

ARCHITECTURAL ENHANCEMENTS FOR COLOR IMAGE AND VIDEO

PROCESSING ON EMBEDDED SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Jongmyon Kim

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
March 2005

ARCHITECTURAL ENHANCEMENTS FOR COLOR IMAGE AND VIDEO
PROCESSING ON EMBEDDED SYSTEMS

Approved by:

Dr. D. Scott Wills, Advisor

Dr. Linda M. Wills, Co-advisor

Dr. Hsien-Hsin S. Lee

Dr. David Anderson

Dr. Bonnie S. Heck

Dr. Santosh Pande

Date Approved: March 30, 2005

 iii

ACKNOWLEDGEMENTS

This dissertation could not be completed without the aid and support of countless

people over the past several years. I would like to thank everyone who influenced this

work.

First of all, I would like to express my deep appreciation to Dr. D. Scott Wills, my

dissertation advisor, for his support, encouragement, attention to detail, and guidance. It

has been an honor and a pleasure to work with him during my stay at Georgia Institute of

Technology. I cannot imagine a better advisor.

I am extremely thankful to Dr. Linda M. Wills, my dissertation co-advisor, for her

sincere advice and encouragement. I am very grateful to her for many valuable comments

and enlightening discussions we had.

I am truly grateful to Dr. Hsien-Hsin S. Lee, Dr. David Anderson, Dr. Bonnie S.

Heck, and Dr. Santosh Pande for serving on my thesis committee. Their valuable advice

has improved the quality of this thesis.

I wish to extend my special thanks to Dr. Haniph A. Latchman, my former

advisor. I am indebted to him for many help, support, and encouragement over the many

years at the University of Florida.

I also would like to extend many thanks to all members of the PICA and EASL

groups, both past and present, for their helps and friendship. Their friendship has made

my graduate studies more enjoyable, and it has been a great pleasure to have worked with

them; especially Krit Athikulwongse and Dr. Santithorn Bunchua for their exceptional

friendship, encouragement, and research collaboration; Dr. Antonio Gentile for his expert

 iv

advice and help in developing the SIMPil simulator for color image and video

processing; and all others, Jinsung, Soojung, Nidhi, Hongkyu, Peter, Brett, Cory, Sanyo,

Lewis, William, Tarek, and Chris, and Mark, in no particular order.

I am forever indebted to my wife Yunjung for her all love and support. She is my

life.

I dedicate this thesis to my family; my parents, Mr. Chi-Gon Kim and Mrs.

Ryum-Lee Kim, my wife, my sister, Ms. Jung-Hwa Kim, and my two children, Tony and

Ryan. This thesis would not have been possible without their unending love and support.

 v

 TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

LIST OF TABLES v

LIST OF FIGURES x

SUMMARY xiv

CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Problem Statement and Contributions 7

1.2.1 Exploring Color Imaging for Multimedia 9
1.2.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors 10
1.2.3 Implementation and Evaluation of the Color-Aware Instruction Set for

Low-Memory, Embedded Video Processing in Data Parallel
Architectures 11

1.2.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD
Architectures 12

1.2.5 Static versus Dynamic Scheduling 13
1.3 Contribution Summary 14

1.3.1 Exploring Color Imaging for Multimedia 14
1.3.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors 14
1.3.3 Implementation and Evaluation of the Color-Aware Instruction Set for

Low-Memory, Embedded Video Processing in Data Parallel
Architectures 15

1.3.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD
Architectures 15

1.3.5 Dynamic versus Static Scheduling 16
1.4 Overview of Content 16

CHAPTER 2 EXPLORING COLOR IMAGING FOR MULTIMEDIA 19
2.1 Introduction 19
2.2 Color Specification Models and Applications 21
2.3 Evaluating Color Specification Models 24

2.3.1 An Experimental Comparison of Color Space Models 24
2.4 Investigating the use of Color Information in Multimedia Applications 30

2.4.1 The Vector Median Filter in the YCbCr Color Space 31
2.4.2 Color Edge Detection using both Luminance and Chrominance

Components 36
2.4.3 Simultaneous Motion Estimation of All Color Components 39

2.5 Determining an Efficient Color Representation using a Pixel-Truncation Technique
for Low-Memory, Embedded Video Processing 42

 vi

2.5.1 Analysis of the YCbCr Representations with varying Pixel Word Sizes 42
2.5.2 Motion Estimation using the 16-bit YCbCr Representation 48
2.5.3 Implementation Costs 50
2.5.4 Other Benefits from the 16-bit YCbCr Representation 52

2.6 Conclusion 52

CHAPTER 3 UTILIZING COLOR SUBWORD PARALLELISM IN
SUPERSCALAR ILP PROCESSORS 54

3.1 Introduction 54
3.2 Related Research 57

3.2.1 Multimedia Extensions to General-Purpose Processors 57
3.2.2 Research Efforts Using Multimedia Extensions 63

3.3 A Color-Aware Multimedia Instruction Set for Color Imaging Applications 64
3.3.1 Parallel Arithmetic and Logical Instructions 66
3.3.2 Parallel Compare Instructions 67
3.3.3 Permute Instructions 67
3.3.4 Special-Purpose Instructions 68

3.4 Methodology 69
3.4.1 Color Imaging Applications 69
3.4.2 Modeled Architectures and Tools 70

3.5 Experimental Results 73
3.5.1 Performance-Related Evaluation Results 74
3.5.2 Energy-Related Evaluation Results 79

3.6 Conclusion 81

CHAPTER 4 IMPLEMENTATION AND EVALUATION OF THE COLOR-
AWARE INSTRUCTION SET FOR LOW-MEMORY, EMBEDDED VIDEO
PROCESSING IN DATA PARALLEL ARCHITECTURES 83

4.1 Introduction 83
4.2 Related Research 85
4.3 Methodology 87

4.3.1 Modeled Embedded SIMD Architectures 88
4.3.2 Methodology Infrastructure 90

4.4 System Area and Power Evaluation using Technology Modeling 93
4.5 Experimental Results 95

4.5.1 Execution Performance Evaluation Results 96
4.5.2 Energy Efficiency Results 108
4.5.3 Area Efficiency Results 110

4.6 Conclusion 111

CHAPTER 5 ANALYTICALLY DETERMINING OPTIMAL GRAIN SIZES IN
EMBEDDED SIMD ARCHITECTURES 114

5.1 Introduction 114
5.2 Related Research 115
5.3 Vector-Pixel-per-Processing-Element Ratio 116
5.4 Modeled PE Architectures 117
5.5 System Area and Power Evaluation using Technology Modeling 118

 vii

5.6 Experimental Results 120
5.6.1 Execution Performance Evaluation Results 121
5.6.2 Area-Related Evaluation Results 125
5.6.3 Energy-Related Evaluation Results 125

5.7 Conclusion 126

CHAPTER 6 CONCLUSION AND FUTURE WORK 127
6.1 Summary of Results 128

6.1.1 Exploring Color Imaging for Multimedia 128
6.1.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors 129
6.1.3 Implementation and Evaluation of the Color-Aware Instruction Set for

Low-Memory, Embedded Video Processing in Data Parallel
Architectures 130

6.1.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD
Architectures 130

6.1.5 Static versus Dynamic Scheduling 131
6.2 Future Research Directions 131

6.2.1 Color Imaging Metrics and Cost Models 132
6.2.2 An In-depth Analysis of the CAX Instruction Set 132
6.2.3 Adaptable and Scalable Architectures 133

APPENDIX A STATIC VERSUS DYNAMIC SCHEDULING 134

APPENDIX B CAX: A COLOR-AWARE INSTRUCTION SET 138

REFERENCES 150

 viii

LIST OF TABLES

Table 1. Color space models and their applications. 22

Table 2. An average PSNR of the Foreman and News videos using the VMF. 50

Table 3. Microprocessor multimedia extensions. 58

Table 4. Summary of the benchmarks used in this study. 70

Table 5. Dynamic power estimates for 32-bit FU designs with 1GHz at operating
voltage of 1.62. 71

Table 6. Processor configurations. 73

Table 7. Speedups of the baseline, MDMX, and CAX versions with LU, normalized
to those without LU. 79

Table 8. Modeled architecture parameters. 90

Table 9. Area and power estimates for three different SIMPil architectures running at
80MHz. 94

Table 10. Summary of evaluation metrics. 96

Table 11. Application performance of the baseline, MDMX, and CAX versions on a
1,584 PE system running at 80 MHz. 98

Table 12. A comparison of instruction counts using the baseline, MDMX, and CAX
ISAs for a conditional selection operation of 4×4 pixels. 101

Table 13. A comparison of instruction counts using the baseline, MDMX, and CAX
ISAs for a Sobel operation of two 3×3 window pixels. 103

Table 14. A comparison of the number of instructions using the baseline, MDMX,
and CAX ISAs for computing the median within two 3×3 window pixels. 104

Table 15. A comparison of instruction counts using the baseline, MDMX, and CAX
ISAs for a sorting operation of two 3×3 window pixels. 105

Table 16. A comparison of instruction counts using the baseline, MDMX, and CAX
ISAs for a VQ operation of 4×4 pixels. 106

