pixels) 

packed into a single wide register (e.g., 64-, or 128-bit). Depending on the target 

applications of a vendor, multimedia extensions vary widely. Motorola AltiVec has a 

large number of SIMD instructions (162 instructions), while HP MAX-1 has only a few 

(eight instructions). Many of the instruction sets, such as AMD 3DNow!, DEC MVI, 
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Intel MMX, and Sun VIS, are based on 64-bit wide registers, while Motorola AltiVec and 

Intel SSE are based on 128-bit wide registers. A notable exception is MIPS MDMX, 

which uses a single wide packed accumulator that successively accumulate the results 

produced by operations done with multimedia vector registers. Despite the similarities, 

each approach is unique. For example, MAX-2 reuses the integer registers and execution 

units while requiring virtually no additional execution hardware, but AltiVec requires an 

entirely new execution unit.  

Table 3. Microprocessor multimedia extensions. 

Processor Extension Product Instructions Register File
HP M AX-1 1994 9 Integer (31x64b)
Sun VIS 1995 121 FP (32x64b)
HP M AX-2 1995 8 Integer (32x64b)

M IPS M IPS-V (-) 29 FP (32x64b)
M IPS M DM X (-) 74 FP (32x64b), Acc. (1x92b)
Intel M M X 1997 57 FP (8x64b)
DEC M VI 1997 13 Integer (31x64b)
Cyrix Extended M M X 1997 12 FP (8x64b)
AM D 3D Now! 1998 21 FP (8x64b)
Intel SSE 1999 70 8x128b

M otorola AltiVec 1999 162 32x128b
M IPS M IPS-3D (-) 23 FP (32x64b)
AM D Enhanced 3D Now! 1999 24 FP (8x64b)
Intel SSE2 (-) 144 8x128b  

 

Depending on the vendors, a multimedia instruction set extension contains some 

or all of the following instructions: 

Modulo/Saturating  

Modulo (or wraparound) arithmetic can produce partial results when overflow 

occurs, while saturating arithmetic clamps the output value to the largest or smallest 
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possible value for the given data type. Unlike modulo arithmetic, saturating arithmetic 

requires adding a little cost in the form of separate instructions for signed and unsigned 

operands because values must be interpreted by the hardware as a particular data type. 

Parallel Compare Instructions  

There are two types of parallel compare (Pcmp) instructions: an element mask and 

a bit mask. The element mask Pcmp instruction compares pairs of the sub-elements in the 

two source registers while generating either all 1s or all 0s for each sub-element 

comparison. The bit mask Pcmp instruction is similar, except that it generates either a 

one-bit true or false indicator for each sub-element comparison. Intel’s MMX pcmpeqw 

instruction, for example, compares pairs of the packed 16-bit values in the two 64-bit 

source registers while generating either all 1s (0xffff) or 0s (0x0000) of each 16-bit sub-

element for a 64-bit wide element mask. These masks are then used in conjunction with 

64-bit logical operations, such as AND, ANDN, and OR to achieve the desired conditional 

assignment. On the other hand, Sun’s VIS uses the bit mask Pcmp instruction to control 

the partial store instruction. Only sub-elements corresponding to a “1” bit in the bit mask 

are written to memory; other sub-elements remain unchanged. 

Parallel Min/Max Instructions  

Parallel min/max instructions output the minimum or maximum values of the 

corresponding elements in the two separate input registers, respectively. 

Pack/Unpack Instructions  

Pack instructions truncate larger sub-elements into smaller ones in tightly packed 

fields, while unpack instructions expand smaller sub-elements into larger ones. Figures 
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25(a) and (b) illustrate the packing of two registers into one register and the 

complementary operation of unpacking, respectively. 
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Figure 25. (a) A pack instruction. (b) An unpack instruction. 
 

Permute/Mix Instructions  

Permute instructions having one packed data-type source allow any permutation 

of the source quantities in the packed data-type destination, while mix instructions mix 

every other quantity of a packed data-type source register with the corresponding quantity 

from the second source register. Figures 26(a) and (b) show a permutation instruction in 

which one sub-element is repeated twice and a mix instruction, respectively.  

Ra A4 A3 A2 A1

Ra A3 A4 A4 A2

Ra A4 A3 A2 A1

Ra A3 A4 A4 A2  
(a) 

Rb B4 B3 B2 B1

Ra A4 A3 A2 A1

Rc A4 B4 A2 B2

Rb B4 B3 B2 B1

Ra A4 A3 A2 A1

Rc A4 B4 A2 B2

(b) 

Figure 26. (a) A permute instruction. (b) A mix instruction. 
 

Memory Instructions  

A parallel load instruction can load multiple-packed elements into a register. A 

store instruction is similar, except that it stores into memory. All vendors include these 
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instructions. Moreover, since most multimedia computations have highly predictable 

memory access patterns, prefetching instructions are useful to reduce the number of 

cache miss penalties by fetching the cache block at a specified address into the cache 

from main memory if it is not already there. 

Special-Purpose Instructions  

Some vendors include special-purpose instructions that accelerate multimedia 

kernels. DEC’s MVI, Sun’s VIS, AMD’s enhanced 3DNow!, and Intel’s SSE, for 

example, include a sum of absolute differences (SAD) instruction that calculates the 

absolute differences of pairs of the sub-elements in the two source registers while 

summing all the differences in the destination register, as shown in Figure 27. The SAD 

instruction is commonly used in motion estimation for video compression [70][80]. In 

addition to the SAD instruction, Intel’s SSE includes a packed average instruction that 

enables half-pixel interpolation in motion compensation by averaging a set of pixel 

values with pixels spatially offset by one, horizontally, vertically, or both [70]. On the 

other hand, AMD’s 3DNow! includes reciprocal and square-root approximation 

instructions that typically have very high latency and are implemented as hardware 

lookup tables [66]. These instructions are used in 3-D rendering applications that use 

floating-point math functions. 

Ra

Rb B8 B7 B5B6 B4 B3 B1B2

Rc

A8 A7 A5A6 A4 A3 A1A2

0 0 Sum of 
difference0

|A1-B1|+ … + |A8-B8|
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Rb B8 B7 B5B6 B4 B3 B1B2

Rc

A8 A7 A5A6 A4 A3 A1A2

0 0 Sum of 
difference0

|A1-B1|+ … + |A8-B8|

 
Figure 27. A SAD instruction. 
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The multimedia extensions have been such a success in general-purpose 

processors because they enhance the performance of multimedia applications with 

minimum hardware modification. For example, if the word size of a machine is 32 bits, 

the adder can be used to implement four eight-bit or two 16-bit additions in parallel by 

disconnecting the carry chain in the adder at every fourth or second position, 

respectively. The carry chain prevents an overflow of processing one subword datum into 

the next. A possible partitioned arithmetic logic unit (ALU) implementation is shown in 

Figure 28. Additional hardware is needed for the specific multimedia functions, but 

overall the typical area overhead for multimedia extensions in GPPs is only between 

0.1% (HP’s MAX-2) to 3% (Sun’s VIS) of the entire processor die size [32]. 

16-bit ALU 16-bit ALU
Carry

0

16-bit 16-bit 16-bit 16-bit

16-bit 16-bit

Op1 Op2

16-bit ALU 16-bit ALU
Carry

0

16-bit 16-bit16-bit 16-bit 16-bit 16-bit16-bit 16-bit

16-bit 16-bit16-bit 16-bit

Op1 Op2

 
Figure 28. Partitioned ALU functional unit implementation. 

  

The main disadvantage of using multimedia extensions is that no efficient 

compiler support is available for automating the multimedia extensions because of the 

lack of adequate high-level language constructs that utilize subword parallelism. In 

general, the partitioned ALU instructions are inserted into high-level language code 

manually by programmers in a form of intrinsic functions or assembly libraries provided 

by vendors.  
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3.2.2 Research Efforts Using Multimedia Extensions 

Numerous groups and individuals have addressed the effectiveness of multimedia 

extensions for multimedia applications on general-purpose processors [63][77][6-52]. 

Bhargava et al. evaluated the multimedia instruction set extension (MMX) for a set of 

DSP and multimedia applications in the x86 architecture [6]. They observed that a finite 

impulse response (FIR) filter kernel showed a reasonable speedup of 1.57× (a 57% 

performance improvement) over the baseline performance because of the process of one 

input at a time. An infinite impulse response (IIR) filter kernel, however, showed a more 

impressive speedup of 2.55× due to block processing of the input samples, increasing 

data-level parallelism and reducing the number of functions called. In their study, image 

applications were the best suited for MMX because an image was stored in a large array 

of eight-bit data and properly aligned on eight-byte boundaries, showing a speedup of 

5.5× and an 81% reduction in the dynamic instruction count.  

Ranganathan et al. [71] evaluated the performance of image and video processing 

applications on an UltraSPARC processor with and without the VIS media extensions. 

They observed that a 4-way issue, out-of-order processor provided 2.3× to 4.2× 

performance improvement over a single-issue, in-order processor, and the VIS extensions 

provided an additional 1.1× to 4.2× performance improvement. In [51], Lappalainen et al. 

evaluated a video decoder on an Intel Pentium III with streaming SIMD extensions (SSE) 

and observed that an SSE-optimized video decoder provided a speedup of 3.41× over the 

baseline C version. In [63], Nguyen et al. evaluated the AltiVec technology on the 

PowerPC microprocessor in DSP and multimedia algorithms and observed that the 
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AltiVec technology provided a speedup ranging from 1.6× to 11.7× and 45% to 90% 

reductions in the dynamic instruction count. 

Unlike the studies discussed above that have focused primarily on a single 

instruction set in isolation, Slingerland et al. conducted a thorough evaluation of the 

performance among five instruction sets on Berkeley multimedia benchmark kernels 

while comparing contemporary implementations of the multimedia ISA extensions with 

each other [77]. In [52], Lee presented an overview of three multimedia extensions, MAX 

for PA-RISC, MMX for ix86, and VIS for SPARC processor architectures.  

Although many researchers have evaluated the performance of multimedia 

applications, the existing benchmark suites are still in their initial stage of development 

and do not include a variety of color imaging applications that are a large part of 

multimedia presentations. Since color imaging applications are simultaneously performed 

on 3-D color channels, they require more computational throughput. A color-aware 

instruction set extension (CAX) is presented next that improves the performance of color 

imaging applications.  

 

3.3 A Color-Aware Multimedia Instruction Set for Color Imaging Applications 

A color-aware instruction set (CAX) applied to current microprocessor ISAs 

targets the acceleration of color image and video processing applications. CAX supports 

parallel operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit datapath 

processor, providing greater concurrency and efficiency for processing color image 

sequences. In addition, CAX employs color-packed accumulators that provide a solution 

to overflow and other issues caused by packing data as tightly as possible by implicit 
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width promotion and adequate space. Figure 29 illustrates three types of operations: (1) a 

baseline 32-bit operation, (2) a 4 × 8-bit SIMD operation used in many general-purpose 

processors, and (3) a 2 × 16-bit CAX operation employing heterogeneous (non-uniform) 

subword parallelism.  
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Figure 29. Types of operations: (a) a baseline 32-bit operation, (b) a 32-bit SIMD 
operation, and (c) a 32-bit CAX operation. 

 

For color images, the band data may be interleaved (e.g., the red, green, and blue 

data of each pixel are adjacent in memory) or separated (e.g., the red data for adjacent 

pixels are adjacent in memory). The band separated format is the most convenient for 

SIMD processing, but a significant amount of overhead for data alignment is expected 

prior to SIMD processing. Moreover, traditional SIMD data communication operations 

have trouble with the band data that are not aligned on boundaries that are powers of two 

(e.g., adjacent pixels from each band are visually spaced three bytes apart) [77]. Even if 

the SIMD multimedia extensions store the pixel information in the band-interleaved 
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format (i.e., |R|G|B|Unused| in a 32-bit register), subword parallelism can not be exploited 

on the operand of the unused field. Furthermore, since the RGB color space does not 

model the perceptual attributes of human vision well, the RGB to YCbCr conversion is 

required prior to color image processing. 

CAX solves problems inherent to packed RGB extensions by direct support for 

YCbCr data processing and a proper alignment of two-packed 16-bit data on 32-bit 

boundaries rather than depending solely on generic subword parallelism. The CAX 

instructions are classified into four different groups: (1) parallel arithmetic and logical 

instructions, (2) parallel compare instructions, (3) permute instructions, and (4) special-

purpose instructions. 

 

3.3.1 Parallel Arithmetic and Logical Instructions 

Parallel arithmetic and logical instructions include packed versions of addition 

(ADD_CRCBY), subtraction (SUBTRACT_CRCBY), and averaging (AVERAGE_CRCBY). 

The addition and subtraction instructions include a saturation operation that clamps the 

output result to the largest or smallest value for the given data type when an overflow 

occurs. Saturating arithmetic is particularly useful in pixel-related operations, for 

example, to prevent a black pixel from becoming white if an overflow occurs. The 

packed average instruction is useful for blending algorithms, which takes two packed 

data types as input, adds corresponding data quantities, and divides each result by two 

while placing the result in the corresponding data location. The rounding is performed to 

ensure precision over repeated average instructions.  
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3.3.2 Parallel Compare Instructions 

Parallel compare instructions include CMPEQ_CRCBY, CMPNE_CRCBY, 

CMPGE_CRCBY, CMPGT_CRCBY, CMPLE_CRCBY, CMPLT_CRCBY, CMOV_CRCBY 

(conditional move), MIN_CRCBY, and MAX_CRCBY. These instructions compare pairs of 

sub-elements (e.g., Y, Cb, and Cr) in the two source registers. Depending on the 

instructions, the results are varied for each sub-element comparison. The CMPEQ_CRCBY 

instruction, for example, compares pairs of sub-elements in the two source registers while 

writing a bit string of 1s for true comparison results and 0s for false comparison results to 

the target register. The first seven instructions are useful for a condition query performed 

on the incoming data such as chroma-keying [68]. The last two instructions, 

MIN_CRCBY and MAX_CRCBY, are especially useful for median filtering, which 

compare pairs of sub-elements in the two source registers while outputting the minimum 

and maximum values to the target register, respectively, shown in Figure 30.  
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Figure 30. (a) A packed min instruction. (b) A packed max instruction. 
 

3.3.3 Permute Instructions 

Permute instructions include MIX_CRCBY, and ROTATE_CRCBY. These 

instructions are used to rearrange the order of quantities in the packed data type. The mix 

instruction mixes the sub-elements of the two source registers into the operands of the 

target register, and the rotate instruction rotates the sub-elements to the right by an 
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immediate value. Figures 31(a) and (b) illustrate the rotate and mix instructions, 

respectively, which are useful for performing a vector pixel transposition or a matrix 

transposition [78].  
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010 515212631 010 515212631

 
(a) (b) 

Figure 31. (a) A rotate instruction. (b) A mix instruction. 
 

3.3.4 Special-Purpose Instructions  

Special-purpose CAX instructions include ADACC_CRCBY (absolute-differences-

accumulate), MACC_CRCBY (multiply-accumulate), RAC (read accumulator), and ZACC 

(zero accumulator), which provide the most computational benefits of all the CAX 

instructions. The ADACC_CRCBY instruction, for example, is frequently used in a 

number of algorithms for motion estimation. It calculates the absolute differences of pairs 

of sub-elements in the two source registers while accumulating each result in the packed 

accumulator, shown in Figure 32. The MACC_CRCBY instruction is useful in DSP 

algorithms that involve computing a vector dot-product, such as digital filtering and 

convolutions. The latter two instructions, RAC and ZACC, are related to the managing of 

the CAX accumulator. 

These CAX instructions are included in the ISA of a dynamically scheduled 

superscalar processor to improve the performance of color imaging applications. 
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Acc
043 236387107127

Acc + abs(Cr2-Cr4)

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

Acc
043 236387107127 043 236387107127

Acc + abs(Cr2-Cr4)

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

 
Figure 32. An absolute-differences-accumulate instruction. 

  

3.4 Methodology 

This section describes the selected color imaging applications, the modeled 

architectures and tools, and a methodology infrastructure to evaluate the CAX instruction 

set.  

 

3.4.1 Color Imaging Applications  

We study five imaging applications to capture a range of color imaging for 

multimedia: color edge detection using a vector Sobel operator (VSobel), the scalar 

median filter (SMF), the vector median filter (VMF), vector quantization (VQ), and the 

full-search vector BMA (FSVBMA) of motion estimation within the MPEG standard. 

Although the SMF is not an example of vector processing, this study includes the SMF in 

the application suite because of its useful and well-known sorting algorithm. These 

applications, briefly summarized in Table 4 and introduced in Section 2.4, form 

significant components of many current and future real-world workloads such as 

streaming video across the internet, real-time video enhancement and analysis, and scene-

visualization. All the applications are executed with CIF resolution (352×288) 3-band 

(i.e., channel) input image sequences.  
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Table 4. Summary of the benchmarks used in this study. 

Application Description 

VSobel Extracts color edge information from an image through a Sobel operator that 
accounts for local changes in both luminance and chrominance components.  

SMF 
Removes impulse noise from an image by replacing each color component with 
a median value in a 3 x 3 window that is moved across the entire image. The 
three resulting images are then combined to produce a final output image.  

VMF Suppresses impulse noise from an image through a vector approach that is 
performed simultaneously on three color components (i.e., Y, Cb, and Cr). 

VQ 

Compresses and quantizes collections of input data by mapping k-dimensional 
vectors in vector space Rk into a finite set of vectors [35]. A full search vector 
quantization using both the luminance and chrominance components is used to 
find the best match in terms of the chosen cost function. 

FSVBMA 

Removes temporal redundancies between video frames in MPEG/H.26L video 
applications. A full search block-matching algorithm using both the luminance 
and chrominance components is used to find one motion vector for all 
components.  

 

3.4.2 Modeled Architectures and Tools 

Figure 33 shows a methodology framework for this study. The Simplescalar-

based toolset [2], an infrastructure for out-of-order superscalar modeling, is used to 

simulate a superscalar processor with and without MDMX or CAX, in which MDMX and 

CAX instructions are synthesized using annotations in the assembly files. The MDMX 

and CAX versions of the programs are generated by identifying the most time-consuming 

kernels by profiling and manually replacing the fragments of the baseline assembly 

language with ones containing MDMX and CAX instructions. Since the target platform is 

an embedded system, operating system interface code (e.g., file system access) is not 

included in this study. (Of course, the speedups of MDMX and CAX for complete 

programs may be less impressive than those for kernels due to Amdahl’s Law [38].) In 

addition, all the implementations exclude the color conversion process. In other words, 

this study assumes that the baseline, MDMX, and CAX versions directly support YCbCr 
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data in the same general data format (e.g., |Unused|Cr|Cb|Y| for baseline and MDMX and 

|Cr|Cb|Y|Cr|Cb|Y| for CAX). Moreover, a fair approximation of MDMX is added to the 

PISA of the Simplescalar simulator. For example, MDMX is extended with additional 

instructions such as absolute-differences-accumulation or parallel-conditional-move in 

CAX. Thus, MDMX (containing 30 instructions) has similar instructions as CAX 

(containing 34 instructions) except for the permute instructions.  

The Wattch-based simulator [10], an architectural-level power modeling, is also 

used to estimate energy consumption in each case. For the power estimates of the 

MDMX and CAX functional units (FUs), Verilog models for the baseline, MDMX, and 

CAX FUs are implemented and synthesized with the Synopsys design compiler (DC) 

using a 0.18-micron standard cell library. The reported power specifications of the 

MDMX and CAX FUs, shown in Table 5, are then normalized to the baseline FU, and 

the normalized numbers are applied to the Wattch simulator to determine the dynamic 

power for the superscalar processor with MDMX or CAX.  

Table 5. Dynamic power estimates for 32-bit FU designs with 1GHz at operating 
voltage of 1.62.  

 ALU MAC 
Baseline 12.5 mW 262.2 mW 
MDMX 15.0 mW 305.2 mW 

CAX 18.8 mW 299.9 mW  
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Figure 33. A methodology framework for dynamically scheduled simulations. 
 

Table 6 summarizes the processor configurations used in this study. A wide range 

of superscalar processors is simulated by varying the issue width from 1 to 16 

instructions per cycle and the instruction window size from 16 to 256. When the issue 

width is doubled, the number of functional units, load/store queues, and main memory 

widths are scaled accordingly, in which the L1 cache (instruction and data) and the L2 

cache are fixed at 16 KB and 256 KB, respectively. This study assumes that both MDMX 

and CAX use two logical accumulators, and all the implementations are simulated with a 

180 nm process technology at 600 MHz and aggressive, non-ideal conditional clocking. 

(Power is scaled linearly with port or unit usage, and unused units are estimated to 

dissipate 10% of the maximum power.) With these processor configurations, the next 

section evaluates the impact of CAX on processing performance and energy consumption 

for the selected color imaging applications.     
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Table 6. Processor configurations. 

Parameter 1-way 2-way 4-way 8-way 16-way 
Fetch/decode/issue/commit width 1 2 4 8 16 

intALU/intMUL/fpALU/fpMUL/Mem 1/1/1/1/1 2/1/1/1/2 4/2/2/1/4 8/4/2/1/8 16/8/4/1/16

RUU (window) size 16 32 64 128 256 
LSQ (Load Store Queue) 8 16 32 64 128 
Main memory width 32 bits 64 bits 128 bits 256 bits 256 bits 

Branch Predictor 
Combined predictor (1 K entries) of bimodal predictor (4 
K entries) table and 2-level predictor (2-bit counters and 
10-bit global history) 

L1 D-cache 128-set, 4-way, 32-byte line, LRU, 1-cycle hit, total of 
16 KB 

L1 I-cache 512-set, direct-mapped 32-byte line, LRU, 1-cycle hit, 
total of 16 KB 

L2 unified cache 1024-set, 4-way, 64-byte line, LRU, 6-cycle hit, total of 
256 KB 

Main memory latency  50 cycles for first chunk, 2 thereafter 

Instruction TLB 16-way, 4096 byte page, 4-way, LRU, 30 cycle miss 
penalty 

Data TLB 32-way, 4096 byte page, 4-way, LRU, 30 cycle miss 
penalty  

 

3.5 Experimental Results 

In the experiment, the three different versions of the programs are coded and 

simulated using the Simplescalar-based simulator for the evaluation of CAX: (1) baseline 

ISA without subword parallelism, (2) baseline plus MDMX ISA, and (3) baseline plus 

CAX ISA. The three different versions of each program have the same parameters, data 

sets, and calling sequences. In addition, the Wattch-based power simulator is used to 

evaluate the energy consumption of each benchmark. The dynamic instruction count, 

execution cycle count, and energy consumption of each case form the basis of the 

comparative study.  
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3.5.1 Performance-Related Evaluation Results  

This section presents the impact of CAX on execution performance for the 

benchmarks. The effect of loop unrolling for each program is also presented.  

3.5.1.1 Overall Results 

Figure 34 illustrates execution performance (speedup in executed cycles) for 

different wide superscalar processors with MDMX and CAX, normalized to the baseline 

performance without subword parallelism. The results indicate that CAX outperforms 

MDMX for all the programs in terms of speedup. For the 4-way issue machine, for 

example, CAX achieves a speedup ranging from 3× to 5.8× over the baseline 

performance, while MDMX achieves a speedup ranging from only 1.6× to 3.2× over the 

baseline.   

An interesting observation is that CAX exhibits higher relative performance for 

low-issue rates. For example, CAX achieves an average speedup of 4.7× over the 

baseline 1-way issue performance, but 3× over the baseline 16-way issue performance. 

This result demonstrates that CAX is an ideal candidate for embedded multimedia 

systems in which high issue rates and out-of-order execution are too expensive. 
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Figure 34. Speedups for different issue-rate processors with MDMX and CAX, 
normalized to the baseline performance. 

 

3.5.1.2 Benefits from CAX  

Figure 35 presents the distribution of dynamic instructions for the 4-way out-of-

order processor with MDMX and CAX, normalized to the baseline version. Each bar 

divides the instructions into the functional unit (FU, combines ALU and FPU), control, 

memory, MDMX, and CAX categories. The use of CAX provides a significant reduction 

in the dynamic instruction count across all the programs. 
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Figure 35. Impact of CAX on the dynamic (retired) instruction count. 
 

Reductions in FU Instructions. The CAX arithmetic and logical instructions allow 

multiple arithmetic and logical instructions (typically three by processing three channels 

simultaneously) in addition to multiple iterations (typically two by processing two-

packed YCbCr data) with one CAX instruction. Because of this property, all the 

programs using CAX reduce a significant number of the FU instructions and loop 

overhead, which increments or decrements index and address values. The reduction of the 

loop overhead further reduces the FU instruction count. Experimental results indicate that 

the FU instruction count decreases 73% to 86% (an average of 81%) with CAX, but only 

47% to 73% (an average of 64%) with MDMX over the baseline version.  

Reductions in Control Instructions. The CAX compare instructions allow multiple 

conditional (or branch) instructions with one equivalent CAX instruction, resulting in a 

large reduction in the control instruction count for all the programs. The control 
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instruction count decreases 47% to 76% (an average of 60%) with CAX, but only 2% to 

57% (an average of 26%) with MDMX over the baseline version.  

Reductions in Memory Instructions. With CAX, multiple packed data are transported 

from/to memory rather than individual components. CAX accumulator instructions (e.g., 

MACC_CRCBY and ADACC_CRCBY) further eliminate memory operations since 

immediate results are stored in the accumulator rather than in memory. Experimental 

results indicate that the memory instruction count decreases 68% to 83% (an average of 

78%) with CAX, but only 37% to 66% (an average of 57%) with MDMX over the 

baseline version.  

Overall, CAX clearly outperforms MDMX in consistently reducing the number of 

dynamic instructions required for each program. Performance improved by CAX can be 

further enhanced through loop unrolling, which is presented next. 

3.5.1.3 Benefits from Loop Unrolling 

Loop unrolling (LU) is a well-known optimization technique that reorganizes and 

reschedules the loop body. Since loops contain the most critical code segments for color 

imaging applications, LU achieves a higher degree of performance by reducing loop 

overhead and exposing instruction-level parallelism (ILP) for machines with multiple 

functional units within the loops. Thus, the LU plus CAX technique may provide the 

much higher degrees of parallelism and performance. Figures 36(a), (b), and (c) present 

an example of the inner loop of the BMA for vector quantization, the code after loop 

unrolling, and the loop from the perspective of CAX-level parallelism, respectively. The 

original loop is unrolled and reorganized through LU, shown in Figure 36(b). In the 

unrolled statement, multiple operands are then packed in each register with CAX, as 
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shown in the dotted-line boxes in Figure 36(c). CAX then replaces the fragments of the 

assembly language for isomorphic statements grouped together in the dashed-line boxes 

with ones containing CAX instructions. Since operands are effectively pre-packed in 

memory, they do not need to be unpacked when processed in registers. In particular, the 

LU plus CAX technique provides the following benefits:  

• it reduces branch and address generation overhead, 

• it reduces register pressure and memory traffic by transporting multiple packed 

data from a register to memory and vice versa, and 

• it reduces a significant number of dynamic instruction counts. 

for (i=0; i<4; i++) {
sum_y     +=  abs( IV_Y[i]     – CV_Y[i]);
sum_Cb  +=  abs( IV_Cb[i]   – CV_Cb[i]);
sum_Cr   +=  abs( IV_Cr[i]    – CV_Cr[i]);

}  
(a) 

sum_y     +=  abs( IV_Y[i+0]     – CV_Y[i+0]);
sum_Cb  +=  abs( IV_Cb[i+0]   – CV_Cb[i+0]);
sum_Cr   +=  abs( IV_Cr[i+0]    – CV_Cr[i+0]);
sum_Y    +=  abs( IV_Y[i+1]     – CV_Y[i+1]);
sum_Cb  +=  abs( IV_Cb[i+1]   – CV_Cb[i+1]);
sum_Cr   +=  abs( IV_Cr[i+1]    – CV_Cr[i+1]); 
sum_y     +=  abs( IV_Y[i+2]     – CV_Y[i+2]);
sum_Cb  +=  abs( IV_Cb[i+2]   – CV_Cb[i+2]);
sum_Cr   +=  abs( IV_Cr[i+2]    – CV_Cr[i+2]);
sum_Y    +=  abs( IV_Y[i+3]     – CV_Y[i+3]);
sum_Cb  +=  abs( IV_Cb[i+3]   – CV_Cb[i+3]);
sum_Cr   +=  abs( IV_Cr[i+3]    – CV_Cr[i+3]);  

sum_y     +=  abs( IV_Y[i+0]     – CV_Y[i+0]);
sum_Cb  +=  abs( IV_Cb[i+0]   – CV_Cb[i+0]);
sum_Cr   +=  abs( IV_Cr[i+0]    – CV_Cr[i+0]);
sum_Y    +=  abs( IV_Y[i+1]     – CV_Y[i+1]);
sum_Cb  +=  abs( IV_Cb[i+1]   – CV_Cb[i+1]);
sum_Cr   +=  abs( IV_Cr[i+1]    – CV_Cr[i+1]); 
sum_Y    +=  abs( IV_Y[i+2]     – CV_Y[i+2]); 
sum_Cb  +=  abs( IV_Cb[i+2]   – CV_Cb[i+2]);
sum_Cr   +=  abs( IV_Cr[i+2]    – CV_Cr[i+2]);
sum_Y    +=  abs( IV_Y[i+3]     – CV_Y[i+3]);
sum_Cb  +=  abs( IV_Cb[i+3]   – CV_Cb[i+3]);
sum_Cr   +=  abs( IV_Cr[i+3]    – CV_Cr[i+3]);

sum_y     +=  abs( IV_Y[i+0]     – CV_Y[i+0]);
sum_Cb  +=  abs( IV_Cb[i+0]   – CV_Cb[i+0]);
sum_Cr   +=  abs( IV_Cr[i+0]    – CV_Cr[i+0]);
sum_Y    +=  abs( IV_Y[i+1]     – CV_Y[i+1]);
sum_Cb  +=  abs( IV_Cb[i+1]   – CV_Cb[i+1]);
sum_Cr   +=  abs( IV_Cr[i+1]    – CV_Cr[i+1]); 
sum_Y    +=  abs( IV_Y[i+2]     – CV_Y[i+2]); 
sum_Cb  +=  abs( IV_Cb[i+2]   – CV_Cb[i+2]);
sum_Cr   +=  abs( IV_Cr[i+2]    – CV_Cr[i+2]);
sum_Y    +=  abs( IV_Y[i+3]     – CV_Y[i+3]);
sum_Cb  +=  abs( IV_Cb[i+3]   – CV_Cb[i+3]);
sum_Cr   +=  abs( IV_Cr[i+3]    – CV_Cr[i+3]);  

(b) (c) 

Figure 36. (a) Original loop. (b) After loop unrolling. (C) CAX-level parallelism 
exposed after loop unrolling. IV and CV stand for the image vector and the 
codebook vector, respectively. 