Table 17. A comparison of the number of instructions using the baseline, MDMX,
and CAX ISAs for a MAD operation of 16×16 pixels. 107

 ix

Table 18. VPPE configurations and their parameters. 118

Table 19. Application performance for each VPPE configuration with and without
MDMX or CAX running at 50 MHz. 124

Table 20. Default processor parameters. 136

Table 21: CAX instruction descriptions. 138

 x

LIST OF FIGURES

Figure 1. An example of a partitioned ALU functional unit that exploits color
subword parallelism. 4

Figure 2. A screenshot of the color imaging simulator. 25

Figure 3. Subsampled images [21] with a subsampling factor of four in each direction
for each component: (a) red, (b) green, and (c) blue. 26

Figure 4. Subsampled images [21] with a subsampling factor of four in each direction
for each component: (a) Y, (b) Cb, and (c) Cr. 26

Figure 5. Subsampled images [21] with a subsampling factor of four in each direction
for each component: (a) L*, (b) a*, and (c) b*. 27

Figure 6. Subsampled images [21] with a subsampling factor of four in each direction
for each component: (a) H, (b) S, and (c) I. 27

Figure 7. Subsampled images [21] with a subsampling factor of four for two
components simultaneously in each color space: (a) RGB, (b) YCbCr, (c) HSI,
and (d) L*a*b*. 29

Figure 8. Three different coding schemes for color channels: (a) luminance only
processing, (b) separate processing of each channel, and (c) vector processing. 31

Figure 9. A corrupted image with recovered output images using relevant filters
(available in color at [21]): (a) 1st frame of News corrupted by 8% impulse noise,
(b) the luminance only median filter, (c) the scalar median filter, and (c) the
YCbCr-based VMF. 34

Figure 10. Objective criteria in dependence on impulse noise percentage: (a) MAE,
(b) MSE, and (c) NCD. 35

Figure 11. Obtained output images using edge detection techniques: (a) 1st frame of
News, (b) the luminance only Sobel operator, (c) a scalar Sobel operator, and (d)
a vector Sobel operator. 38

Figure 12. Sum of absolute errors of the FSVBMA for the Foreman video,
normalized to the standard FSBMA. 40

Figure 13. Sum of absolute errors of the FSVBMA for the News video, normalized to
the standard FSBMA. 41

 xi

Figure 14. Sum of absolute errors of the FSVBMA for the Football video, normalized
to the standard FSBMA. 41

Figure 15. MSEs for various pixel word sizes. The form (n,m,l) represents n, m, and l
bits for Y, Cb, and Cr, respectively. 43

Figure 16. PSNRs for various pixel word sizes. 43

Figure 17. Original Tank image with converted output images for various pixel word
sizes. 45

Figure 18. Original Lena image with converted output images for various pixel word
sizes. 46

Figure 19. Original News frame with converted output images for various pixel word
sizes. 47

Figure 20. PSNR versus frame number for the Foreman video using motion
estimation. 49

Figure 21. PSNR versus frame number for the News video using motion estimation. 49

Figure 22. Corrupted images with recovered output images using the VMF (available
in color at [21]): (a) and (d) 4% impulse noise; (b) and (e) the VMF for 24-bit
YCbCr data; and (c) and (e) the VMF for 16-bit YCbCr data. 50

Figure 23. A block diagram of a color converter. 51

Figure 24. A 32-bit CAX operation. 52

Figure 25. (a) A pack instruction. (b) An unpack instruction. 60

Figure 26. (a) A permute instruction. (b) A mix instruction. 60

Figure 27. A SAD instruction. 61

Figure 28. Partitioned ALU functional unit implementation. 62

Figure 29. Types of operations: (a) a baseline 32-bit operation, (b) a 32-bit SIMD
operation, and (c) a 32-bit CAX operation. 65

Figure 30. (a) A packed min instruction. (b) A packed max instruction. 67

Figure 31. (a) A rotate instruction. (b) A mix instruction. 68

Figure 32. An absolute-differences-accumulate instruction. 69

Figure 33. A methodology framework for dynamically scheduled simulations. 72

 xii

Figure 34. Speedups for different issue-rate processors with MDMX and CAX,
normalized to the baseline performance. 75

Figure 35. Impact of CAX on the dynamic (retired) instruction count. 76

Figure 36. (a) Original loop. (b) After loop unrolling. (C) CAX-level parallelism
exposed after loop unrolling. IV and CV stand for the image vector and the
codebook vector, respectively. 78

Figure 37. Impact of CAX on energy consumption. 80

Figure 38. Block diagram of a SIMD array and a processing element. 89

Figure 39. A methodology framework for exploring the design space of three
modeled architectures: baseline SIMPil, MDMX-SIMPil, and CAX-SIMPil. 92

Figure 40. A screenshot of the SIMPil simulator during the chroma-keying process. 92

Figure 41. GENESYS system hierarchy. 93

Figure 42. System area and power of MDMX-SIMPil and CAX-SIMPil, normalized
to the baseline SIMPil. 95

Figure 43. Speedups of the CAX and MDMX versions over the baseline performance. 97

Figure 44. The distribution of issued vector instructions for the SIMPil system with
CAX and MDMX, normalized to the baseline version. 99

Figure 45. The procedure of a chroma-keying application: (a) a pictorial
representation, (b) required C code, and (c) CAX assembly code. Note that the
MDMX assembly code has the same functional instructions for CAX except that
it loads and processes a packed YCbCr in a 32-bit register. 100

Figure 46. The procedure of a color edge detection implementation using the CAX
instructions. 102

Figure 47. Energy consumption for the SIMPil system with CAX and MDMX,
normalized to the baseline version. 109

Figure 48. Energy efficiency for the SIMPil system with CAX and MDMX,
normalized to the baseline version. 110

Figure 49. Area efficiency for the SIMPil system with CAX and MDMX, normalized
to the baseline version. 111

Figure 50. Examples of vector pixels per processing element ratio. 117

Figure 51. System area versus VPPE. 119

 xiii

Figure 52. Peak system power versus VPPE. 119

Figure 53. Impact of CAX on system area. 120

Figure 54. Impact of CAX on system power. 120

Figure 55. Sustained throughputs for different VPPE configurations with and without
CAX or MDMX. 121

Figure 56. Issued vector instructions for each VPPE configuration with MDMX and
CAX, normalized to the baseline version. 122

Figure 57. Speedups of each VPPE configuration with CAX and MDMX, normalized
to the baseline performance. 123

Figure 58. PE idle cycles for each VPPE configuration with CAX and MDMX,
normalized to the baseline version. 124

Figure 59. Area efficiency versus VPPE. 125

Figure 60. Energy consumption for each VPPE configuration with CAX and MDMX,
normalized to the baseline version. 126

Figure 61. Methodology frameworks: (a) dynamically-scheduled simulations and (b)
statically-scheduled simulations. 135

Figure 62. Speedups for the dynamically scheduled superscalar processor with and
without MDMX or CAX over the baseline static performance without subword
parallelism. 137

Figure 63. An example of a parallel average instruction. 142

Figure 64. An example of a mix left instruction. 145

Figure 65. An example of a PADACC instruction. 146

Figure 66. An example of a multiply-accumulate instruction. 147

 xiv

SUMMARY

As emerging portable multimedia applications demand more and more

tremendous computational throughput with limited energy consumption, the need for

high-efficient, high-throughput embedded processing is becoming an important challenge

in computer architecture. In this regard, this dissertation addresses application-,

architecture-, and technology-level issues in existing processing systems to provide

efficient processing of multimedia in many, or ideally all, of its form. In particular, this

dissertation explores color imaging in multimedia while focusing on two architectural

enhancements for memory- and performance-hungry embedded applications: (1) a pixel-

truncation technique and (2) a color-aware multimedia instruction set extension (CAX)

for embedded multimedia systems. The pixel-truncation technique differs from similar

techniques (e.g., 4:2:2 and 4:2:0 subsampling) used in image and video compression

applications (e.g., JPEG and MPEG) in that it reduces information content in individual

pixel word sizes rather than in each dimension. Thus, this technique drastically reduces

the bandwidth and memory required to transport and store color images without a

perceivable distortion of color. At the same time, it maintains the pixel storage format of

color image processing in which each pixel computation is simultaneously performed on

3-D YCbCr components, which are widely used in the image and video processing

community. On the other hand, utilizing parallelism within the human perceptual YCbCr

space, CAX supports parallel operations on two-packed, truncated 16-bit (6:5:5) YCbCr

data on a 32-bit datapath processor, providing greater concurrency and efficiency for

processing color image sequences. Thus, CAX, coupled with the pixel-truncation

 xv

technique, provides an efficient mechanism for performance- and memory-hungry

embedded applications.

This dissertation presents the impact of CAX on both processing performance and

cost for color imaging applications in three major processor architectures: dynamically

scheduled (superscalar), statically scheduled (very long instruction word, VLIW), and

embedded single instruction, multiple data (SIMD) media processors. Unlike typical

multimedia extensions (e.g., MMX, VIS, and MDMX), CAX obtains substantial

performance and code density improvements through direct support for color data

processing rather than depending solely on generic subword parallelism. In addition,

CAX’s ability to reduce data format size reduces system cost. The reduction in data

bandwidth also simplifies system design. Experimental results on a dynamically

scheduled, 4-way issue processor indicate that CAX achieves a speedup ranging from 3×

to 5.8× over the baseline performance. This is in contrast to MDMX (a representative

MIPS multimedia extension), which achieves a speedup ranging from only 1.6× to 3.2×

over the baseline. CAX also outperforms MDMX in energy reduction (68% to 83%

reduction with CAX, but only 39% to 69% reduction with MDMX over the baseline

version). Furthermore, CAX exhibits higher relative performance for low-issue rates. For

example, CAX achieves an average speedup of 4.7× over the baseline 1-way issue

performance, but 3× over the baseline 16-way issue performance. These results

demonstrate that CAX is an ideal candidate for embedded imaging systems in which high

issue rates and out-of-order execution are too expensive. Similar performance results are

observed for statistically scheduled processors. CAX achieves a speedup ranging from

 xvi

3.3× to 6.5×, while MDMX achieves a speedup ranging from only 1.7× to 3.6× over the

baseline performance on the same statistically scheduled, 4-way issue processor.

The effectiveness of CAX is much more obvious in application-specific

embedded systems (e.g., embedded SIMD arrays) that aim at providing sufficient

computational power for specific applications but impose strict constraint on

implementation chip area and energy consumption. Experimental results using cycle

accurate simulation and technology modeling indicate that CAX outperforms MDMX in

speedup (5.2× to 8.9× with CAX, but only 3× to 5× with MDMX over the baseline

performance) on the same representative data parallel SIMD execution platform. CAX

also outperforms MDMX in both area efficiency (a 75% increase versus a 25% increase)

and energy efficiency (a 75% increase versus a 24% increase), resulting in better

component utilization and sustainable battery life for given system capabilities.

Furthermore, CAX improves the performance and efficiency with a mere 3% increase in

system area and a 5% increase in system power, while MDMX requires a 14% increase in

system area and a 16% increase in system power. Overall, CAX, coupled with the pixel-

truncation technique, has the potential to meet the computational requirements and cost

goals for future portable multimedia products.

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the proliferation of color output and recording devices (e.g., digital cameras,

scanners, and monitors) and color images on the World Wide Web (WWW), a user can

easily record an image, display it on a monitor, and send it to another person over the

Internet. However, the original image, the image on the monitor, and the received image

through the Internet usually do not match because of faulty display or channel

transmission errors. Color image processing methods offer solutions to many of the

problems that occur in recording, transmitting, and creating color images. Moreover,

understanding the characteristics of the color imaging application domain provides new

opportunities to define an efficient architecture for embedded multimedia systems.

Early digital color image processing was often approached as an extension of

monochrome image processing, in which each color channel was treated as an

independent monochrome image [84]. However, this approach may not be able to extract

certain crucial information conveyed by color since it fails to take into account the

correlation between color channels. Clearly, color cannot be treated as just another dimension,

and the relationship between color channels is much more complex because of the

definition of color space and human color perception.

This dissertation explores color imaging for multimedia with respect to the

following issues (see Chapter 2):

 2

• Which color specification model is most suitable for achieving a natural

extension of the operation?

• What are the advantages and disadvantages of the use of color information in

multimedia applications using a vector approach in which each pixel

computation is performed simultaneously on three color channels?

• Are there any efficient techniques that support 3-D vector computation?

Color imaging applications demand tremendous computational throughput.

Moreover, increasing user demand for color-multimedia-over-wireless capabilities on

embedded systems places additional constraints on power, size, and weight.

Application-specific integrated circuits (dedicated ASICs) can meet the needed

performance and cost goals for such embedded imaging systems. However, they provide

limited, if any, programmability or flexibility required by emerging imaging applications.

General-purpose microprocessors (GPPs) offer the necessary flexibility and

inexpensive processing elements, and multimedia extensions to GPPs have improved the

performance of multimedia applications with little added cost to the processors.

Examples include Intel MMXTM [67], SSETM, and SSE-2 [70], Hewlett Packard MAX-2

for the PA-RISC architecture [53], Sun VIS for SPARC [80], MIPS MDMX [60], Alpha

MVI [75], and Motorola ALTIVEC for PowerPCTM architecture [63]. These extensions

exploit subword parallelism by packing several small data elements (e.g., eight-bit pixels)

into a single wide register (e.g., 32-, 64-, and 128-bit) while processing these separate

elements in parallel within the context of a dynamically scheduled superscalar machine.

The designers of digital signal processors (DSPs), such as the Texas Instruments

TMS320C64x families [82] and the Analog Devices TigerSharc processor [31], have

 3

followed the trend. While the improvement in performance has been exciting and

encouraging, their performance is limited in dealing with both color data that are not

aligned on boundaries that are powers of two (e.g., visually adjacent pixels from each

band are spaced three bytes apart) and storage data types that are inappropriate for

computation (necessitating conversion overhead before and usually following the

computation) [77]. Although the band separated format (e.g., the red data for adjacent

pixels are adjacent in memory) is the most convenient for single instruction, multiple data

(SIMD) processing, a significant amount of overhead for data alignment is expected prior

to SIMD processing. Even if the SIMD multimedia extensions store the pixel information

as a packed 32-bit word composed of an eight-bit red (R), green (G), blue (B), and

unused (U) field (band interleaved format) in a 32-bit wide register, subword parallelism

can not be exploited on the operand of the unused field. Moreover, since the RGB space

does not model the perceptual attributes of human vision well, the RGB to YCbCr (a

human perceptual color space that is widely used in the image and video processing

community) conversion is necessary for further color image and video processing

[85][36]. Although the SIMD multimedia extensions can handle the color conversion

process in software, the hardware approach would be much more efficient.

This dissertation proposes a color-aware instruction set extension (CAX) as a

solution to the problems inherent to packed RGB extensions by supporting two-packed

16-bit (6:5:5) YCbCr data in a 32-bit register while processing these separate color data

in parallel. The YCbCr space allows coding schemes that exploit the properties of human

vision by truncating some of the less important data in every color pixel and allocating

fewer bits to the high-frequency chrominance components that are perceptually less

 4

significant. Thus, the compact 16-bit color representation consisting of a six-bit

luminance (Y) and two five-bit chrominance (Cb and Cr) components provides

satisfactory image quality [45][46]. This pixel-truncation technique differs from similar

techniques (e.g., 4:2:2 and 4:2:0 subsampling) used in image and video compression

applications [85] in that it reduces information contents in individual pixel word sizes,

rather than in each dimension, while inheriting the chrominance components of the

luminance for the vector process. In addition, CAX offers greater concurrency with

minimal hardware modification. Figure 1 shows an example of how a 32-bit ALU

functional unit can be used to perform either a 32-bit baseline ALU or two 6:5:5-bit

ALUs. The 32-bit ALU is divided into two six-bit ALUs and four five-bit ALUs. When

the output carry (Cout) is blocked (i.e., Cin = 0), the six smaller ALUs can be performed

in parallel. Chapter 3 presents the impact of CAX on both performance and energy

consumption for color imaging applications on dynamically scheduled superscalar

processors.

32-bit ALU

CAX
Or

Base

5-bit ALU

Cb4 Y4Cr4 Cb3 Y3Cr3
051015212631

Cb2 Y2Cr2 Cb1 Y1Cr1
051015212631

0

Cin
muxCout0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout0

Cin
muxCout

Cb’’ Y’’Cr’’ Cb’ Y’Cr’

5-bit ALU6-bit ALU 5-bit ALU5-bit ALU 6-bit ALU

32-bit ALU

CAX
Or

Base

5-bit ALU

Cb4 Y4Cr4 Cb3 Y3Cr3
051015212631

Cb4 Y4Cr4 Cb3 Y3Cr3Cb4 Y4Cr4 Cb3 Y3Cr3
051015212631

Cb2 Y2Cr2 Cb1 Y1Cr1
051015212631

Cb2 Y2Cr2 Cb1 Y1Cr1Cb2 Y2Cr2 Cb1 Y1Cr1
051015212631

0

Cin
muxCout 0

Cin
muxCout0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout 0

Cin
muxCout0

Cin
muxCout 0

Cin
muxCout

Cb’’ Y’’Cr’’ Cb’ Y’Cr’Cb’’ Y’’Cr’’ Cb’ Y’Cr’

5-bit ALU6-bit ALU 5-bit ALU5-bit ALU 6-bit ALU

Figure 1. An example of a partitioned ALU functional unit that exploits color
subword parallelism.

 5

Despite some performance improvements through multimedia extensions, neither

GPPs nor DSPs will be able to meet the higher levels of performance required by

emerging multimedia applications on higher resolution images. This is because they lack

the ability to exploit the full data parallelism available in these applications.