 

Table 7 presents speedups for the baseline, MDMX, and CAX versions with LU, 

normalized to those without LU, in which the VSobel, SMF, and VMF programs were 
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unrolled by a factor of three; others were unrolled by a factor of four. LU tends to be 

more effective for the CAX version than the baseline and MDMX versions, indicating 

21%, 4%, and 19% performance gains in the CAX, baseline, and MDMX versions, 

respectively. One of the major reasons is that LU reduces a similar number of loop 

overhead instructions for all three versions, but the total number of executed instructions 

for the CAX version is smaller than that for the baseline or MDMX versions. The next 

section presents energy-related performance since energy is as critical for embedded 

multimedia systems as performance. 

Table 7. Speedups of the baseline, MDMX, and CAX versions with LU, normalized 
to those without LU. 

 VSobel SMF VMF VQ FSVBMA Average 
Baseline plus LU 1.05 1.06 1.07 1.04 1.02 1.04 
MDMX plus LU 1.24 1.23 1.28 1.14 1.09 1.19 

CAX plus LU 1.27 1.24 1.29 1.16 1.10 1.21  
 

3.5.2 Energy-Related Evaluation Results  

Figure 37 presents the distribution of energy consumption for the 4-way out-of-

order processor with MDMX and CAX, normalized to the baseline version. Each bar 

divides the energy consumption into the cache, ALU, clock, window, and others 

(combines branch prediction, rename, load-store queue, and result bus) categories. When 

execution platforms employ identical clock rates, implementation technologies, and 

processor parameters, a shorter execution time results in lower energy consumption [79]. 

Thus, CAX reduces a large amount of total energy consumption for all the programs 

because of a significant reduction in the executed cycle count. Experimental results 

indicate that CAX reduces energy consumption from 68% (VMF) to 83% (FSVBMA) 

over the baseline. This is in contrast to MDMX, which reduces energy consumption from 
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only 39% (VMF) to 69% (FSVBMA) over the baseline. Since CAX reduces a large 

number of the ALUs, branches, and cache accesses, less energy is spent on the 

speculative execution and cache access units.  
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Figure 37. Impact of CAX on energy consumption. 
 

The energy consumption is further reduced with LU for all three versions of the 

programs, showing an average energy reduction of 4.8%, 18.8%, and 19.2% for the 

baseline, MDMX, and CAX versions, respectively. In particular, LU reduces a large 

percentage of the power dissipation in the branch prediction hardware because it 

efficiently reduces branch overhead, indicating an energy reduction of 14.4%, 35.9%, and 

36.3% in the branch prediction hardware for the baseline, MDMX, and CAX versions, 

respectively. Removing branches using LU also reduces the power dissipation in the 

fetch unit. The fetch unit fetches large basic blocks without being interrupted by taken 

branches, providing more work for the renaming unit and filling up the register update 

unit (RUU) faster. Thus, when the instruction queue and RUU are full, the fetch unit is 

stalled during the cycles. Because of this, the power dissipation of the fetch unit is 
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reduced. Clearly, LU is effective at reducing additional energy consumption for image 

processing kernels where loop overhead is significant.   

 

3.6 Conclusion 

A new color-aware multimedia extension (CAX) for dynamically scheduled ILP 

processors has been presented that improves the performance of color imaging 

applications. Harnessing parallelism within the human perceptual color space (e.g., 

YCbCr), CAX supports parallel operations on two-packed, quantized 16-bit YCbCr data 

in a 32-bit datapath processor, providing greater concurrency and efficiency for 

processing color image sequences. The key findings are the following: 

• CAX outperforms MDMX (a representative MIPS multimedia extension) in 

speedup (3× to 5.8× with CAX, but only 1.6× to 3.2× with MDMX over the 

baseline performance) on the same dynamically scheduled, 4-way issue 

processor. 

• CAX also outperforms MDMX in energy reduction (68% to 83% reduction 

with CAX, but only 39% to 69% with MDMX over the baseline version). 

• Moreover, CAX exhibits higher relative performance for low-issue rates. For 

example, CAX achieves an average speedup of 4.7× over the baseline 1-way 

issue performance, but 3× over the baseline 16-way issue performance). These 

results demonstrate that CAX is an ideal candidate for embedded multimedia 

systems in which high issue rates and out-of-order execution are too 

expensive. 
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• Performance improved by CAX has been further enhanced through loop 

unrolling. LU provides an additional performance gain of 21%, 4%, and 19% 

for the CAX, baseline, and MDMX versions, respectively. These results 

demonstrate that the CAX plus LU technique has the potential to provide the 

higher degrees of performance required by emerging color imaging 

applications.  

The effectiveness of CAX will be much more obvious in application-specific 

embedded systems (e.g., embedded SIMD arrays) that aim at providing sufficient 

computational power for specific applications but impose strict constraints on 

implementation chip area and energy consumption. This is because CAX benefits from 

greater concurrency as well as reduced pixel word storage (buffers, registers, and 

memory) that consumes a large percentage of silicon area. The next chapter presents the 

impact of CAX on processing performance and on both area and energy efficiency on a 

representative SIMD array architecture. 
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CHAPTER 4 

IMPLEMENTATION AND EVALUATION OF THE COLOR-AWARE 
INSTRUCTION SET FOR LOW-MEMORY, EMBEDDED VIDEO PROCESSING 

IN DATA PARALLEL ARCHITECTURES 

 

4.1 Introduction 

Portable multimedia applications demand tremendous instruction throughput with 

a small area and limited energy available in a battery. Application-specific integrated 

circuits (ASICs) can meet the needed performance and cost goals for such portable 

multimedia systems. However, they provide limited, if any, programmability or 

flexibility necessary for varied application requirements. 

General-purpose microprocessors (GPPs) offer the necessary flexibility and 

inexpensive processing elements, and multimedia extensions to GPPs have improved the 

performance of multimedia applications with little added cost to the processors. The 

designers of digital signal processors (DSPs) such as the Texas Instruments 

TMS320C64x families [82] and the Analog Devices TigerSharc processor [31] have 

followed the trend. However, despite some performance improvements through 

multimedia extensions, neither GPPs nor DSPs will be able to meet the much higher 

levels of performance required by emerging multimedia applications on higher resolution 

images. This is because they lack the ability to exploit the full data parallelism available 

in these applications. 

Among many computationally efficient models available for imaging applications, 

single instruction, multiple data (SIMD) arrays are promising candidates for application-

specific embedded multimedia systems because they replicate the datapath, data memory, 

and I/O to provide high processing performance with low node cost. Whereas instruction-
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level or thread-level processors use silicon area for large multiported register files, large 

caches, and deeply pipelined functional units, SIMD arrays contain many more simple 

processing elements (PEs) for the same silicon area. As a result, SIMD arrays often 

employ thousands of PEs while possibly distributing and co-locating PEs with the data 

I/O to minimize storage and data communication requirements. The SIMD Pixel (SIMPil) 

processor [13][34][8] being developed at Georgia Tech, for example, is a low memory, 

monolithically integrated SIMD architecture that efficiently exploits massive data 

parallelism inherent in imaging applications while reducing data movement through a 

processing-in-place technique in which image data are directly transported into the PEs 

and stored there. While 2-D SIMD arrays, including SIMPil, are well suited for many 

imaging tasks that require processing of pixel data with respect to either nearest-neighbor 

or other 2-D patterns exhibiting locality or regularity, they are less amenable to the vector 

processing of color image sequences, in which each pixel computation is simultaneously 

performed on 3-D YCbCr channels. More specifically, since the 3-D vector computation 

is performed within innermost loops, its performance does not scale with larger PE arrays.  

This chapter presents the CAX instruction set for such SIMD arrays as a solution 

to this performance limitation by supporting two-packed 16-bit YCbCr data in a 32-bit 

wide register, while processing this separate color data in parallel. In addition to greater 

concurrency, the ability to reduce data format size drastically reduces system cost. The 

reduction in data bandwidth also simplifies system design.  

Experimental results using application simulation and technology modeling 

indicate that CAX outperforms MDMX across all the selected programs in terms of 

speedup (5.2× to 8.9× with CAX, but only 3× to 5× with MDMX over the baseline 
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performance) on the same representative SIMD array architecture. CAX also outperforms 

MDMX on both area efficiency (a 75% increase versus a 25% increase) and energy 

efficiency (a 75% increase versus a 24% increase), resulting in better component 

utilization and sustainable battery life. Furthermore, CAX improves the performance and 

efficiency with a mere 3% increase in the system area and a 5% increase in the system 

power, while MDMX requires a 14% increase in the system area and a 16% increase in 

the system power.  

The rest of this chapter is organized as follows. Section 4.2 discusses related 

research. Section 4.3 describes the modeled architectures and a methodology 

infrastructure for the evaluation of CAX on a specified SIMD array. Section 4.4 evaluates 

the system area and power of the modeled architectures, and Section 4.5 analyzes 

execution performance and efficiency for each case. Section 4.6 concludes this chapter.  

 

4.2 Related Research 

Research dealing with harnessing the data-level parallelism (DLP) inherent in 

color image and video processing applications can be divided into two different groups: 

(1) those evaluating the performance of current multimedia extensions [6][71][51] and 

(2) those evaluating the performance of highly parallel architectures [34][88][48]. 

Numerous research groups and individuals have addressed the effectiveness of 

multimedia extensions (e.g., Intel MMX, Sun VIS, and MIPS MDMX) for multimedia 

applications on general-purpose processors. Ranganathan et al. [71] analyzed the 

performance of image and video processing applications on an UltraSPARC processor 

with and without the VIS media extensions. They observed that a four-way issue, out-of-
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order processor provided 2.3× to 4.2× performance improvement over a single-issue, in-

order processor, and the VIS extensions provided an additional 1.1× to 4.2× performance 

improvement. Bhargava et al. evaluated the MMX extensions for a set of DSP and 

multimedia applications on the x86 architectures [6]. In their study, the image 

applications were the best suited for MMX because the images were stored in a large 

array of eight-bit data and properly aligned on eight-byte boundaries, showing an average 

speedup 5.5× and an 81% reduction in dynamic instruction count.  

Different subword parallelism alternatives (e.g., matrix-oriented multimedia ISA 

called MOM and complex streaming instructions called CSI) for multimedia processing 

applications have been evaluated in [18][42]. Unlike commercial multimedia extensions 

that are restricted to a single row, both MOM and CSI support two-dimensional data 

streams, achieving an average of 20% performance gain over the MMX and MDMX 

extensions with respect to multimedia applications. Overall, existing multimedia-based 

extensions in general-purpose processors provide moderate performance improvement 

(2× to 6× speedup) by exploiting subword parallelism. However, their performance is 

limited in dealing with both color data that are not aligned on boundaries that are a power 

of two and storage data types that are inappropriate for computation. Moreover, general-

purpose processors enhanced with multimedia extensions will not meet the much higher 

levels of performance required by emerging multimedia applications since they lack the 

ability to exploit the full data parallelism available in these applications. 

SIMD array architectures are geared for data parallelism-rich media applications 

because they can efficiently exploit massive amounts of data parallelism without 

complicated control flow or an excessive amount of inter-processor communication. 
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Massively data parallel arrays of processors have been applied to image processing for 

almost three decades, but early SIMD machines (e.g., the TMC Connection Machine 1 

[83]) were limited by I/O technology. Later machines (e.g., TMC CM-2 [81] and MarPar 

MP-2 [57]) overcame these limitations through the use of large parallel disk arrays to 

buffer images. However, these systems achieved generality by sacrificing low cost and 

portability. Although the fine-grain parallel processing architectures MGAP [40] and 

ABACUS [7] addressed portability issues, performance was affected by their limited I/O 

bandwidth and reconfiguration latency, resulting in low resource utilization. 

Unlike these SIMD machines, our baseline architecture, the SIMPil array, benefits 

from directly coupling sensors and processors, alleviating I/O bandwidth bottlenecks, and 

from short wire lengths, providing compact area and energy efficiency for portable 

multimedia systems [13][34][8]. While such 2-D SIMD arrays exploit massive data 

parallelism inherent in 2-D image sequences by operating the same instruction sequences 

simultaneously on a large number of discrete data sets, their performance is limited by 

the vector processing of 3-D color data performed within innermost loops. This chapter 

provides a new solution to support color imaging applications by combining the 

properties of the human perceptual color space (e.g., YCbCr), color subword parallelism, 

and SIMD array architecture.  

 

4.3 Methodology 

This section describes the modeled architectures and a methodology infrastructure 

for the evaluation of the CAX instruction set on a representative SIMD array architecture. 
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4.3.1 Modeled Embedded SIMD Architectures  

The SIMD Pixel (SIMPil) processor [13][34] is used as the baseline SIMD 

imaging architecture for this study. Figure 38 shows the microarchitecture of the SIMD 

array system, along with its interconnection network. When data are distributed, the 

processing elements (PEs) execute a set of instructions in a lockstep fashion. With 4×4 

pixel sensor sub-arrays, each PE is associated with a specific portion (4×4 pixels or 16 

pixel-per-processing-element) of an image frame, allowing streaming pixel data to be 

retrieved and processed locally. Each PE has a reduced instruction set computer (RISC) 

datapath with the following minimum characteristics:  

• Small amount of local storage (128 32-bit words),  

• Three-ported general-purpose registers (16 32-bit words), 

• ALU − computes basic arithmetic and logic operations, 

• Barrel shifter − performs multi-bit logic/arithmetic shift operations, 

• MACC − multiplies 32-bit values and accumulates into a 64-bit accumulator, 

• Sleep − activates or deactivates a PE based on local information, 

• Pixel unit − samples pixel data from the local image sensor array, 

• RGB2YCC and YCC2RGB unit− converts RGB to/from YCbCr,  

• ADC unit − converts light intensities into digital values, and 

• Nearest neighbor communications through a NEWS (north-east-west-south) 

network and serial I/O unit. 
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Figure 38. Block diagram of a SIMD array and a processing element. 
 

Despite high performance and energy efficiency from short wire lengths and a 

specialized microarchitecture, such SIMD imaging systems are not amenable to the 

vector processing of 3-D color data. In particular, since the 3-D vector computation is 

performed within innermost loops, its performance does not scale with larger PE arrays. 

To overcome this performance limitation, the CAX instructions are included in the ISA 

of the SIMPil array. For a fair performance comparison, we also add MDMX-type 

instructions to the SIMPil ISA, including additional instructions, such as absolute-

differences-accumulation or parallel-conditional-move, equivalent to the CAX 

instructions. Thus, MDMX (containing 30 instructions) and CAX (containing 34 

instructions) have similar instructions, except for the permute instructions. In the 

experiment, the overhead of the color conversion was not included in the performance 

evaluation for all the versions. In other words, this study assumes that the baseline, 

MDMX, and CAX versions directly support YCbCr data in the band-interleaved format 

(e.g., |Unused|Cr|Cb|Y| for baseline and MDMX and |Cr|Cb|Y|Cr|Cb|Y| for CAX). 
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Moreover, since the CAX version requires smaller pixel word storage for color imaging 

applications than the baseline and MDMX versions, this study assumes that the CAX 

version uses a 64 32-bit word memory, but both baseline and MDMX versions require a 

128 32-bit word memory. These memory sizes are sufficient to complete the selected 

application suite. Table 8 summarizes the parameters of the modeled architectures. An 

overall simulation infrastructure is presented next. 

Table 8. Modeled architecture parameters. 

Parameter Value 

System Size 44×38 (1,584 PEs) 
Image Sensor per PE (pixel per PE ratio)   4×4 (16 PPE) 
VLSI Technology  100 nm 
Clock Frequency 80 MHz 
Interconnection Network Mesh 
intALU/intMUL/Barrel Shifter/intMACC/Comm 1 / 1 / 1 / 1 / 1 
MDMX/CAX: intALU/intMACC 1 / 1 
Local Memory Size (baseline/MDMX/CAX) 128 word / 128 word / 64 word  

 

4.3.2 Methodology Infrastructure 

Figure 39 shows a methodology infrastructure for this study that is divided into 

three levels: application, architecture, and technology. At the application level, a set of 

color imaging applications (e.g., chroma-keying, color edge detection, the scalar median 

filter, the vector median filter, and vector quantization, and motion estimation) is written 

in the SIMD assembly language and executed through an instruction-level SIMD 

simulator, called SIMPilSim. SIMPilSim, shown in Figure 40, allows profiling execution 

statistics such as cycle count, dynamic instruction histogram, PE utilization, and PE 

memory usage for the three different versions of the programs: (1) baseline ISA without 
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sumbword parallelism (SIMPil), (2) baseline plus MDMX ISA (MDMX-SIMPil), and (3) 

baseline plus CAX ISA (CAX-SIMPil).   

At the architecture level, the heterogeneous architectural modeling (HAM) of 

functional units for SIMD arrays proposed by Chai et al. [14][15] is used to calculate the 

design parameters of the modeled architectures. For the design parameters of the MDMX 

and CAX functional units (FUs), Verilog models for the baseline, MDMX, and CAX FUs 

were implemented and synthesized with the Synopsys design compiler (DC) using a 

0.18-micron standard cell library. The reported area specifications of the MDMX and 

CAX FUs were then normalized to the baseline FU, and the normalized numbers were 

applied to the HAM tool for determining the design parameters of MDMX- and CAX-

SIMPil. The design parameters are then passed to the technology level.  

At the technology level, the Generic System Simulator (GENESYS) developed at 

Georgia Tech [65][28] is used to calculate technology parameters (e.g., latency, area, 

power, and clock frequency) for each configuration. Finally, the database (e.g., cycle 

times, instruction latencies, instruction counts, area, and power of the functional units), 

obtained from the application, architecture, and technology levels, is combined to 

determine execution times, area efficiency, and energy efficiency for each case. The next 

section presents the system area and power of the modeled architectures. 
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Figure 39. A methodology framework for exploring the design space of three 
modeled architectures: baseline SIMPil, MDMX-SIMPil, and CAX-SIMPil. 
 

Figure 40. A screenshot of the SIMPil simulator during the chroma-keying process. 
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4.4 System Area and Power Evaluation using Technology Modeling 

GENESYS, an analytical technology modeling tool with macro cell capability, is 

used to evaluate the system area and power of three modeled architectures: (1) baseline 

SIMPil, (2) MDMX-SIMPil, and (3) CAX-SIMPil. GENESYS, introduced in [59], 

integrates a hierarchical set of models that capture key limits such as fundamental, 

material, device, circuit, and system, shown in Figure 41. The first three levels capture 

the physical effects of material properties and switching device behaviors. The circuit 

level estimates all components of the signal propagation delay through a gate. The system 

level contains architecture, interconnect, and packaging details of a single chip. 

GENESYS has been calibrated using the Semiconductor Industry Association’s 

International Technology Roadmap for Semiconductors (ITRS) predictions [74] and data 

from a wide range of implemented ASICs. Complete details on GENESYS and its 

constituent models can be found in [28][65]. 

 
Figure 41. GENESYS system hierarchy. 

 

When design parameters (e.g., gate count, gate depth, Rents’ parameters, and 

average activity factor) from an architectural block (macro cell) are given as input, 
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GENSYS calculates the functional performance of each unit and the entire processor 

model such as processor area, cycle time, wire delay, dynamic energy, and static power 

for a specified technology. Architectural studies of diverse systems, including SIMD 

arrays [14] and multiprocessor clusters [20], have used GENESYS for the design 

exploration of the systems. To build the design specifications of the three modeled 

architectures, the HAM of functional units for SIMD arrays [14] and the Synopsys design 

compiler are used. GENESYS then combines the design parameters of each architecture 

configuration while calculating the system area and power of each functional unit and the 

entire architecture. Table 9 shows system area and power estimates for the modeled 

architectures.  

Table 9. Area and power estimates for three different SIMPil architectures running 
at 80MHz. 

 Baseline SIMPil MDMX-SIMPil CAX-SIMPil 

Estimated Peak Power [W] 2.7 3.1 2.8 

System Area [mm2] 114 129 117 
 
 

Figure 42 presents additional data showing the system area and power of MDMX-

SIMPil and CAX-SIMPil, normalized to the baseline SIMPil. Experimental results 

indicate that MDMX requires a 14% increase in the entire system area and a 16% 

increase in the system power. However, CAX only requires a 3% increase in the system 

area and a 5% increase in the system power because of the reduced pixel word storage 

(local memory). These system area and power results are combined with application 

simulations (e.g., issued instructions and cycle times) for determining execution time, 

area efficiency, and energy efficiency for each case, which is presented next. 
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Figure 42. System area and power of MDMX-SIMPil and CAX-SIMPil, normalized 
to the baseline SIMPil.  
 

4.5 Experimental Results 

Cycle accurate simulation and technology modeling are used to determine the 

performance and efficiency characteristics of the modeled architectures for each 

application task. The three versions of the programs (e.g., baseline ISA, baseline plus 

MDMX ISA, and baseline plus CAX ISA) are developed in their respective assembly 

languages for the SIMPil system, in which all three versions for each program have the 

same parameters, data sets, and calling sequences. Their execution statistics (e.g., 

instruction count, execution cycle count, and PE utilization) are then combined with 

GENESYS predictions to evaluate each benchmark’s energy consumption, energy 

efficiency, and area efficiency. The metrics of the execution cycle count, corresponding 

energy consumption, sustained throughput, energy efficiency, and area efficiency of each 

case form the basis of the study comparison, defined in Table 10. 
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Table 10. Summary of evaluation metrics. 
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C is the cycle count, ckf is the clock frequency, execO is the number of executed operations, and 
NPE is the number of processing elements. Note that since each CAX and MDMX instruction 
executes more operations (typically six and three times, respectively) than a baseline instruction, 
we assume that each CAX, MDMX, and baseline instruction executes six, three, and one 
operation, respectively, for the sustained throughput calculation.  
 

4.5.1 Execution Performance Evaluation Results 

This section discusses the impact of CAX on execution performance for the 

selected color imaging applications on the SIMPil system. This section also presents 

detailed application implementations with CAX for further insights into the CAX 

behavior. 

4.5.1.1 Overall Results 

Figure 43 illustrates execution performance (speedup in executed cycles) attained 

by CAX and MDMX when compared with the baseline performance without subword 

parallelism. The results indicate that CAX outperforms MDMX for all the programs in 

terms of speedup, indicating a speedup ranging from 5.2× to 8.9× (an average of 6.7×) 

with CAX, but only 3× to 5× (an average of 3.8×) with MDMX over the baseline 

performance. 
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performance.  

 

CAX also achieves higher sustained throughput (an average of 194 Gops/sec) 

than the MDMX version (an average of 155 Gops/sec) and the baseline version (an 

average of 113 Gops/sec) across all the application tasks. Table 11 summarizes the 

execution parameters for each case in the SIMPil system. Note that the scalar execution 

time was not included in the sustained throughput because vector instructions dominate 

instruction histograms in which each issued vector instruction is multiplied by the 

number of active processing elements (1,584 PEs in this study). In other words, scalar 

instructions execute in the array controller unit concurrently with vector instructions 

executing in PEs, and the scalar execution time is effectively hidden during vector 

execution [34]. The next section presents an in-depth analysis of the CAX effectiveness 

for each benchmark program. 
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Table 11. Application performance of the baseline, MDMX, and CAX versions on a 
1,584 PE system running at 80 MHz.   

Memory Size 
Application ISA PE  

[Byte] 
System 

[KB] 

Vector 
Instruction 

Scalar 
Instruction 

System 
Utilization 

[%] 

Sustained 
Throughput 
[Gops/sec] 

Baseline 192 768 1,227 106 88 112 
MDMX 192 768 283 106 100 155 Chromakey 
CAX 128 512 179 58 100 183 

Baseline 344 1,376 7,177 1,011 100 122 
MDMX 344 1,376 2,117 371 100 160 VSobel 
CAX 216 864 1,257 195 100 207 

Baseline 244 976 43,287 2,771 71 89 
MDMX 244 976 9,495 2,771 100 181 SMF 
CAX 172 688 4,863 1,395 100 260 

Baseline 244 976 37,397 7,891 93 118 
MDMX 244 976 7,430 3,027 97 158 VMF 
CAX 172 688 4,264 1,523 94 203 

Baseline 204 816 180,551 20,755 91 115 
MDMX 204 816 50,503 20,755 97 133 VQ 
CAX 136 544 28,863 11,715 94 151 

Baseline 196 784 97,229 10,043 95 120 
MDMX 196 784 32,502 10,379 98 140 FSVBMA 
CAX 100 400 18,784 7,706 96 159  

 

4.5.1.2 Benefits of CAX for Color Imaging Applications  

Figure 44 shows the distribution of issued vector instructions for the SIMPil 

system with MDMX and CAX, normalized to the baseline version. Each bar divides the 

instructions into the arithmetic-logic-unit (ALU), memory (MEM), communication 

(COMM), PE activity control unit (MASK), image pixel loading (PIXEL), MDMX, and 

CAX. The use of CAX reduces a significant number of the instruction counts for all of 

the programs. In particular, CAX reduces a significant number of ALU and memory 

instruction counts due to its instruction definition. An interesting observation is that 

unlike the results for the superscalar processor (see Figure 35), the FSVBMA program 

has the smallest reduction in the instruction count with CAX. This is because it involves 

high inter-PE computation operations that are not affected by CAX. For example, each 

PE cannot directly support a macroblock size of 16×16 pixels because 4×4 pixels are 
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mapped to each PE. As a result, the 4×4 distortions are computed in each PE separately. 

Each result is then combined through NEWS communication instructions for the final 

distortion between the 16×16 input and reference blocks.  
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Figure 44. The distribution of issued vector instructions for the SIMPil system with 
CAX and MDMX, normalized to the baseline version. 
 

Chroma-keying. Chroma-keying is an image overlay technique that is used extensively 

to produce special effects (e.g., on television weather programs, the image of the weather 

person is overlaid on the weather map image). This application demonstrates how 

conditional selection using CAX removes branch mispredictions (or MASK instructions) 

while performing multiple selection operations in parallel. In the study, the chroma-

keying program is performed in the YCbCr color space. Figure 45 shows the required C 

code operation and the corresponding CAX assembly code implemented on SIMPil, 

along with comments and a pictorial representation. 
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(a) 
for (i = 0; i < # of pixels; i++) { 
     if (x[i] == blue backing) new_image[i] = y[i];   
     else new_image[i] = x[i]; // foreground  
} 

Loop 
pload r1, mem1 ; load two-packed YCbCrs from the picture with the tank object  
pload r2, mem2 ; load two-apcked YCbCrs from the blue background frame 
pload r3, mem2 ; load two-packed YCbCrs from the picture with the pine road 
cmpeqn_crcby r4, r1, r2; if r1(i) != r2(i), r4(i) is all ones. Otherwise, all zeros.  
cmov_crcby   r3,r2,r4; if r4(i) == all ones,  r3(i) ← r2(i). Otherwise, no ops. 