Among many computationally efficient models available for imaging applications,

SIMD arrays are promising candidates for application-specific embedded systems since

they replicate the datapath, data memory, and I/O to provide high processing performance

with low node cost. Whereas instruction-level or thread-level processors use silicon area

for large multiported register files, large caches, and deeply pipelined functional units,

SIMD arrays increase the number of simple processing elements (PEs) for the same

silicon area. As a result, SIMD arrays often employ thousands of PEs while possibly

distributing and co-locating PEs with the data I/O to minimize storage and data

communication requirements. The SIMD Pixel (SIMPil) processor [13][34][8] being

developed at Georgia Tech, for example, is a low memory, monolithically integrated

SIMD architecture that benefits from the efficient exploitation of data parallelism in a

SIMD array, short wire lengths, and specialized microarchitecture to provide a significant

improvement in energy efficiency. While 2-D SIMD arrays, including SIMPil, are well

suited for many imaging tasks that require processing of pixel data with respect to either

nearest-neighbor or other 2-D patterns exhibiting locality or regularity, they are less

amenable to the vector processing of 3-D color channels. More specifically, since the 3-D

vector computation is performed within innermost loops, its performance does not scale

with larger PE arrays.

 6

CAX efficiently eliminate this performance limitation by including parallel

operations on two-packed 16-bit YCbCr data in the instruction set architecture (ISA) of

the 32-bit datapath SIMD array. In addition to greater concurrency and efficiency for

processing color image sequences, the ability to reduce data format size reduces system

cost. The reduction in data bandwidth also simplifies system design. This dissertation

presents the impact of CAX on processing performance and on both area and energy

efficiency for color imaging applications in a representative SIMD array architecture with

respect to the following issues (see Chapter 4):

• Existing multimedia extensions have been successful at achieving subword

parallelism between loop iterations in the innermost loops of multimedia

applications. What performance is possible with CAX in comparison to a

representative multimedia extension, MDMX, an extension of MIPS? MDMX

is chosen as a basis of comparison because it provides an effective way of

dealing with reduction operations by using a wide packed accumulator that

successively accumulate the results produced by operations done with

multimedia vector registers. Other multimedia extensions poorly support

vector processing in a 32-bit datapath processor without accumulators. To

handle vector processing on a 64-bit or 128-bit datapath, they require frequent

packing/unpacking of operand data, deteriorating their performance.

• For portable embedded systems, chip size and battery life are as critical as

processing performance. The addition of a CAX or MDMX execution unit

into a simple PE or an entire array may lead to substantial system area and

 7

power overheads. What percentage of the system area and power overheads

for the CAX and MDMX ISAs is added to the SIMD array?

• Which ISA extension between CAX and MDMX achieves higher area

efficiency [Gops/(sec⋅mm2)] and energy efficiency [Gops/Joule]?

Another significant issue for such embedded SIMD array architectures is

determining the ideal grain size that provides sufficient processing performance with the

lowest cost and the longest battery life for target applications. In color imaging

applications, the grain size of the PEs determines the number of vector pixels that are

mapped to each PE, which is called the vector-pixel-per-processing-element (VPPE)

ratio. The VPPE ratio has a significant impact on the overall area and energy efficiency

of the computational array. This dissertation evaluates the effects of different VPPE

ratios on performance and efficiency for a specified PE architecture and implementation

technology (see Chapter 5). The impact of CAX on each VPPE configuration is also

evaluated to identify optimal grain sizes that yield the most efficient PE granularity.

Overall, the research presented in this dissertation explores color imaging for

multimedia in existing processing systems while focusing on two architectural techniques

for memory- and performance-hungry embedded applications: (1) a pixel-truncation

technique and (2) a new color-aware multimedia instruction set extension (CAX) for

embedded multimedia systems.

1.2 Problem Statement and Contributions

Color image and video processing has garnered considerable interest over the past

few years since color features are valuable in sensing the environment, recognizing

 8

objects, and conveying crucial information. As a result, color imaging applications now

define a significant portion of the computing market. However, the behavior of color

imaging for multimedia on existing processing systems is not well understood, as

discussed in the previous section. Thus, the efficient processing of color image sequences

is one of the key issues in the multimedia processing application domain. Designing

“color-aware” embedded systems requires a study of applications, architectures, and

technologies to provide efficient processing of color multimedia in many, or ideally all,

of its forms. The research presented in this dissertation addresses application-,

architecture-, and technology-level issues in existing processing systems to support color

image and video processing with the following approaches:

• Evaluate several color specification models to identify the most suitable

model that achieves a natural extension of the operation.

• Investigate the use of color information in multimedia applications using a

vector approach.

• Evaluate several color representations with varying pixel word sizes through a

pixel-truncation technique to determine the most efficient representation in

terms of storage requirements and color accuracy.

• Develop an efficient color-aware instruction set extension (CAX) for

embedded color image and video processing.

• Introduce the CAX plus pixel-truncation technique to modern processor

architectures, including dynamically scheduled, statistically scheduled, and

embedded SIMD array processors.

 9

• Model the new technique through detailed execution-driven simulators and

evaluate the performance of the new approach.

• Develop a hardware implementation cost model of the new approach using

architectural and technology modeling tools.

• Combine the execution performance and implementation cost of the new

approach to determine overall processing performance, area efficiency, and

energy efficiency.

1.2.1 Exploring Color Imaging for Multimedia

With the proliferation of color imaging devices and wireless computer networks,

consumer demand for color-multimedia-over-wireless capabilities on embedded systems

is growing rapidly. As a result, the requirements of color imaging applications in terms of

computations, storage, and communications pose a new set of design constraints on

existing systems. Thus, understanding the characteristics of color imaging for multimedia

provides new opportunities to define an efficient and reconfigurable architecture for

embedded multimedia systems.

In this research, several color specification models are evaluated to determine the

most advantageous model that achieves the most effective results in color image

processing. In addition, the use of color information in multimedia applications using a

vector approach is investigated, improving the accuracy of the process and overall image

quality. Furthermore, several color representations with varying pixel word sizes are

evaluated to identify the most efficient representation in terms of storage requirements

and color accuracy. In particular, a 16-bit (6:5:5) YCbCr representation is examined for

 10

reduced-memory, embedded video processing. The 16-bit YCbCr representation reduces

pixel word storage by 33% over the baseline 24-bit YCbCr representation. Overall image

quality remains high, and color imaging applications continue to perform well using the

reduced storage format.

1.2.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors

Application-specific extensions of a processor provide an efficient mechanism to

meet the growing performance demands of multimedia applications. In this research, a

new color-aware instruction set extension (CAX) for dynamically scheduled superscalar

processors is presented to improve the performance of color imaging applications. Unlike

typical multimedia extensions (e.g., MMX, VIS, and MDMX), CAX obtains substantial

performance and code density improvements by direct support for color data processing.

Rather than depending solely on generic subword parallelism, CAX supports parallel

operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit datapath processor,

providing greater concurrency and efficiency for processing color image sequences.

Some of the key findings follow. CAX achieves a speedup ranging from 3× to 5.8× over

the baseline performance on a dynamically scheduled, 4-way issue superscalar processor.

This is contrast to MDMX (a representative MIPS multimedia extension), which achieves

a speedup ranging from only 1.6× to 3.2× over the baseline. CAX also outperforms

MDMX in energy reduction (68% to 83% reduction with CAX, but only 39% to 69%

reduction with MDMX over the baseline version). Moreover, CAX exhibits higher

relative performance for low-issue rates. For example, CAX achieves an average speedup

of 4.7× over the baseline 1-way issue performance, but 3× over the baseline 16-way issue

 11

performance. These results demonstrate that CAX is an ideal candidate for embedded

multimedia systems in which high issue rates and out-of-order execution are too

expensive.

1.2.3 Implementation and Evaluation of the Color-Aware Instruction Set for Low-
Memory, Embedded Video Processing in Data Parallel Architectures

Future embedded imaging products must achieve greater processing performance

while maintaining low cost and low energy consumption. Data parallel architectures (e.g.,

embedded SIMD arrays) have demonstrated the potential to meet the computational

requirements and cost goals by employing thousands of inexpensive processing elements

and possibly distributing and collocating PEs with the data I/O to minimize storage and

data communication requirements. While 2-D SIMD arrays exploit massive data

parallelism inherent in image sequences by operating the same instruction sequences

simultaneously on a large number of discrete data sets, they are less amenable to the

vector processing of 3-D YCbCr channels, which are widely used in image and video

processing community. In particular, since the 3-D vector computation is performed

within innermost loops, its performance does not scale with increasing PEs in the

computational array.

CAX is presented as a solution to this performance limitation by adding parallel

operations on two-packed 16-bit (6:5:5) YCbCr data to the instruction set architecture of

the 32-bit datapath SIMD array. In addition to greater concurrency, the ability to reduce

data format size reduces system cost. The major findings are the following:

 12

• CAX outperforms MDMX across all the selected programs in speedup (5.2×

to 8.9× with CAX, but only 3× to 5× with MDMX over the baseline

performance) on the same data parallel SIMD execution platform.

• CAX also outperforms MDMX in both area efficiency (a 75% increase versus

a 25% increase) and energy efficiency (a 75% increase versus a 24% increase),

resulting in better component utilization and sustainable battery life.

• Furthermore, CAX improves the performance and efficiency with a mere 3%

increase in the system area and a 5% increase in the system power, while

MDMX requires a 14% increase in the system area and a 16% increase in the

system power. These results demonstrate that CAX is a suitable candidate for

application-specific embedded systems.