(b) (c) 

Figure 45. The procedure of a chroma-keying application: (a) a pictorial 
representation, (b) required C code, and (c) CAX assembly code. Note that the 
MDMX assembly code has the same functional instructions for CAX except that it 
loads and processes a packed YCbCr in a 32-bit register. 

 

The PLOAD instruction loads two-packed YCbCr data from the three pictures: (1) 

tank on a blue background, (2) blue background, and (3) pine road. The 

CMPEQN_CRCBY instruction then compares pixels from the tank frame and the 

equivalent pixels from the blue background while building a mask that is a sequence of 

all ones or all zeros in the Y, Cb, and Cr operands of the register. This mask is used on 

the same two-packed YCbCr data from the tank frame and the equivalent two-packed 

YCbCr data from the pine road. The conditional move instruction CMOV_CRCBY uses the 

mask in order to overlay pixels from the tank object onto the pine road. These CAX 

instructions remove many MASK instructions while reducing a large number of ALU 

instructions by processing multiple selection operations in parallel. Table 12 illustrates a 
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comparison of instruction counts using the baseline, MDMX, and CAX ISAs for a 

conditional selection operation of 4×4 pixels. The instruction count decreases 82% with 

CAX, but only 71% with MDMX over the baseline version. 

Table 12. A comparison of instruction counts using the baseline, MDMX, and 
CAX ISAs for a conditional selection operation of 4×4 pixels. 

 Baseline MDMX CAX 
ALU 693 101 77 
MEM 99 99 59 

MASK 384 - - 
PIXEL 51 51 27 
MDMX - 32 - 

CAX - - 16 
Scalar Instructions 106 106 58 

Total 1,333 389 237  
 

Color Edge Detection. Edge detection is a fundamental task in image processing. Many 

image applications, such as object recognition and image segmentation, depend on the 

accuracy of edge detection. Unlike monochrome edge detection that may not be sufficient 

in color images when neighboring objects have different hues but equal intensities, color 

edge detection accounts for local changes in both luminance and chrominance 

components to provide crucial information conveyed by color. In this study, color edge 

detection based on a Sobel operator is implemented on the SIMPil simulator. Figure 46 

illustrates the procedure of the color edge detection implementation using CAX. Each of 

two-packed 16-bit YCbCr data is loaded into registers, and some pixels are rearranged 

with the ROTATE_CRCBY and MIX_CRCBY instructions for an efficient format of the 

multiply-accumulate computation, which involves a vector pixel and its eight neighbors 

within a  3×3 window. Also, each of the coefficient values saved in memory is loaded 

and then distributed into the Y, Cb, and Cr positions of the target register with the 
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BCAST_CRCBY instruction. The MACC_CRCBY instruction then multiplies pairs of sub-

elements in the two source registers (one for color components and the other for 

coefficients) while accumulating each result in the packed accumulator. Furthermore, two 

window boxes are efficiently processed in parallel. This implementation using CAX leads 

to a large reduction in the instruction count while reducing register pressure and memory 

traffic. Table 13 presents a comparison of instruction counts using the baseline, MDMX, 

and CAX ISAs for a Sobel operation of two 3×3 window pixels. The instruction count 

decreases 84% with CAX, but only 68% with MDMX over the baseline version.   
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Figure 46. The procedure of a color edge detection implementation using the CAX 
instructions. 
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Table 13. A comparison of instruction counts using the baseline, MDMX, and 
CAX ISAs for a Sobel operation of two 3×3 window pixels. 

 Baseline MDMX CAX 
ALU 344 82 43 
MEM 110 38 20 

MDMX - 22 - 
CAX - - 11 

Scalar Instructions 54 22 10 
Total 508 164 84  

 

The Vector Median Filter. The well-known vector median filter (VMF) is widely used 

to filter out noise from color images [69]. In this study, the VMF using the YCbCr 

channels (see Section 2.4.1) is implemented on the SIMPil system. The most time-critical 

operation for this implementation is the sum of pixel differences between pixels in the 

window of size N×N (3×3 in this study). With the ADACC_CRCBY instruction, a VMF 

operation can be performed on the two window blocks of pixels in parallel. In particular, 

ADACC_CRCBY calculates the absolute differences of pairs of the sub-elements in the 

two source registers while accumulating each result in the packed accumulator. Thus, one 

ADACC_CRCBY instruction reduces several baseline ALU operations and memory 

accesses for intermediate results (since immediate results are stored in the accumulator 

rather than in memory). Table 14 presents the number of instruction counts using the 

baseline, MDMX, and CAX ISAs for computing the median within two 3×3 window 

pixels. The instruction count decreases 89% with CAX, but only 79% with MDMX over 

the baseline version.  
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Table 14. A comparison of the number of instructions using the baseline, MDMX, 
and CAX ISAs for computing the median within two 3×3 window pixels. 

 Baseline MDMX CAX 
ALU 3,510 414 248 
MEM 499 178 98 

MASK 448 16 16 
MDMX - 160 - 

CAX - - 80 
Scalar Instructions 948 338 169 

Total 5,355 1,106 611  
 

The Scalar Median Filter. Like the VMF, the scalar median filter (SMF) is also a noise 

reduction technique that eliminates impulse noise spikes from an image by taking the 

median pixel value in a 3×3 window that is stepped across the entire image. However, the 

SMF differs from the VMF in that it separately replaces each corrupted color component 

(e.g., Y, Cb, and Cr) with the median from the reference and its neighboring components.  

The most computationally intensive operation of the SMF implementation is to 

find the median pixel value from the nine pixels in the processing window. The 

MIN_CRCBY and MAX_CRCBY instructions accelerates the bubble sorting algorithm by 

comparing pairs of sub-elements in the two source registers while outputting the 

minimum or maximum values of the corresponding sub-elements. These instructions lead 

to a significant reduction in the ALU and MASK instruction counts. Table 15 presents a 

comparison of instruction counts using baseline, MDMX, and CAX ISAs for a sorting 

operation of two 3×3 widow pixels. The instruction count decreases 88% with CAX, but 

only 75% with MDMX over the baseline version.  
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Table 15. A comparison of instruction counts using the baseline, MDMX, and CAX 
ISAs for a sorting operation of two 3×3 window pixels.  

 Baseline MDMX CAX 
ALU 4,374 312 157 
MEM 516 516 259 

MASK 384 - - 
MDMX - 256 - 

CAX - - 128 
Scalar Instructions 308 308 154 

Total 5,582 1,392 698  
 

Vector Quantization. Full search vector quantization (VQ) [35] is an attractive 

technique for low rate and low power image and video compression. It has a 

computationally inexpensive decoding process and low hardware requirement for 

decompression, while still achieving an acceptable picture quality at high compression 

ratios. However, the encoding process is computationally very intensive. Computational 

cost can be reduced by using suboptimal approaches such as tree-searched vector 

quantization (TSVQ) [35]. In this study, a parallel implementation of full search VQ is 

implemented on a SIMD array system to overcome this computational burden. VQ is 

defined as a mapping of k-dimensional vectors in vector space Rk onto a finite set of 

vectors V = { yi ; i = 1,…,N}, where N is the size of the codebook. Each vector yi = 

(y0,…,yk-1) is called a codebook vector or codeword. Only index i of the resulting code 

vector is sent to the decoder. At the decoder, an identical copy of the codebook is 

retrieved as the encoder by a simple table-lookup operation. The compression ratio 

depends on the cardinality of the codebook, usually much smaller than that of the input 

domain.  

In this implementation, a codebook of 256 4×4 code vectors designed off-line 

through a standard Linda-Buzo-Gray (LBG) training process is used to achieve a 0.5 bit 
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per pixel encoding for an image in 24-bit color, using 4×4 (k = 16). In the 2-D case, non-

overlapping vectors are extracted from the input image by grouping a number of 

contiguous pixels to retain available spatial correlation of data. The input blocks are then 

compared with the codebook in a parallel systolic fashion, with a large number of them 

compared at any given time in parallel. A key enabling role is played by the toroidal 

structure of the interconnection network, which enables communication among the nodes 

on opposite edges of the mesh.  

The most time-critical operation for this implementation is the distortion 

calculation between a 4×4 input block and a local codeword. The distortion can be 

efficiently calculated with the ADACC_CRCBY instruction by comparing pairs of sub-

elements in the two source registers while accumulating each result in the packed 

accumulator. Table 16 shows a comparison of instruction counts using the baseline, 

MDMX, and CAX ISAs for a full search VQ operation of 4×4 pixels. The instruction 

count decreases 88% with CAX, but only 81% with MDMX over the baseline version.  

Table 16. A comparison of instruction counts using the baseline, MDMX, and CAX 
ISAs for a VQ operation of 4×4 pixels. 

 Baseline MDMX CAX 
ALU 483 37 29 
MEM 80 34 18 

MASK 34 - - 
MDMX - 17 - 

CAX - - 9 
Scalar Instructions 34 34 18 

Total 631 122 74  
 

Motion Estimation. Motion estimation (ME) is a core building block in several video 

compression standards (e.g., H.26x and MPEG). Compression is achieved through a 

block-matching algorithm (BMA) that subdivides the current frame into small reference 
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blocks and then finds the best match for each block among the available blocks in the 

previous frame. In this implementation, the macroblock size of 16×16 pixels and the 

search range of ±8 are used. Since the objective of this study is to achieve accurate 

motion estimates, both luminance and chrominance components are used in the program 

(i.e., FSVBMA) rather than only the luminance component in the standard BMA (see 

Section 2.4.3).  

The most time-critical operation is the sum of mean absolute differences (MAD) 

computation that involves a reference block of pixels and all the candidate blocks of 

pixels in the search area. Similar to the VQ implementation, the MAD block is efficiently 

processed with the ADACC_CRCBY instruction by comparing pairs of the sub-elements in 

the two source registers (one containing pixels within the candidate block; the other 

containing pixels within the reference block) while accumulating each result in the 

packed accumulator. This process is iterated until all the candidate blocks are compared 

by the reference block. Table 17 shows a comparison of instruction counts using the 

baseline, MDMX, and CAX ISAs for a MAD computation of 16×16 pixels. The 

instruction count decreases 85% with CAX, but only 75% with MDMX over the baseline 

version.   

Table 17. A comparison of the number of instructions using the baseline, MDMX, 
and CAX ISAs for a MAD operation of 16×16 pixels. 

 Baseline MDMX CAX 
ALU 392 42 28 
MEM 33 33 17 

MASK 48 - - 
COMM 6 6 6 
MDMX - 16 - 

CAX - - 8 
Scalar Instructions 33 33 17 

Total 512 130 76  
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Overall, CAX clearly outperforms MDMX in consistently reducing the number of 

instructions required for each application. For portable multimedia systems, battery life 

performance and system area are as important as processing performance. An evaluation 

of energy- and area-related performance is presented in the following sections. 

 

4.5.2 Energy Efficiency Results 

Figure 47 shows energy consumption for the SIMPil system with MDMX and 

CAX, normalized to the baseline version. Each bar divides the energy consumption into 

the functional unit (FU, combines ALUs, Barrel Shifter, and MACC), storage (combines 

Register file and Memory), and others (combines Comm., Sleep, Serial, and Decoder) 

categories. The use of CAX significantly reduces energy consumption for all the 

programs because of a large reduction in the issued instruction count, in which all the 

implementations have been examined at the same 80 MHz clock frequency and 100nm 

technology. (This study assumes that unused units dissipate zero power.) CAX reduces 

energy consumption from 80% (FSVBMA) to 89% (VMF), while MDMX reduces 

energy consumption from only 60% (FSVBMA) to 79% (VMF) over the baseline version. 

As expected, the FSVBMA program using CAX shows the lowest reduction rate in the 

energy consumption metric because of the smallest reduction rate in the instruction count. 

Since CAX reduces a significant number of ALU and memory instructions, less energy is 

spent on the ALU and storage units.  



 109

20.1

39.7

16.3

32.4

11.0
21.0

12.4

27.4

16.8

33.5

15.3
25.9

100.0100.0100.0100.0100.0100.0

0
10
20
30
40
50
60
70
80
90

100

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

Chromakey VSobel SMF VMF VQ FSVBMA

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Others
Storage
FU

Figure 47. Energy consumption for the SIMPil system with CAX and MDMX, 
normalized to the baseline version. 

 

Figure 48 presents additional data showing energy efficiency, the task throughput 

achieved per unit of Joule, for the SIMPil system with MDMX and CAX, normalized to 

the baseline version. CAX outperforms MDMX across all the programs in the energy 

efficiency metric, indicating a 65% increase with CAX, but only a 21% increase with 

MDMX. This is because CAX achieves higher sustained throughputs with a small 

increase in the system power. Increasing energy efficiency improves sustainable battery 

life for given system capabilities. 
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Figure 48. Energy efficiency for the SIMPil system with CAX and MDMX, 
normalized to the baseline version.  

 

4.5.3 Area Efficiency Results 

Area efficiency is the task throughput achieved per unit of area. Figure 49 shows 

the area efficiency for the SIMPil system with MDMX and CAX, normalized to the 

baseline version. As with energy efficiency, CAX outperforms MDMX for all the 

programs in the area efficiency metric, indicating a 66% increase with CAX, but only a 

21% increase with MDMX. This is because CAX achieves higher sustained throughput 

with smaller area overhead. Increasing area efficiency improves component utilization 

for given system capabilities. 
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Figure 49. Area efficiency for the SIMPil system with CAX and MDMX, 
normalized to the baseline version. 

 

4.6 Conclusion 

Future embedded imaging products must achieve greater processing performance 

while maintaining low cost and low energy consumption. Application-specific embedded 

systems (e.g., 2-D SIMD arrays) have demonstrated the potential to meet the high 

computational requirements and cost goals. The SIMPil array, for example, benefits from 

the exploitation of abundant data parallelism inherent in multimedia applications, short 

wire lengths, and specialized microarchitecture to provide a significant improvement in 

energy efficiency. While 2-D SIMD arrays, including SIMPil, provide a convenient 

parallel processing model with moderate generality for processing 2-D image sequences, 

their performance is limited by the vector processing of 3-D YCbCr channels performed 

within innermost loops. 

The CAX instruction set has been presented to eliminate this performance 

limitation by including parallel operations on two packed 16-bit YCbCr data into the 
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instruction set architecture of a representative 32-bit datapath SIMD array. CAX obtains 

greater concurrency and efficiency for processing color image sequences by harnessing 

parallelism within the human perceptual color space (e.g., YCbCr) not reachable by other 

multimedia extensions. In particular, the key findings on a specified SIMD array 

architecture are the following:  

• CAX achieves a speedup ranging from 5.2x to 8.9x (an average of 6.7x) over 

the baseline performance. This is in contrast to MDMX, which achieves a 

speedup ranging from 3x to 5x (an average of 3.8x) over the baseline.  

• CAX reduces energy consumption from 80% to 89%, while MDMX reduces 

energy consumption only from 60% to 79% over the baseline version. 

• Unlike MDMX, CAX benefits from greater concurrency and reduced pixel 

word storage. As a result, the area efficiency increases from 36% to 184% (an 

average of 75%) with CAX, but only 8% to 78% (an average of 25%) with 

MDMX. In addition, the energy efficiency increases from 35% to 164% (an 

average of 75%) with CAX, but only 2% to 63% (an average of 25%) with 

MDMX. Increasing area and energy efficiencies imply augmenting 

component utilization and sustainable battery life, respectively, for given 

system capabilities.   

• Furthermore, CAX improves the performance and efficiency with a mere 3% 

increase in the system area and a 5% increase in the system power, while 

MDMX requires a 14% increase in the system area and a 16% increase in the 

system power. Although these overheads can be reduced through optimized 
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design techniques and advanced VLSI technologies, CAX still has the 

potential to provide higher processing performance and efficiency. 

In the next chapter, several CAX-PE architectures based on different vector-pixel-

per-processing-element values are analytically studied to identify an ideal design space 

that delivers sufficient processing performance with the lowest cost and the longest 

battery life.   
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CHAPTER 5 

ANALYTICALLY DETERMINING OPTIMAL GRAIN SIZES IN EMBEDDED 
SIMD ARCHITECTURES 

 

5.1 Introduction   

A significant issue for focal-plane SIMD image processing architectures is 

determining the ideal grain size that provides sufficient processing performance with the 

lowest cost and the longest battery life for target applications. In color imaging 

applications, the grain size of the processing elements (PEs) determines the number of 

vector pixels that are mapped to each PE, which is called the vector-pixel-per-processing-

element (VPPE) ratio. The VPPE ratio has a significant impact on the overall area and 

energy efficiency of the computational array.  

This chapter explores the effects of different VPPE ratios on performance and 

efficiency for a specified PE architecture and implementation technology using cycle 

accurate simulation and analytical technology modeling. Cycle accurate simulation 

provides execution statistics such as cycle count, dynamic instruction histogram, PE 

utilization, and PE memory usage. An analytical technology modeling tool estimates 

technology parameters such as system area, power, latency, and clock frequency. These 

databases are combined to show the impact of different VPPE values on the performance 

and efficiency metrics. Moreover, the impact of CAX on each VPPE configuration is 

evaluated to identify the most efficient PE design that delivers sufficient processing 

performance with the lowest cost for a specified PE architecture and implementation 

technology. Experimental results using architectural and workload simulation indicate 

that CAX outperforms MDMX for all of the VPPE configurations for full search vector 
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quantization (FSVQ) in terms of processing performance, area efficiency, and energy 

consumption. Results also suggest that VPPE = 16 with CAX achieves high processing 

performance with the lowest cost. 

The rest of this chapter is organized as follows. The next section discusses related 

research. Section 5.3 describes the VPPE variation while illustrating the correlation 

among color image size, VPPE ratio, and PE architecture. Section 5.4 presents modeled 

SIMD architectures that have different VPPE values and different amounts of local 

memory. Section 5.5 evaluates system area and power for each VPPE configuration with 

and without CAX or MDMX using technology modeling. Section 5.6 analyzes execution 

performance and efficiency for each case. Section 5.7 concludes this chapter.  

 

5.2 Related Research 

In the last decade, with the rapid progress in VLSI technology, tremendous 

numbers of transistors have enabled the monolithic integration of traditional imaging 

systems such as a charge-coupled device (CCD) array, an analog-to-digital conversion 

(ADC) unit, and a DSP [30]. The performance of these systems, however, is limited by 

the serialized communications between the different modules. As a solution, CMOS 

image sensors allow direct pixel access and enable their ability to be co-located [29] or 

vertically integrated [72, 8] with the CMOS computing layer. However, none of these 

systems have addressed the issue of how much processing capability is needed for each 

PE per pixel directly mapped to it.  

Recently, Gentile et al. have presented a study to determine the impact of varying 

granularity of mapping an image to the PE array [33]. In [39], Herbordt et al. examined 
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the effects of varying the array size, the datapath, and the memory hierarchy on both cost 

and performance. However, these studies measured processing performance and 

efficiency on sets of grayscale (1-D) image processing applications, failing to provide a 

quantitative understanding of performance and efficiency with respect to 3-D vector 

processing for different PE configurations.  

This chapter evaluates the effects of different VPPE ratios on performance and 

efficiency with respect to 3-D image processing for a specified PE architecture and 

implementation technology. This chapter also evaluates the impact of CAX on each 

VPPE configuration to identify the most efficient PE granularity.  

 

5.3 Vector-Pixel-per-Processing-Element Ratio 

Reconfigurable silicon area usage within an integrated pixel processing array is a 

key issue for focal-plane SIMD array architectures because of limited chip resources and 

varying application requirements. To determine the effect of varying silicon area usage 

on the reference SIMD array, the VPPE ratio (number of vector pixels mapped to each 

processor within a SIMD architecture) is selected as the design variable in this study. 

Figure 50 pictorially illustrates the assignment of vector pixels based on the VPPE ratio. 

In this study, seven VPPE values are used, defined as VPPE = 22i, i = 0,…,6. The 

corresponding number of processing elements is defined as NPE = Nimg/VPPE in which 

Nimg is the number of pixels in the image. Since all the configurations use a fixed three-

band 256×256 pixel image, the number of PEs in a 256 × 256 pixel system is determined 

to be NPE = 22(8-i), i = 0,…,6. Different VPPE configurations and their parameters are 

described next.  
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Figure 50. Examples of vector pixels per processing element ratio. 

 

5.4 Modeled PE Architectures 

Three different reference architectures (e.g., baseline SIMPil, MDMX-SIMPil, 

and CAX-SIMPil) are used to evaluate the effects of different VPPE ratios on 

performance and efficiency. Each configuration has a different VPPE ratio and a different 

amount of local memory to store input images and temporary data produced during 

processing. Since each CAX configuration requires smaller pixel word storage than the 

corresponding baseline and MDMX configurations, the local memory size is set to twice 

the VPPE ratio for the CAX configurations but four times the VPPE ratio for the baseline 

and MDMX configurations, except for VPPE = 1 where eight words are used for all three 

versions. Table 18 describes all the configurations and their local memory sizes. The next 

section describes the system area and power for each configuration using technology 

modeling. 
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Table 18. VPPE configurations and their parameters. 

Parameter Value 

# of PEs 65,536 16,384 4,096 1,024 256 64 16 
VPPE values 1  4 16 64 256 1,024 4,096 
Base (Memory/PE) [word] 8 16 64 256 1,024 4,096 16,384 
MDMX (Memory/PE) [word] 8 16 64 256 1,024 4,096 16,384 
CAX (Memory/PE) [word] 8 8 32 128 512 2,048 8,192 

VLSI Technology 100 nm 
Clock Frequency 50 MHz 
Interconnection Network Mesh 
intALU/intMUL/Barrel 
Shifter/intMACC/Comm 1 / 1 / 1 / 1 / 1 

 
 

5.5 System Area and Power Evaluation using Technology Modeling  

The GENESYS tool [28] is used to determine implementation characteristics (e.g., 

system area and power) for each PE configuration. Figures 51 and 52 show system area 

and power estimations versus VPPE values, respectively, in which all the configurations 

were examined in the same 100nm technology and 50 MHz node frequency. For VPPEs 

at or above 256, both system area and power asymptotically approach a lower limit where 

local memory area dominates. Below this point, however, both system area and power 

decrease linearly. As a result, a number of configurations are not feasible, requiring 

silicon area greater than 1,000 mm2 (the ITRS projected limit in 100 nm CMOS 

technology). Although some configurations with power above three watts are not feasible 

as well in terms of battery operation and heat removal, power reduction techniques 

[49][5][17] (e.g., clock frequency scaling) allow the power dissipation levels required by 

portable, battery-operated devices at the expense of performance (execution time).  
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Figure 51. System area versus VPPE. 
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Figure 52. Peak system power versus VPPE. 

 

Figures 53 and 54 present additional data showing the distribution of each 

functional unit’s area and power, respectively, for SIMPil with MDMX and CAX, 

normalized to the baseline configuration. For VPPEs at or above 64, CAX drastically 

reduces both system area and power over the baseline configuration because of a large 

reduction in local memory. Below this point, however, CAX requires higher system area 

and power than the baseline since the area overhead of the CAX execution unit is more 
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significant than the benefit of the reduced local memory area. MDMX, however, 

increases both system area and power for all the configurations. These system areas and 

powers are combined with application simulations to determine both area and energy 

efficiency for each case, which is presented next.  
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Figure 53. Impact of CAX on system area. 
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Figure 54. Impact of CAX on system power. 
 

5.6 Experimental Results 

Cycle accurate simulation and technology modeling are used to determine 

performance and efficiency for each architectural configuration for full search vector 
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quantization (FSVQ). (The parallel FSVQ implementation has been discussed in Section 

4.5.1.2.) The execution cycle count, area efficiency, and energy consumption of each case 

form the basis of the study comparison.  

 

5.6.1 Execution Performance Evaluation Results 

This section evaluates the effect of different VPPE ratios on processing 

performance for each case. The impact of CAX on each VPPE configuration is also 

presented.   

5.6.1.1 Impact of Varying VPPE Ratios on Processing Performance 

Figure 55 shows sustained throughputs for different VPPE configurations with 

and without CAX or MDMX. As expected, the sustained throughput decreases as the 

VPPE value increases because of less data parallelism (or a decrease in available 

processing elements). 
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Figure 55. Sustained throughputs for different VPPE configurations with and 
without CAX or MDMX.  
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5.6.1.2 Impact of CAX on Different VPPE Configurations  

Figure 56 shows the distribution of issued instructions for each VPPE 

configuration with CAX and MDMX, normalized to the baseline version. Each bar 

divides the instructions into the arithmetic-logic-unit (ALU), memory (MEM), 

communication (COMM), PE activity control unit (MASK), image pixel loading 

(PIXEL), MDMX, and CAX. Results indicate that the instruction count decreases from 

29.6% (at VPPE = 1) to 89.4% (at VPPE = 4,096) with CAX, but only 24.8% (at VPPE = 

1) to 83.6% (at VPPE = 4,096) with MDMX over the baseline version. As expected, both 

CAX and MDMX are less effective at reducing vector instructions for VPPEs below 16. 

This is because high inter-PE communication operations are involved that are not 

affected by CAX or MDMX.  
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Figure 56. Issued vector instructions for each VPPE configuration with MDMX 
and CAX, normalized to the baseline version. 

 

Figure 57 presents additional data showing speedups for each VPPE configuration 

with CAX and MDMX, normalized to the baseline performance. CAX outperforms 
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MDMX over all VPPE configurations in speedup since CAX consistently reduces more 

instructions required for the program, indicating 1.4× (at VPPE = 1) to 9.2× (at VPPE = 

4,096) with CAX, but only 1.3× (at VPPE = 1) to 6.1× (at VPPE = 4,096) with MDMX 

over the baseline version.  
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Figure 57. Speedups of each VPPE configuration with CAX and MDMX, 
normalized to the baseline performance. 

 

CAX also reduces PE idle cycles from 6% (at VPPE = 1) to 26% (at VPPE = 

4,096) over the baseline version, shown in Figure 58. This is because CAX compare 

instructions allow multiple conditional (MASK) instructions with one equivalent CAX 

instruction, reducing PE idle cycles based on the local information. As with the issued 

vector instruction count, CAX is less effective at reducing PE idle cycles for VPPEs 

below 16 because of high inter-PE communication operations that are not affected by 

CAX. Interestingly, MDMX reduces more PE idle cycles than CAX for all the VPPE 

configurations. This is because CAX reduces an additional large number of PE active 

cycles without a proportional decrease in the PE idle cycles. Table 19 summarizes all 

simulation results. The next two sections evaluate energy- and area-related performance 

for each case. 



 124

0

10

20

30

40

50

60

70

80

90

100

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

PE
 id

le
 c

yc
le

s

Baselne
MDMX
CAX

Figure 58. PE idle cycles for each VPPE configuration with CAX and MDMX, 
normalized to the baseline version.  

 

Table 19. Application performance for each VPPE configuration with and without 
MDMX or CAX running at 50 MHz.   

# of VPPE 
(# of PE) ISA Vector 

Instruction 
Scalar 

Instruction

System 
Utilization 

[%] 

Execution 
Time 

[msec] 

Sustained 
Throughput 
[Gops/sec] 

Baseline 34,101 14,873 80.8 0.68 2,646 
MDMX 25,653 14,873 82.1 0.51 2,798 

1 VPPE 
(65,536 

PEs) CAX 24,014 11,609 82.0 0.48 3,116 
Baseline 59,392 18,731 82.8 1.19 678 
MDMX 24,832 18,731 87.3 0.50 789 

4 VPPE 
(16,384 

PEs) CAX 20,302 13,343 85.1 0.41 873 
Baseline 183,860 20,755 92.0 3.68 188 
MDMX 44,850 20,755 96.0 0.90 235 16 VPPE 

(4,096 PEs) 
CAX 26,602 12,259 93.9 0.53 285 

Baseline 684,689 49,707 92.3 13.69 47 
MDMX 128,657 49,707 96.4 2.57 62 64 VPPE 

(1,024 PEs) 
CAX 81,361 28,203 94.2 1.63 79 

Baseline 2,674,449 164,483 92.0 53.49 12 
MDMX 454,417 164,483 96.2 9.09 16 256 VPPE 

(256 PEs) 
CAX 287,761 91,779 94.0 5.76 21 

Baseline 10,634,161 623,469 92.0 212.68 2.9 
MDMX 1,754,033 623,469 96.2 35.08 4.1 1,024 VPPE 

(64 PEs) 
CAX 1,132,513 347,013 94.0 22.65 5.2 

Baseline 42,464,544 2,455,523 91.9 849.29 0.7 
MDMX 6,944,032 2,455,523 96.2 138.88 1.0 4,096 VPPE 

(16 PEs) 
CAX 4,488,368 1,364,907 94.0 89.77 1.3  
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5.6.2 Area-Related Evaluation Results 

Figure 59 presents area efficiency for each case. All three versions achieve their 

maximum area efficiency at VPPE = 16 due to the inherent definition of the FSVQ 

program. For VPPEs above 16, the area efficiency decreases almost linearly because the 

number of operations to perform the task increases more rapidly with VPPE than the area 

level at which local memory area dominates.  
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Figure 59. Area efficiency versus VPPE. 
 