1.2.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD
Architectures

Reconfigurable silicon area usage within an integrated pixel processing array is a

key issue for focal-plane SIMD imaging architectures because of limited chip resources

and varying application requirements. This research explores the effects of varying the

VPPE ratio (number of vector pixels mapped to each processor within a SIMD

architecture) on processing performance and on both area and energy efficiency for a

specified PE architecture and implementation technology. The impact of CAX on each

VPPE configuration is also evaluated to identify the most efficient PE granularity.

Experimental results using cycle accurate simulation and technology modeling indicate

that CAX outperforms MDMX for all the configurations for full search vector

quantization in terms of processing performance, area efficiency, and energy reduction.

 13

The results also indicate that high processing performance with the lowest cost is

achieved at VPPE = 16 with CAX.

1.2.5 Static versus Dynamic Scheduling

With limited amounts of memory and register sizes tailored for specific

applications and low cost, early media processor designs have followed the digital signal

processor design philosophy, building processors with predominantly static architectures,

such as VLIW architectures. However, as media processors progress to higher

frequencies and a higher degree of parallelism with the increasing number of gates made

available as predicted by Moore’s Law, the dynamic aspects of processing are becoming

more pronounced. Architectures employing dynamic scheduling, such as superscalar

architectures, may be conducive to emerging multimedia applications [32].

This research compares the performance of static versus dynamic architectures

with and without CAX or MDMX for color imaging applications through a common

simulation framework. Experimental results using the Simplescalar-based simulator and a

retargeting tool indicate that the dynamic approach with a four-way issue achieves an

average speedup of 2.7× over the static approach with a four-way issue. This is primarily

because the static code schedules are poorly adapted to the run-time conditions of the

processor. CAX achieves an additional speedup of 7.6×, while MDMX achieves an

additional speedup of 2.7×.

 14

1.3 Contribution Summary

The contributions made in this dissertation include the study of color imaging

algorithms, architectures, and technologies to provide efficient processing of color

multimedia in many, or ideally all, of its forms on embedded multimedia systems. The

contributions are outlined in the five categories below.

1.3.1 Exploring Color Imaging for Multimedia

• Evaluation of several color specification models for determining the most suitable

color space model that achieves a natural extension of the operation.

• Investigation of the use of color information in multimedia applications using a

vector approach, improving the accuracy of the process and overall image quality.

• Evaluation of color representations (e.g., YCbCr) with varying pixel word sizes

for identifying the most efficient color representation in terms of storage

requirements and color accuracy.

1.3.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors

• Design and definition of the CAX instruction set for dynamically scheduled

processor architectures.

• Validation of CAX effectiveness in capturing the intended workload.

• Evaluation of the CAX instruction set on performance and energy consumption

through detailed execution-driven simulators (e.g., Simplescalar out-of-order

superscalar modeling and Wattch power modeling).

 15

• Comparison of the execution performance and energy consumption of CAX

versus MDMX (a representative MIPS multimedia extension).

1.3.3 Implementation and Evaluation of the Color-Aware Instruction Set for Low-
Memory, Embedded Video Processing in Data Parallel Architectures

• Design and definition of the CAX instruction set for embedded SIMD array

architectures.

• Development of a detailed execution-driven SIMD simulator that supports CAX

and MDMX instruction set extensions.

• Validation of CAX effectiveness in capturing target applications.

• Evaluation of the impact of CAX on processing performance and on both area and

energy efficiency with respect to color imaging applications.

• Performance, area efficiency, and energy efficiency comparisons against MDMX

on the same data parallel SIMD architecture.

1.3.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD
Architectures

• Introduction of a vector-pixel-per-processing-element (VPPE) ratio.

• Illustration of the correlation among problem size, VPPE ratio, and PE

architecture.

• Modification of the cycle-accurate SIMD simulator to support a different VPPE

ratio and a different amount of local memory.

• Application mapping for different VPPE values, with and without CAX or

MDMX, and simulations.

 16

• Evaluation of the performance, area efficiency, and energy efficiency for each

VPPE configuration with and without CAX or MDMX extensions.

• Identification of the most efficient PE granularity that delivers sufficient

processing performance with the lowest cost under technology constraints.

1.3.5 Dynamic versus Static Scheduling

• Development of a common framework infrastructure that consists of the

Simplescalar-based simulator and a retargeting tool.

• Performance evaluation and comparison of dynamic versus static architectures,

both with and without CAX or MDMX extensions.

1.4 Overview of Content

The rest of this dissertation is organized as follows. Chapter 2 explores color

imaging for multimedia. Several color space representations are first evaluated to identify

the most advantageous color space that achieves the most effective results in color image

processing. The use of color information in multimedia applications is then investigated

along with three important imaging applications (e.g., the vector median filter, color edge

detection, and motion estimation). Several color representations with varying pixel word

sizes are also evaluated to determine the most efficient representation in terms of storage

requirements and color accuracy.

Chapter 3 presents a color-aware instruction set extension (CAX) for dynamically

scheduled superscalar processors to support the vector processing of color image

sequences. Existing multimedia extensions are first presented along with research efforts

 17

using the multimedia extensions. An overview of CAX is then introduced along with

pictorial examples. Then the effectiveness of CAX is evaluated with respect to a set of

color imaging applications. CAX is also compared with MDMX in terms of processing

performance and energy consumption.

Chapter 4 presents the implementation and evaluation of the CAX instruction set

for low-memory, embedded video processing in data parallel architectures. Research

dealing with harnessing data-level parallelism (DLP) inherent in color imaging

applications is first presented. The modeled architectures and a methodology

infrastructure are then illustrated for the evaluation of CAX. Then the impact of CAX on

processing performance and on both area and energy efficiency on a representative SIMD

array is evaluated using cycle accurate simulation and technology modeling. Processing

performance, area efficiency, and energy efficiency comparisons against MDMX are also

provided.

Chapter 5 presents an analytical study for determining optimal grain sizes for a

specified PE architecture and implementation technology. A summary of related research

regarding the grain size design is first presented. The correlation among problem size,

VPPE ratio, and PE architecture is then illustrated to quantify the amount of image data

directly mapped to each processing element. Then the effects of varying VPPE ratio on

processing performance and efficiency are evaluated. The impact of CAX is also

evaluated on each VPPE configuration to identify the most efficient PE granularity that

provides sufficient processing performance with the lowest cost and the longest battery

life.

 18

Chapter 6 presents a summary of this dissertation along with a list of

contributions and results. A list of future research is also provided.

Appendix A presents a performance comparison of static versus dynamic

architectures with and without CAX or MDMX. A methodology infrastructure is first

introduced that allows both dynamically and statically scheduled simulations. The

execution performance of the dynamic approach is then compared with that of the static

approach. The impact of CAX on performance for both statically and dynamically

scheduled programs is also provided.

Appendix B presents an in-depth description of CAX along with programming

models.

 19

CHAPTER 2

EXPLORING COLOR IMAGING FOR MULTIMEDIA

2.1 Introduction

Color image and video processing has garnered considerable interest over the past

few years since color features are valuable in sensing the environment, recognizing

objects, and conveying crucial information [69]. As a result, color imaging applications

now define a significant portion of the computing market. Thus, understanding the

characteristics of the color imaging application domain provides new opportunities to

define an efficient architecture for embedded multimedia systems.

Early digital color image processing was often approached as an extension of

monochrome image processing, in which each color channel was treated as an

independent monochrome image [84]. However, this approach may not be able to extract

certain crucial information conveyed by color because it fails to account for the

correlation between color channels. Clearly, color cannot be treated as just another dimension,

and the relationship between color components is much more complex due to the

definition of color spaces and human perception of color.

This chapter first evaluates several color specification models with varying

subsampling factors to determine the most suitable color space that consistently reduces

pixel information while providing satisfactory image quality. Experimental results

indicate that the luminance-chrominance (YCbCr) space performs the best out of several

well-known color models (e.g., RGB, YCbCr, HSV, and L*a*b*) for all test images

because the human eye is less sensitive to high frequencies in chrominance. Another

 20

implication is that the luminance (Y) component of an image can be processed

independently from its chrominance components. As a result, separate channel processing

and luminance-only-processing are widely used in color imaging applications, yielding

usable results [37][47][19][50]. However, both of these approaches fail to extract certain

crucial information conveyed by color, reducing the accuracy of the process. It is clear

that a proper vector approach to color manipulation is potentially much more beneficial.

This chapter investigates the use of color information in multimedia applications

using the vector approach, improving the accuracy of the process and overall image

quality. However, the major disadvantage of the vector approach is adding computational

complexity to the process since the relationship between color channels is much more

complex. The computational burden is further exacerbated by higher imaging resolutions,

which also demand larger storage requirements. Since this storage (buffers, registers, and

caches) consumes a large percentage of silicon area, the ability to reduce data format size

can provide a reduction in system cost. The reduction in data bandwidth can also simplify

system design.