5.6.3 Energy-Related Evaluation Results 

Figure 60 presents energy consumption for each VPPE configuration with 

MDMX and CAX, normalized to the baseline version. Each bar divides the energy 

consumption into the functional unit (FU, combines ALUs, Barrel Shifter, and MACC), 

storage (combines Register file and Memory), and others (combines Comm., Sleep, 

Serial, and Decoder) categories. The results indicate that energy consumption for each 

program is reduced from 26% (at VPPE = 1) to 89% (at VPPE = 4,096) with CAX, but 

only 24% (at VPPE = 1) to 84% (at VPPE = 4,096) with MDMX over the baseline. For 
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VPPEs below 16, both MDMX and CAX are less efficient at reducing energy 

consumption because of the smaller reduction rate in the instruction count.  
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Figure 60. Energy consumption for each VPPE configuration with CAX and 
MDMX, normalized to the baseline version. 

 

5.7 Conclusion 

Reconfigurable silicon area usage within an integrated pixel processing array is a 

key issue for focal-plane SIMD architectures because of limited chip resources and 

varying application requirements. In this regard, this chapter has explored the effects of 

varying the VPPE ratio (number of vector pixels mapped to each processor within a 

SIMD architecture). Moreover, the impact of CAX on each VPPE configuration has been 

evaluated to identify the most efficient grain size for a specified SIMD array and 

implementation technology. Experimental results using architectural and workload 

simulation indicate that CAX outperforms MDMX for all of the VPPE configurations for 

full search vector quantization in terms of processing performance, area efficiency, and 

energy reduction. Results also suggest that high processing performance with the lowest 

cost is achieved at VPPE = 16 with CAX.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

This dissertation has addressed application-, architecture-, and technology-level 

issues in existing processing systems to provide efficient processing of multimedia in 

many, or ideally all, of its forms. In particular, this dissertation has explored color 

imaging for multimedia while focusing on two architectural enhancements for embedded 

color video and still-image processing: (1) a pixel-truncation technique and (2) a color-

aware multimedia instruction set extension (CAX) for embedded multimedia systems. 

Unlike typical subsampling techniques (e.g., 4:2:2 and 4:2:0) used in image and video 

compression applications, the pixel-truncation technique reduces information contents in 

individual pixel word sizes rather than in each dimension while inheriting the 

chrominance components (Cb and Cr) of the luminance (Y). Thus, this technique 

significantly reduces the bandwidth and memory required to transport and store color 

images without a perceivable distortion of color while maintaining the pixel storage 

format of vector processing in which each pixel computation is simultaneously performed 

on 3-D color components. Employing the reduced pixel format, CAX supports parallel 

operations on two-packed, truncated 16-bit YCbCr data in a 32-bit datapath processor, 

providing greater concurrency and efficiency for processing color image sequences. Thus, 

CAX, coupled with the pixel-truncation technique, enables higher degrees of parallelism 

and performance required by emerging imaging applications. 
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This dissertation has presented the impact of CAX on performance and efficiency 

with respect to color imaging applications in three major processor architectures: 

dynamically scheduled (superscalar), statically scheduled (VLIW), and embedded SIMD 

array processors. Results from the research presented in this dissertation are summarized 

in the rest of this chapter along with future research directions. 

 

6.1 Summary of Results 

  

6.1.1 Exploring Color Imaging for Multimedia 

This research explored color imaging for multimedia to provide new opportunities 

that define an efficient architecture for embedded multimedia systems. Several color 

specification models were evaluated to identify the most suitable color space that 

achieves a natural extension of the imaging operation. In addition, the use of color 

information in multimedia applications was investigated using a vector approach, 

improving the accuracy of the process and overall image quality. Furthermore, several 

color representations with varying pixel word sizes were evaluated to determine the most 

efficient representation in terms of storage requirements and color accuracy, In particular, 

a 16-bit (6:5:5) YCbCr representation was examined for reduced-memory, embedded 

video processing. The 16-bit YCbCr representation reduces the average per pixel word 

storage requirements by 33% when compared to the baseline 24-bit YCbCr format. 

Overall video quality remains high, and color imaging applications continue to perform 

well using the reduced pixel format. 
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6.1.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors 

A new color-aware multimedia extension (CAX) for dynamically scheduled 

superscalar processors was presented to support color imaging applications. Unlike 

typical multimedia extensions, CAX obtains substantial performance and code density 

improvements through direct support of color data processing. Rather than depending 

solely on generic subword parallelism, CAX supports parallel operations on two-packed, 

quantized 16-bit YCbCr data in a 32-bit datapath processor, providing greater 

concurrency and efficiency for processing color image sequences. The key findings 

follow. CAX achieves a speedup ranging from 3× to 5.8× over the baseline performance 

on a dynamically scheduled, 4-way issue superscalar processor. This is contrast to 

MDMX (a representative MIPS multimedia extension), which achieves a speedup of only 

1.6× to 3.2× over the baseline. CAX also outperforms MDMX in energy reduction (68% 

to 83% reduction with CAX, but only 39% to 69% reduction with MDMX over the 

baseline version). Furthermore, CAX exhibits higher relative performance for low-issue 

rates. These results demonstrate that CAX is an ideal candidate for embedded multimedia 

systems in which high issue rates and out-of-order execution are too expensive. 

Performance improved by CAX was further enhanced through loop unrolling 

(LU) that reorganizes and reschedules the loop body. LU provides an additional 

performance gain of 4%, 19%, and 21% for the baseline, MDMX, and CAX versions, 

respectively. These results demonstrate that the CAX plus LU technique has the potential 

to provide the higher degrees of parallelism and performance required by emerging 

imaging applications. 
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6.1.3 Implementation and Evaluation of the Color-Aware Instruction Set for Low-
Memory, Embedded Video Processing in Data Parallel Architectures 

The CAX instruction set was implemented and evaluated for color imaging 

applications on a representative SIMD array architecture. CAX harnesses parallelism 

within the human perceptual color space (e.g., YCbCr). In addition, CAX’s ability to 

reduce data format size reduces system cost. The key findings are the following. 

• CAX outperforms MDMX across all the selected programs in speedup (5.2× to 

8.8× with CAX, but only 3× to 5× with MDMX over the baseline performance) 

on the same data parallel SIMD execution platform.  

• CAX also outperforms MDMX in both area efficiency (a 75% increase versus a 

25% increase) and energy efficiency (a 75% increase versus a 24% increase), 

resulting in better component utilization and sustainable battery life. 

• Furthermore, CAX improves the performance and efficiency with a mere 3% 

increase in the system area and a 5% increase in the system power, while 

MDMX requires a 14% increase in the system area and a 16% increase in the 

system power.  

 

6.1.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD 
Architectures 

Reconfigurable silicon area usage within an integrated pixel processing array is a 

key issue for focal-plane SIMD imaging architectures because of limited chip resources 

and varying application requirements. The effects of varying the VPPE ratio (number of 

vector pixels mapped to each processor within a SIMD architecture) on performance and 

efficiency were evaluated for a specified PE architecture and implementation technology. 
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Moreover, the impact of CAX on each VPPE configuration was evaluated to identify the 

most efficient PE granularity that delivers required performance with the lowest cost and 

the longest battery life. Experimental results for a case study, full search vector 

quantization, indicate that the VPPE ratio at 16 with CAX provides the most efficient 

operation for the specified workload.  

 

6.1.5 Static versus Dynamic Scheduling 

The performance of static versus dynamic architectures with and without CAX or 

MDMX was compared to determine whether static or dynamic scheduling is more 

desirable for color imaging applications. Experimental results through a common 

simulation framework indicate that the dynamic approach with a four-way issue achieves 

an average speedup of 2.7× over the static approach with a four-way issue. This is 

because the static approach is limited by the basic block scheduling algorithm, and the 

static code schedules are poorly adapted to the run-time conditions of the processor. CAX 

achieves an additional speedup of 7.6×, while MDMX achieves an additional speedup of 

only 2.7×. 

 

6.2 Future Research Directions 

The research presented in this dissertation is the first to explore and evaluate color 

imaging for multimedia with novel color-aware multimedia instruction sets in various 

processor architectures including superscalar, VLIW, and embedded SIMD imaging 

processors. While a comprehensive evaluation regarding application-, architecture-, and 
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technology-level issues for supporting color imaging applications has been provided in 

this dissertation, a number of interesting issues exist for future research.  

 

6.2.1 Color Imaging Metrics and Cost Models 

• Evaluate more color space models for identifying the most advantageous color 

space that achieves the most effective results in color image processing.  

• Develop reliable quality metrics for visual performance evaluation because, in 

many cases, objective image quality measures, such as the mean square error 

(MSE), the mean absolute error (MAE), and signal-to-noise ratio (SNR), do not 

provide an accurate or even correct measure of the actual visual quality 

degradation.  

• Develop hardware implementation cost models for several color representations 

with and without the pixel-truncation technique with respect to the target 

applications to analyze the implementation efficiency. 

 

6.2.2 An In-depth Analysis of the CAX Instruction Set  

• Perform an in-depth analysis of CAX with completed video-processing 

applications, such as MPEG and H.26L. This will be performed in the context of 

various processor architectures, ranging from fully custom to fully programmable 

architectures (e.g., ASICs, superscalar, VLIW, and embedded media processors). 

This will likely result in adding new instructions (in particular, those performing 

complex operations) for the completion of the CAX instruction set.  
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• Compare CAX with a wider ranger of multimedia extensions, industrial as well as 

those proposed in academic research, while extending the datapath by 64 bits.  

• Explore compiler support for extracting color subword parallelism from high level 

language programs to overcome tedious hand optimization and/or special 

programming libraries.  

 

6.2.3 Adaptable and Scalable Architectures 

• Extend the analysis for variable VPPE mappings to a variety of color imaging 

applications. This will provide accurate database (e.g., performance, area 

efficiency, and energy efficiency) for each VPPE configuration. 

• Develop heuristic techniques for traversing the design space and extracting both 

data-level parallelism (DLP) and subword parallelism from a high level language 

to automatically analyze various workloads. Continued advances in multimedia 

computing will rely on architecture scalability and adaptability. 
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APPENDIX A 

STATIC VERSUS DYNAMIC SCHEDULING 

This appendix compares the performance of static and dynamic architectures with 

and without CAX or MDMX to determine whether static or dynamic scheduling is more 

desirable for color imaging applications. All the simulations are conducted through a 

common simulation framework. Experimental results using the SimpleScalar-based 

simulator and a retargeting tool indicate that the dynamic approach with a four-way issue 

achieves an average speedup of 2.7× over the static approach with a four-way issue. CAX 

achieves an additional speedup of 7.6×, but MDMX achieves an additional speedup of 

only 2.7×. 

 

Simulation Methodology 

Figures 61(a) and (b) present methodology frameworks for dynamically- and 

statically-scheduled programs, respectively. The Simplescalar-based simulator [2] is used 

to profile execution statistics for the three different versions (e.g., baseline, MDMX, and 

CAX) of both static and dynamic programs. For static programs, however, a modified 

retargeting tool [11] is also used to retarget portable ISA (PISA) assembly code into 

PISA-derived code amenable for statically-scheduled simulations on the Simplescalar-

based simulator with the out-of-order execution capability disabled. Since existing tools, 

such as a PISA assembler, linker, and binary loader, can be immediately used without 

modifications, the simulation process is simplified.   
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Figure 61. Methodology frameworks: (a) dynamically-scheduled simulations and (b) 
statically-scheduled simulations. 

 

The MDMX and CAX versions of the programs are created by replacing 

fragments of the baseline assembly language with ones containing MDMX and CAX 

instructions. The three different versions of each program have the same parameters, data 

sets, and calling sequences. Since the target platform is an embedded system, operating 

system interface code (e.g., file system access) is not included in this study. In the 

experiment, five color imaging applications (e.g., VSobel, SMF, VMF, VQ, and 

FSVBMA), summarized in Table 4, are executed on the Simplescalar simulator. 

Moreover, the same technology and processor configuration, summarized in Table 20, are 

used. 
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Table 20. Default processor parameters. 
Parameter Value 

Fetch /decode/issue/commit width 4 instructions/cycle 
intALU/intMUL/fpALU/fpMUL/Mem 4/2/2/1/4 

RUU (window) size 16 instructions 
LSQ (Load Store Queue) 8 instructions 

Branch Predictor Combined predictor (1K entries) of bimodal predictor 
(4K entries) table and 2-level predictor (2-bit counters 
and 10-bit global history) 

L1 D-cache 128-set, 4-way, 32-byte line, LRU, 1-cycle hit, total 
of 16 KB 

L1 I-cache 512-set, direct-mapped 32-byte line, LRU, 1-cycle 
hit, total of 16 KB 

L2 unified cache 1,024-set, 4-way, 64-byte line, LRU, 6-cycle hit, total 
of 256 KB 

Memory latency (memory width) 50 cycles for first chunk, 2 thereafter (64 bits) 
Instruction TLB 16-way, 4,096 byte page, 4-way, LRU, 30 cycle miss 

penalty 
Data TLB 32-way, 4,096 byte page, 4-way, LRU, 30 cycle miss 

penalty  
 

Experimental Results 

Figure 62 shows execution performance (speedup in executed cycles) for two 

variations of the baseline architecture, each without subword parallelism, with MDMX, 

and with CAX. The two architecture variations are (1) static and four-way issue and (2) 

dynamic and four-way issue. All the execution performance is normalized to the baseline 

static performance without subword parallelism. The dynamic approach without subword 

parallelism achieves a speedup ranging from 2.6× to 3× (an average speedup of 2.7×) 

over the baseline static performance. This is because the static approach is limited by the 

basic block scheduling algorithm, and the static code schedules are poorly adapted to the 

run-time conditions of the processor. CAX achieves an additional speedup of 7.6×, but 

MDMX achieves an additional speedup of only 2.7×. This is because CAX supports more 

color data elements in a register while processing these separate color elements in parallel.  
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Figure 62. Speedups for the dynamically scheduled superscalar processor with and 
without MDMX or CAX over the baseline static performance without subword 
parallelism.  

 

Conclusion 

Although static architectures (e.g., VLIW and DSP) have been exclusively used in 

existing media processors because of low cost and power, they will not meet the higher 

demands for performance required by emerging multimedia applications. Thus, the 

dynamic aspects of processing become more pronounced. This appendix has compared 

the performance of dynamic versus static approaches with and without subword 

parallelism to determine which approach is more desirable for color imaging applications. 