This chapter evaluates several color representations using a pixel-truncation

technique to identify the most efficient representation in terms of storage requirements

and color accuracy. The pixel-truncation differs from similar techniques (e.g., 4:2:2 and

4:2:0 subsampling) [85] in that it reduces information content in individual pixel word

sizes rather than in each dimension while inheriting the chrominance components of the

luminance. Hence, this technique drastically reduces the bandwidth and memory required

to transport and store color images while maintaining the data structure of vector

processing. In particular, a 16-bit (6:5:5) YCbCr representation is examined for reduced-

 21

memory, embedded video processing. The 16-bit YCbCr representation reduces pixel

word storage by 33% over the 24-bit YCbCr representation while maintaining acceptable

performance with respect to peak signal-to-noise ratio (PSNR). Moreover, this reduced

pixel format is useful for an efficient color-aware instruction set (CAX) design. CAX

supports parallel operations on two-packed 16-bit YCbCr data in a 32-bit datapath

processor, providing greater concurrency and efficiency for processing color image

sequences.

The rest of this chapter is organized as follows. Section 2.2 presents color

specification models and their applications. Section 2.3 evaluates these color space

models with varying subsampling factors to determine the most suitable color space that

consistently reduces pixel information without perceivable distortion in color. Section 2.4

investigates the use of color information in multimedia applications using a vector

approach. Section 2.5 evaluates several color representations with varying pixel word

sizes to identify the most efficient representation in terms of storage requirements and

color accuracy. Section 2.6 concludes this chapter.

2.2 Color Specification Models and Applications

Most color space models in use today are oriented toward either hardware or

applications in which color manipulation is a goal. The models can be classified into two

types: additive and subtractive. Additive color models produce color through the

combination of the three primary colors: red (R), green (G), and blue (B). Examples that

use additive color models include cathode-ray tube (CRT) and projection video systems.

Unlike additive color models, subtractive color models create new color by subtracting

 22

unwanted spectral components from white. Thus, subtractive environments are reflective

in nature (i.e., color is displayed by reflecting light from an external source). Examples

that use subtractive color models include color printers and color slides. Table 1

summarizes the most popular color space models and some of their applications. More

information is available in [69].

Table 1. Color space models and their applications.

Color Space Models Applications

♦non-uniform spaces

RGB, YIQ, YUV, YCbCr
storage, color TV broadcasting, processing,
analysis coding

Hardware-oriented
♦uniform spaces

L*a*b*, L*u*v*
color difference analysis, color
management systems

Application-oriented HIS, HSV, LHS color image manipulations, computer
graphics

The RGB Color Space

The most commonly used hardware-oriented color space is the RGB

representation, which is widely used in color monitors and color video cameras. RGB, an

additive color space, is created by mapping the three primary colors onto a 3-D Cartesian

coordinate system. Color imaging files using the RGB space represent each pixel as a

color triplet that consists of three numerical values in the form (R,G,B). For a 24-bit color,

the triplet (0,0,0) represents black, while (255,255,255) represents white. While the RGB

space is widely used to represent the image, it does not model the human perception of

color well. Applying image processing techniques in the RGB space often produces color

distortion and artifacts [87].

 23

The YCbCr Color Space

Another commonly used hardware-oriented color space is the YCbCr

representation, which is widely used in commercial color TV broadcasting and video

systems. In the YCbCr space, Y corresponds to the luminance, and Cb and Cr are

chrominance components that are used to represent hue and saturation. The YCbCr space

is defined as a linear transformation applied to RGB values. Since the YCbCr space

allows coding schemes to exploit the properties of human vision by allocating

significantly less bandwidth to high frequency chrominance information that is

perceptually less significant, the chrominance information can be subsampled without

introducing a perceivable distortion of color. Another implication is that the luminance

(Y) component of an image can be processed independently from its chrominance

components (Cb and Cr). Other similar color spaces include YUV and YIQ in which U,

V, I, and Q are chromatic components.

The L*a*b* Color Space

The L*a*b* space is very useful in applications in which precise quantification of

perceptual distance between two colors is necessary [69]. The three parameters represent

the perceived lightness (L*), its position between red and green (a*) and its position

between yellow and blue (b*). The L*a*b* space is the uniform color space standardized

by CIE, and it is designed to map perceived color differences into a Euclidean color

distance metric [61].

The HSI Color Space

The commonly used application-oriented color space is the hue, saturation, and

intensity (HSI) representation, which is useful for the user specification and recognition

 24

of color. As in the YCbCr space, the intensity (I) component in the HSI space is

decoupled from the chrominance information represented as hue (H) and saturation (S).

Moreover, the H and S components are intimately related to the way in which human

beings perceive color [36]. Thus, the HSI space is an ideal color space model for image

processing applications in which the hue and saturation components are of important

rather than the overall color perception. The hue, saturation, and value (HSV) space and

the hue, saturation, and luminosity (HSL) space are similar to HSI in that they produce

color by altering hue and saturation with the intensity.

2.3 Evaluating Color Specification Models

Color specification models are of paramount importance in applications in which

efficient manipulation and communication of image frames are required [69]. This

section evaluates several color space models with varying subsampling factors to identify

the most suitable color space that consistently reduces pixel information while providing

satisfactory image quality. Several empirical metrics and subjective comparisons are

considered.

2.3.1 An Experimental Comparison of Color Space Models

A color imaging simulator, called “CISim”, has been developed to evaluate color

space models with varying subsampling factors using MATLAB [58]. CISim, shown in

Figure 2, allows the displaying input and output images, the calculating the mean square

error (MSE) and peak signal-to-noise ratio (PSNR) values, the converting color spaces,

and the subsampling of any of the three components of an image. Horizontal and vertical

 25

subsampling can reduce the resolution by averaging squares of length two, four, eight, or

sixteen pixels. CISim also allows truncating pixel word sizes and processing of the three

different versions (e.g., vector processing, separate channel processing, and luminance

only processing) of color imaging applications, which are presented in Sections 2.5 and

2.4, respectively.

Figure 2. A screenshot of the color imaging simulator.

2.3.1.1 Experimental Results

In the first experiment, subsampling by a factor of four both vertically and

horizontally is performed on each channel for each color space.

The RGB Color Space

The effect of subsampling is noticeable in each of the images, shown in Figure 3.

As expected, the image subsampled in the green (G) channel is more distorted than that

subsampled in the red (R) or blue (B) because the human eye is more sensitive to high

frequencies in the G channel.

 26

(a)

(b)

(c)

Figure 3. Subsampled images [21] with a subsampling factor of four in each
direction for each component: (a) red, (b) green, and (c) blue.

The YCbCr Color Space

Distortion is hardly noticeable when the chrominance channels (Cb and Cr) are

subsampled, shown in Figures 4(b) and (c). This is because the human eye is less

sensitive to chrominance components. However, the image is noticeably distorted when

subsampling is performed on the luminance (Y) component, shown in Figure 4(a).

(a) (b) (c)

Figure 4. Subsampled images [21] with a subsampling factor of four in each
direction for each component: (a) Y, (b) Cb, and (c) Cr.

The L*a*b* Color Space

The results are similar to the YCbCr results. The image is affected by the

subsampling process in the luminance (L*). However, the effect of subsampling is hardly

 27

noticeable when the chrominance components (a* and b*) are subsampled, shown in

Figure 5.

(a)

(b)

(c)

Figure 5. Subsampled images [21] with a subsampling factor of four in each
direction for each component: (a) L*, (b) a*, and (c) b*.

The HSI Color Space

The effect of subsampling is significantly noticeable when the hue (H) is

subsampled, shown in Figure 6(a). This is because perceptually different colors lie close

to one another in the Euclidean plane. However, the image is slightly distorted when the

intensity (I) component is subsampled, and a little distortion is observed when

subsampling is performed on the saturation (S) component, shown in Figures 6(c) and (b),

respectively.

(a)

(b) (c)

Figure 6. Subsampled images [21] with a subsampling factor of four in each
direction for each component: (a) H, (b) S, and (c) I.

 28

In the next experiment, two components (RB in RGB, SI in HSI, CbCr in YCbCr,

and a*b* in L*a*b*) in each color space are simultaneously subsampled by a factor of

four both vertically and horizontally. In other words, the subsampling components are

formed by blocks of 4 × 4 pixels that have the same value. Figure 7 shows subsampling

results for each color space. From the previous experiment, the HSI space is ruled out

because of significant distortion in color when the hue (H) channel is subsampled. Even

if the S and I components are subsampled, the effect of subsampling is even more

noticeable, shown in Figure 7(c). Significant distortion is also observed when the R and B

components in the RGB space are subsampled. This is because each R, G, and B

component is highly correlated with each other. On the other hand, the image is only

slightly distorted when subsampling is performed in the chrominance channels (a*, b*,

Cb, and Cr) of the L*a*b* or YCbCr spaces. However, as the subsampling coefficient

increases, color at the edges is distorted for the L*a*b* space, shown in Figure 7(d). The

same results have been observed for other test images, which are available at [21].

 29

(a)

(b)

(c)

(d)

Figure 7. Subsampled images [21] with a subsampling factor of four for two
components simultaneously in each color space: (a) RGB, (b) YCbCr, (c) HSI, and
(d) L*a*b*.

2.3.1.2 Summary

Four commonly used color space models with varying subsampling factors have

been evaluated to determine the most efficient color space that consistently reduces pixel

information without perceivable color distortion. Although the RGB space is widely

employed in many consumer products, it does not model the human perception of color

well. On the other hand, the YCbCr space performs the best for all test images since the

human eye is less sensitive to high frequencies in chrominance.

 30

2.4 Investigating the use of Color Information in Multimedia Applications

 In multichannel pixel coding, standard color images represent vector-valued

image signals in which each pixel can be considered to be a vector of three components

(e.g., RGB). However, as illustrated in the previous section, the RGB color space is ill-

suited for the human perception of color. As a result, applying image processing

techniques in the RGB space often produce color distortion and artifacts [87]. In addition,

each R, G, and B component is highly correlated and thus not well-suited for independent

coding. To overcome these problems, the image and video processing community widely

uses the YCbCr color space, a human perceptual color space. Since the human eye is less

sensitive to high frequencies in chrominance, chrominance components (Cb and Cr) can

be subsampled while providing satisfactory image quality. Moreover, the YCbCr space

allows luminance processing independent of chrominance channels. Because of these

properties, the processing of color images can proceed by manipulating the luminance

only component, shown in Figure 8(a), or each color component separately, shown in

Figure 8(b). In general, these approaches provide sufficient information for the imaging

process [37][47][19][50]. However, both of these approaches fail to extract crucial

information conveyed by color because they do not account for the correlation between

color channels, reducing the accuracy of the process. It is clear that a proper vector

approach to color manipulation is potentially much more beneficial, shown in Figure

8(c). The rest of this section presents the effectiveness of the vector approach with three

important applications: (1) the vector median filter, (2) color edge detection, and (3)

motion estimation.

 31

Y
Cb
Cr

Process Y
Cb
Cr

Input Output
index i

index i

Y
Cb
Cr

Y
Cb
Cr

Process Y
Cb
Cr

Input Output
index i

index i

(a)

Y
Cb
Cr

Process

Process

Process

Input Output
Y
Cb
Cr

Y
Cb
Cr

Y
Cb
Cr

Process

Process

Process

Input Output
Y
Cb
Cr

(b)

Y
Cb
Cr

Process
Y
Cb
Cr

Input OutputY
Cb
Cr

Y
Cb
Cr

Process
Y
Cb
Cr

Input Output

(c)

Figure 8. Three different coding schemes for color channels: (a) luminance only
processing, (b) separate processing of each channel, and (c) vector processing.

2.4.1 The Vector Median Filter in the YCbCr Color Space

Impulse noise can corrupt color images due to faulty sensors or channel

transmission errors. Noise reduction is an important step in color image and video

processing. The most common way to filter out noise from color images is nonlinear

median processing that is based on the ordering of vectors in a predefined sliding window

(e.g., the well-known vector median filter proposed by Astola et al. [1]). The vector

median filter (VMF), which is particularly effective at suppressing impulse noise in color

image sequences, performed in the RGB space, does not correspond to the perceptual

attributes of human vision. Therefore, this research implements the VMF on the YCbCr

space to compare the YCbCr-based VMF with the luminance only median filter (LOMF)

and the scalar median filter (SMF). The YCbCr-based VMF is defined as follows.

 32

Consider a window W that is represented as a set of N color vectors C = {p1, p2, …, pN},

where each vector pi = (Yi, Cbi, Cri), i∈N. This VMF computes the median pixel pVM in

the window, defined as

},...,,{ 21 NVM pppp ∈ , (1)

and for all j = 1, …, N,

∑ ∑
= =

−≤−
N

i

N

i
ijiVM

1 1
11 |||||||| pppp , (2)

where ||⋅||1 denotes the L-1 norm.

The MATLAB tool is used to evaluate the effectiveness of the YCbCr-based

VMF over the SMF and LOMF at suppressing impulse noise in color images. In the

experiment, a test color frame of the News sequence of three-band CIF resolution (352 ×

288 pixels) is corrupted by impulse noise ranging from 2% to 20% with the step size of

2% for each R, G, and B channel. The filtering results are evaluated by commonly used

metrics such as the mean absolute error (MAE), the mean square error (MSE), and the

normalized color distance (NCD) [69], which reflect signal preservation, noise

suppression, and color chromaticity preservation, respectively. Mathematically, the

MAE, the MSE, and the NCD are given by

∑
=

−=
N

i
iiN

MAE
1

1||||1 xo , (3)

 2||||1
iiN

MSE xo −= , and (4)

∑

∑

=

=

++

−+−+−
= N

i

o
i

o
i

o
i

N

i

x
i

o
i

x
i

o
i

x
i

o
i

CrCbY
N

CrCrCbCbYY
NNCD

1

222

1

222

)()()(1

)()()(1

, (5)

 33

where oi is the original image pixel, xi is the filtered image pixel, and Yi
oCbi

oCri
o and

Yi
xCbi

xCri
x are values of the luminance and two chrominance components of the original

image sample oi, and the filtered image sample xi, respectively.

The experimental results indicate that the LOMF performs well when a small

amount of impulse noise is added to an image. However, as the noise ratio increases,

some noise remains at the edges, shown in Figure 9(b). Unlike the LOMF, the SMF is

performed on the three color channels independently while combining the three resultant

images, providing better performance at attenuating impulse noise, shown Figure 9(c).

However, the SMF internally generates new vector pixels caused by the composition of

reordered channel samples. Because of this, the SMF increases the MAE, MSE, and NCD

values, shown in Figure 10. On the other hand, the YCbCr-based VMF takes into account

the correlation between color channels, outperforming either of these approaches in the

MAE, MSE, and NCD metrics, shown in Figure 10. These results demonstrate that the

vector approach is necessary to provide reliable YCbCr signals for further color image

and video processing.

 34

(a) (b)

(c) (d)

Figure 9. A corrupted image with recovered output images using relevant filters
(available in color at [21]): (a) 1st frame of News corrupted by 8% impulse noise,
(b) the luminance only median filter, (c) the scalar median filter, and (c) the
YCbCr-based VMF.

 35

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20

Impulse noise percentage

M
A

E VMF
SMF
LOMF

(a)

0
200
400
600
800

1000
1200
1400
1600
1800

2 4 6 8 10 12 14 16 18 20

Impulse noise percentage

M
SE

LOMF
SMF
VMF

(b)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2 4 6 8 10 12 14 16 18 20

Impulse noise percentage

N
C

D

LOMF
SMF
VMF

(c)

Figure 10. Objective criteria in dependence on impulse noise percentage: (a) MAE,
(b) MSE, and (c) NCD.

 36

2.4.2 Color Edge Detection using both Luminance and Chrominance Components

Edge detection is a fundamental task in image processing. Many imaging

applications, such as segmentation, registration, and identification of objects in a scene,

depend on the accuracy of edge detection. An edge corresponds to object boundaries or

changes in the physical properties such as illumination or reflectance in a monochrome

image [36]. Monochrome edge detection, however, may not correspond to the set of

edges existing in a color image when neighboring objects have different hues but equal

intensities. The additional boundary information provided by color is crucial for

applications such as object recognition and image segmentation.

For color edge detection purposes, several different approaches have been tested

in [47]. The most straightforward approach is to apply monochrome edge detection to the

three color channels independently. The edge results of the three channels are then

combined by using a certain logical operator (e.g., fused by means of a logical or

operator) to obtain more complete edge information. Consider, for example, the Sobel

operator. The Sobel operator is implemented by convolving a pixel and its eight

neighbors with two 3 × 3 convolution filters, defined as

−
−
−

=
101
202
101

xM and

−−−
=

121
000
121

yM . (6)

The two filters are applied to each color channel independently to highlight

horizontal and vertical edges, and the three resulting edge images are combined by using

a logical or operator. Because of this, the Sobel operator provides more edge information

when compared to the luminance only Sobel operator, shown in Figure 11(c). However,

 37

this approach fails to account for the correlation between color channels, resulting in the

loss of crucial information provided by color (e.g., edges that have the same strength but

have opposite color components).

Unlike the scalar Sobel operator, a vector Sobel operator using the two filters

shown in (7) produces vectors corresponding to the local average colors by using the

Euclidean norm, shown in (8).

−
−
−

=
101
202

101

4
1

VM and

−−−
=

121
000
121

4
1

HM . (7)

2
00

2
0000 ||),(||||),(||),(VSobel yxyxyx HV ∆+∆= (8)

where ||·|| denotes the Euclidean norm, and the scalars ||∆V(x0, y0)|| and ||∆H(x0, y0)||

provide the variation rate at pixel location (x0, y0) in orthogonal directions (i.e., the

amounts of color contrast that can be obtained in the vertical and horizontal directions).

The local average colors at pixel location (x0, y0) are calculated as follows:

∑∑
−= −=

−+−+=∆
1

1

1

1
0000),()2,2(),(

y x
V yxMyyxxcyxV , (9)

∑∑
= =

−+−+=∆
3

1

3

1
0000),()2,2(),(

y x
H yxMyyxxcyxH , (10)

where c(x0, y0) denotes the YCbCr color vector (Y, Cb, Cr) at the image location (x0, y0),

∆V(x0, y0) represents vectors corresponding to the vertical average colors, and ∆H(x0, y0)

represents vectors corresponding to the horizontal average colors.