Experimental results using a common simulation framework indicate that the dynamic 

approach with a four-way issue achieves an average speedup of 2.7× over the static 

performance with a four-way issue. CAX achieves an additional speedup of 7.6×.   
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APPENDIX B 

CAX: A COLOR-AWARE INSTRUCTION SET 

CAX applied to current microprocessor ISAs is targeted to accelerating color 

image- and video-processing applications. Combined with a 32-bit datapath processor, 

CAX supports parallel operations on two-packed, quantized 16-bit (6:5:5) YCbCr data, 

providing greater concurrency and efficiency for processing color image sequences. 

Moreover, CAX employs 128-bit color-packed accumulators that provide solutions to 

overflow and other issues caused by packing data as tightly as possible by implicit width 

promotion and adequate space.  

 

CAX Instructions (grouped by functionality) 

Table 21 lists all the CAX instructions available. These CAX instructions exploit 

color subword parallelism within the context of three major processor architectures: 

dynamically scheduled (superscalar), statically scheduled (VLIW), and embedded SIMD 

array processors.   

Table 21: CAX instruction descriptions. 

Instructions Description 

Parallel ALU Instructions 
C_PADD_SW Parallel Addition – Signed Wrap Around 

C_PADD_UW Parallel Addition – Unsigned Wrap Around 

C_PADD_SS Parallel Addition – Signed Saturation  

C_PADD_US Parallel Addition – Unsigned Saturation 

C_PSUB_SW Parallel Subtraction – Signed Wrap Around 

C_PSUB_UW Parallel Subtraction – Unsigned Wrap Around 

C_PSUB_SS Parallel Subtraction – Signed Saturation  

C_PSUB_US Parallel Subtraction – Unsigned Saturation 

C_PAVG_U Parallel Average – Unsigned  
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Table 21: (Continued) 
Parallel Compare Instructions 
C_PCMP_EQ Parallel Compare Equal 

C_PCMP_NE Parallel Compare Not Equal 

C_PCMP_LT Parallel Compare Less Than – Signed 

C_PCMP_LE Parallel Compare Less Equal – Signed 

C_PCMP_GT Parallel Compare Greater Than – Signed 

C_PCMP_GE Parallel Compare Greater Equal – Signed 

C_PCMP_LT_U Parallel Compare Less Than – Unsigned  

C_PCMP_LE_U Parallel Compare Less Equal – Unsigned  

C_PCMP_GT_U Parallel Compare Greater Than – Unsigned 

C_PCMP_GE_U Parallel Compare Greater Equal – Unsigned  

C_PMAX_U Parallel Maximum – Unsigned 

C_PMIN_U Parallel Minimum – Unsigned 

C_PCMOV Parallel Conditional Move 

Permute Instructions 
C_MIX_L Mix Left 

C_MIX_R Mix Right 

C_ROTATE_R Rotate Right 

C_BCAST_SS Broadcast – Signed Saturation 

Special-Purpose Instructions 
C_PADACC_U_S Parallel Absolute Differences Accumulation with Unsigned Values – 

Signed  
C_PMACC_U_S Parallel Multiply and Accumulation with Unsigned Value – Signed 

C_PMACC_U_S_S Parallel Multiply and Accumulation with U/S Values – Signed  

C_ZACC Zero Accumulator 

C_RACL Read the Least Significant 32 bits of an Accumulator 

C_RACS Read the Second Significant 32 bits of an Accumulator 

C_RACT Read the Third Significant 32 bits of an Accumulator 

C_RACH Read the Most Significant 32 bits of an Accumulator 
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Parallel Add Instructions 

C_PADD_SW Parallel Addition – Signed Wrap Around 
C_PADD_UW Parallel Addition – Unsigned Wrap Around 
C_PADD_SS Parallel Addition – Signed Saturation 
C_PADD_US Parallel Addition – Unsigned Saturation 
 

Format: c_padd_sw  Rd,Rs1,Rs2  
  c_padd_uw  Rd,Rs1,Rs2  
  c_padd_ss  Rd,Rs1,Rs2  
  c_padd_us  Rd,Rs1,Rs2   
  

Description: Rd[i]← Rs1[i] + Rs2[i] 

   

The parallel add instructions add the sub-elements of Rs1 from the 

corresponding sub-elements of Rs2. The results are then written to Rd. 

 

The c_padd_sw instruction uses signed wrap around; the c_padd_uw 

instruction uses unsigned wrap around; the c_padd_ss instruction uses 

signed saturation; and the c_padd_us instruction uses unsigned saturation. 

For saturated arithmetic operations, overflows and underflows clamp to 

the largest or smallest value before writing to the destination register. 
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Parallel Subtract Instructions 

C_PSUB_SW Parallel Subtraction – Signed Wrap Around 
C_PSUB_UW Parallel Subtraction – Unsigned Wrap Around 
C_PSUB_SS Parallel Subtraction – Signed Saturation 
C_PSUB_US Parallel Subtraction – Unsigned Saturation 
 

Format: c_psub_sw  Rd,Rs1,Rs2  
  c_psub_uw  Rd,Rs1,Rs2  
  c_psub_ss  Rd,Rs1,Rs2  
  c_psub_us  Rd,Rs1,Rs2   
  

Description: Rd[i]← Rs1[i] - Rs2[i] 

   

The parallel subtract instructions subtract the sub-elements of Rs2 from 

the corresponding sub-elements of Rs1. The results are then written to Rd. 

 

The c_psub_sw instruction uses signed wrap around; the c_psub_uw 

instruction uses unsigned wrap around; the c_psub_ss instruction uses 

signed saturation; and the c_psub_us instruction uses unsigned saturation. 

For saturated arithmetic operations, overflows and underflows clamp to 

the largest or smallest value before writing to the destination register. 
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Parallel Average Instructions 

C_PAVG_U Parallel Average – Unsigned 
 

Format: c_pavg_u   Rd,Rs1,Rs2   

  

Description: Rd[i]← round(avg(Rs1[i], Rs2[i])) 

   

The parallel average instruction adds the sub-elements of Rs1 to the 

corresponding sub-elements of Rs2. The sums are then shifted right by one 

bit. (If each sum has a positive value, the most significant bit becomes 0 

during shifting to the right. Otherwise, the most significant bit becomes 1.) 

The shifted results are then written to Rd, in which the least significant bit 

of each resulting subword is obtained by a logical or operator of the two 

least significant bits of the shifted sums. These instructions are useful for 

blending algorithms.  

 

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2Rs1

Cr3 Y3Cb3Cr4 Y4Cb4Rs2

avg(Cr3,Cr1) avg(Y3,Y1)avg(Cb3,Cb1)avg(Cr4,Cr2) avg(Y4, Y2)avg(Cb4, Cb2)Rd

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2 Cr1 Y1Cb1Cr2 Y2Cb2Rs1

Cr3 Y3Cb3Cr4 Y4Cb4 Cr3 Y3Cb3Cr4 Y4Cb4Rs2

avg(Cr3,Cr1) avg(Y3,Y1)avg(Cb3,Cb1)avg(Cr4,Cr2) avg(Y4, Y2)avg(Cb4, Cb2) avg(Cr3,Cr1) avg(Y3,Y1)avg(Cb3,Cb1)avg(Cr4,Cr2) avg(Y4, Y2)avg(Cb4, Cb2)Rd
 

Figure 63. An example of a parallel average instruction. 
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Parallel Compare Instructions 

C_PCMP_EQ Parallel Compare Equal 
C_PCMP_NE Parallel Compare Not Equal  
C_PCMP_LT Parallel Compare Less Than – Signed  
C_PCMP_LE Parallel Compare Less Equal – Signed 
C_PCMP_GT Parallel Compare Greater Than – Signed  
C_PCMP_GE Parallel Compare Greater Equal – Signed  
C_PCMP_LT_U Parallel Compare Less Than – Unsigned  
C_PCMP_LE_U Parallel Compare Less Equal – Unsigned 
C_PCMP_GT_U Parallel Compare Greater Than – Unsigned  
C_PCMP_GE_U Parallel Compare Greater Equal – Unsigned  
C_PCMOV Parallel Conditional Move  
 

Format: c_pcmp_fuc   Rd,Rs1,Rs2 (fuc : EQ, NE, LT, LE, GT, GE)  
  c_pcmov   Rd,Rs1,Rs2   
  

Description: Rd[i]← (Rs1[i] cond Rs2[i]) 

   

The c_pcmp_fuc instructions compare pairs of the sub-elements in Rs1 

and Rs2 and write the results to Rd. Depending on the instructions, the 

results are varied for each sub-element comparison. The c_pcmp_eq 

instruction, for example, compares pairs of the sub-elements in Rs1 and 

Rs2 and writes a bit string of 1s for true comparison results and 0s for 

false comparison results to Rd. 

 

In the c_pcmov instruction, the packed operands of Rd are 

1) the sub-elements of Rs1 if each sub-element of Rs2 is equal to all 1s, 

2) Rd otherwise.  
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Parallel Max/Min Instructions 

C_PMAX_U Parallel Maximum – Unsigned  
C_PMIN_U Parallel Minimum – Unsigned   
 

Format: c_pmax_u  Rd,Rs1,Rs2  
  c_pmin_u Rd,Rs1,Rs2   
  

Description: Rd[i]← max(Rs1[i], Rs2[i])  or  Rd[i]← min(Rs1[i], Rs2[i]) 

   

The c_pmax_u instruction compares pairs of the unsigned sub-elements in 

the two source registers and outputs the maximum values to the 

destination register. 

 

The c_pmin_u instruction compares pairs of the unsigned sub-elements in 

the two source registers and outputs the minimum values to the destination 

register. 
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Permute Instructions 

C_MIX _L Mix Left  
C_MIX_R Mix Right 
C_ROTATE_R Rotate Right   
C_BCAST_SS Broadcast – Signed Saturation   
 

Format: c_mix_l  Rd,Rs1,Rs2  
  c_mix_r Rd,Rs1,Rs2  

c_rotate_r Rd,Rs1,Imm 
c_bcast_ss       Rd,Rs1,Imm  
  

Description: Rd[i]← select(i,Rs1[i], Rs2[i]) 

   

The mix instructions mix the sub-elements of Rs1 and Rs2 into the 

operands of Rd.  

 

The rotate instruction rotates the sub-elements to the right by an 

immediate value. 

 

The broadcast instruction writes the selected sub-elements of Rs1 by an 

immediate indicator to all the sub-elements of Rd.  

 

Rs1

Rs2

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Cr3 Y3Cb3Cr4 Y4Cb4

Rd Cr4 Y4Cb4Cr2 Y2Cb2

Rs1

Rs2

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Cr3 Y3Cb3Cr4 Y4Cb4

Rd Cr4 Y4Cb4Cr2 Y2Cb2  

Figure 64. An example of a mix left instruction. 
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Parallel Absolute Differences Accumulation Instructions 

C_PADACC_U_S Parallel Absolute-Differences-Accumulate with Unsigned Values – Signed  
 

Format: c_padacc_u_s  Rd,Rs1,Rs2 

   

Description: acc[i]← acc[i] + abs(Rs1[i] – Rs2[i]), Rd[i]← abs(Rs1[i] – Rs2[i]) 

   

The sum of absolute-distance-accumulate instruction calculates the 

absolute differences of pairs of the sub-elements in Rs1 and Rs2 while 

accumulating each result in the accumulator. In the mean time, each 

absolute result is stored to Rd.  This instruction is frequently used by a 

number of algorithms for motion estimation. 

 

Acc

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2

043 236387107127

Acc + abs(Cr4-Cr2)
Cr3 Y3Cb3Cr4 Y4Cb4

Acc

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2

043 236387107127

Acc + abs(Cr4-Cr2)
Cr3 Y3Cb3Cr4 Y4Cb4

 

Figure 65. An example of a PADACC instruction. 
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Parallel Multiply-Accumulate Instructions 

C_PMACC_U_S Parallel Multiply and Accumulation with Unsigned Values – Signed   
C_PMACC_U_S_S Parallel Multiply and Accumulation with U/S Values – Signed   
 

Format: c_pmacc_u_s   Acc,Rs1,Rs2  
  c_pmacc_u_s_s  Acc,Rs1,Rs2    
  

Description: acc[i]← acc[i] + abs(Rs1[i] * Rs2[i]) 

   

The c_pmacc_u_s instruction multiplies the unsigned sub-elements of Rs1 

with the corresponding unsigned sub-elements of Rs2 while accumulating 

each result in the packed signed operands of the accumulator.  

 

The c_pmacc_u_s_s instruction multiplies the unsigned sub-elements of 

Rs1 with the corresponding signed sub-elements of Rs2 while 

accumulating each result in the packed signed operands of the accumulator. 

These instructions are useful in DSP algorithms that involve computing a 

vector dot-product, such as digital filtering and convolutions. 

 

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Coef CoefCoefCoef CoefCoefRs2

Acc
043 236387107127

Acc + (Cr4*Coef)

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Coef CoefCoefCoef CoefCoefRs2

Acc
043 236387107127

Acc + (Cr4*Coef)

Acc
043 236387107127

Acc + (Cr4*Coef)

 

Figure 66. An example of a multiply-accumulate instruction. 
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ZACC Instructions 

C_ZACC Zero Accumulator   
 

Format: c_zacc  Acc(i) 

  

Description: Acc(i) ← 0 

   

The zero accumulator instruction initializes the value of the accumulator 

to zero.  

 

Examples: 

c_zacc      acc1  ;; acc1 ← 0 
c_pmacc_u_s_s   acc1,r5,r7 ;; acc1new ← r5 * r7 + 0 
c_pmacc_u_s_s   acc1,r5,r7 ;; acc1new ← r5 * r7 + acc1old 
c_zacc      acc1  ;; acc1 ← 0 
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 Read Accumulator Instructions 

C_RACL Read the Least Significant 32 bits of an Accumulator   
C_RACS Read the Second Significant 32 bits of an Accumulator   
C_RACT Read the Third Significant 32 bits of an Accumulator   
C_RACH Read the Most Significant 32 bits of an Accumulator   
 

Format: c_racl        Rd,Acc 
  c_racs       Rd,Acc 
  c_ract       Rd,Acc 
  c_rach      Rd,Acc 
    

Description: Rd ← acc{low, mid_left, mid_right, high} 

   

Read either the least significant, second most significant, third most 

significant, or most significant fourth of bits of the accumulator.  
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