 38

If the local changes are combined by simply adding the Y, Cb, and Cr

components of ∆V and ∆H, this may lead to a mutual canceling out effect (e.g., when

contrast is in phase opposition in different channels).

Figure 11 shows a performance comparison of the three different 3×3 edge

detection algorithms: (1) the luminance only Sobel operator (LSobel), (2) the scalar Sobel

operator (SSobel), and (3) the vector Sobel operator (VSobel). The qualitative results

indicate that the VSobel operator provides more accurate edge information than the

LSobel and SSobel operators, shown in Figure 11. Other various approaches proposed

consider the problem of color edge detection in vector space [69].

(a) (b)

(c) (d)

Figure 11. Obtained output images using edge detection techniques: (a) 1st frame
of News, (b) the luminance only Sobel operator, (c) a scalar Sobel operator, and
(d) a vector Sobel operator.

 39

2.4.3 Simultaneous Motion Estimation of All Color Components

The most important step in estimating the quality of color video frames is that of

motion estimation, one of the most computationally intensive tasks in today’s

compression standards [19]. Motion estimation is typically done by block matching that

subdivides the current frame into small reference blocks and then finds the best match for

each block among available blocks in the previous frame. The standard full search block

matching algorithm (FSBMA) for motion estimation uses only the luminance or intensity

information of video signals to reduce the computational complexity of the process. In

general, the use of only the luminance component in estimating the motion field of a

color sequence provides sufficient information for the operations [50]. However, for

color video frames that have low luminance or detailed color information, accurate

motion estimation requires chrominance components, in which this chapter investigates.

In particular, a vector approach, called the full search vector BMA (FSVBMA), uses both

luminance and chrominance components while arriving at one motion vector for all

components. The matching criterion of the VFSBMA is defined as

∑∑

∑∑

∑∑

−

=

−

=

−

=

−

=

−

=

−

=

−+++

−+++

−++=

1

0

1

0

1

0

1

0

1

0

1

0

|),(),(|

|),(),(|

|),(),(|),(

M

i

N

j
Cr

M

i

N

j
Cb

M

i

N

j
Y

jixnjmiy

jixnjmiy

jixnjmiynmMAD

,

(11)

pnmp ≤≤− , ’ (12)

),,(minarg
,

nmMAD
pnmp ≤≤−

=v (13)

 40

where x(i,j) is the reference block of size M × N pixels at coordinates (i,j), y(i+m,j+n) is

the candidate block within a search area in the previous frame, (m,n) represents the

candidate displacement vector, and v is the motion vector.

To evaluate the effectiveness of the FSVBMA, two motion estimations (e.g., the

standard FSBMA and the FSVBMA) are implemented and simulated using MATLAB for

three well-known color videos (Foreman, News, and Football). Each video contains forty

frames of three-band CIF resolution (352×288) pixels. In the experiment, a macroblock

of 16×16 pixels and a search range of ±8 are used. The search area in the previous frame

is explored for each reference block in the current frame to find the closest matching

block to a selected error criterion. Figures 12, 13, and 14 present the sum of absolute

errors for the FSVBMA, normalized to the standard FSBMA for motion estimation. The

results indicate that the FSVBMA outperforms the luminance only motion estimation in

the sum of absolute errors for all test videos, improving the accuracy of the process and

overall video quality.

0.88

0.9

0.92

0.94

0.96

0.98

1

1 11 21 31

Frame No.

N
or

m
al

iz
ed

 s
um

 o
f a

bs
ol

ut
e

er
ro

rs

standard FSBMA
FSVBMA

Figure 12. Sum of absolute errors of the FSVBMA for the Foreman video,
normalized to the standard FSBMA.

 41

0.88

0.9

0.92

0.94

0.96

0.98

1

1 11 21 31

Frame No.

N
or

m
al

iz
ed

 s
um

 o
f a

bs
ol

ut
e

er
ro

rs
standard FSBMA
FSVBMA

Figure 13. Sum of absolute errors of the FSVBMA for the News video, normalized
to the standard FSBMA.

0.88

0.9

0.92

0.94

0.96

0.98

1

1 11 21 31

Frame No.

N
or

m
al

iz
ed

 s
um

 o
f a

bs
ol

ut
e

er
ro

rs

standard FSBMA
FSVBMA

Figure 14. Sum of absolute errors of the FSVBMA for the Football video,
normalized to the standard FSBMA.

Overall, vector processing outperforms either separate channel processing or

luminance only processing in terms of the accuracy of the process and overall image

quality. However, the main disadvantage of the vector approach is the addition of

computational complexity to the process since the relationship between color components

is much more complex. The computational burden is further exacerbated by higher

imaging resolutions. Higher resolution images also require larger storage. The next two

sections address these problems by introducing two architectural enhancements for

 42

memory- and performance-hungry embedded applications: (1) a pixel-truncation

technique and (2) a color-aware instruction set for embedded multimedia systems.

2.5 Determining an Efficient Color Representation using a Pixel-Truncation
Technique for Low-Memory, Embedded Video Processing

Multimedia-on-a-chip solutions offer greater integration and processor-memory

bandwidth. However, the trend towards higher resolution images results in higher data

rates and increasing storage requirements of processors. Since this storage (buffer,

registers, and caches) consumes a large percentage of silicon area, the ability to reduce

data format size can provide a reduction in system cost. The reduction in data bandwidth

can also simplify system design and packaging. This section evaluates several YCbCr

representations with varying pixel word sizes through a pixel-truncation technique to

identify the most efficient representation in terms of storage requirements and color

accuracy. The pixel-truncation technique differs from similar techniques (e.g., 4:2:2 and

4:2:0 subsampling) used in image and video compression applications in that it reduces

information content in individual pixel word sizes rather than in each dimension while

inheriting the chrominance components of the luminance for the vector process. Several

empirical metrics and subjective comparisons are considered.

2.5.1 Analysis of the YCbCr Representations with varying Pixel Word Sizes

Figures 15 and 16 show the MSE and PSNR values [3], respectively, from seven

original images for various pixel word sizes of the YCbCr data. The results indicate that

for those having greater than or equal to five bits in all three channels, the MSE values

 43

are quite small, and the PSNR values are reasonably high (more than 33 dB for each R,

G, and B component).

0

200

400

600

800

1000

1200

24-bit
(8-8-8)

20-bit
(8-6-6)

18-bit
(8-5-5)

18-bit
(6-6-6)

16-bit
(8-4-4)

16-bit
(6-5-5)

15-bit
(5-5-5)

14-bit
(8-3-3)

14-bit
(6-4-4)

13-bit
(5-4-4)

12-bit
(6-3-3)

12-bit
(4-4-4)

11-bit
(5-3-3)

10-bit
(4-3-3)

9-bit
(3-3-3)

8-bit
(4-2-2)

7-bit
(3-2-2)

A
ve

ra
ge

 M
SE

 o
ve

r 7
 im

ag
es

MSE_R
MSE_G
MSE_B

Figure 15. MSEs for various pixel word sizes. The form (n,m,l) represents n, m, and
l bits for Y, Cb, and Cr, respectively.

0

10

20

30

40

50

60

24-bit
(8-8-8)

20-bit
(8-6-6)

18-bit
(8-5-5)

18-bit
(6-6-6)

16-bit
(8-4-4)

16-bit
(6-5-5)

15-bit
(5-5-5)

14-bit
(8-3-3)

14-bit
(6-4-4)

13-bit
(5-4-4)

12-bit
(6-3-3)

12-bit
(4-4-4)

11-bit
(5-3-3)

10-bit
(4-3-3)

9-bit
(3-3-3)

8-bit
(4-2-2)

7-bit
(3-2-2)

A
ve

ra
ge

 P
SN

R
 o

ve
r 7

 im
ag

es

PSNR_R
PSNR_G
PSNR_B

Figure 16. PSNRs for various pixel word sizes.

In addition to the quantitative evaluation, a qualitative evaluation must be done

because a visual assessment of the processed image is the best subjective measure for

determining the efficiency of the method. Figures 17, 18, and 19 show original images

with converted output images for various pixel word sizes (available in color at [21]). As

can be seen, the converted images having greater than or equal to five bits in all three

channels provide satisfactory image quality. For those having less than five bits for at

 44

least one color channel, however, significant image degradation occurs. Moreover, too

much truncation affects contouring, making the image cartoon-like.

 45

Original Tank

24-bit (8,8,8)

20-bit (8,6,6)

18-bit (8,5,5)

18-bit (6,6,6)

16-bit (8,4,4)

16-bit (6,5,5)

15-bit (5,5,5)

14-bit (8,3,3)

14-bit (6,4,4)

13-bit (5,4,4)

12-bit (6,3,3)

12-bit (4,4,4)

11-bit (5,3,3)

10-bit (4,3,3)

9-bit (3,3,3)

8-bit (4,2,2)

7-bit (3,2,2)

Figure 17. Original Tank image with converted output images for various pixel word
sizes.

 46

Original Lena

24-bit (8,8,8)

20-bit (8,6,6)

18-bit (8,5,5)

18-bit (6,6,6)

16-bit (8,4,4)

16-bit (6,5,5)

15-bit (5,5,5)

14-bit (8,3,3)

14-bit (6,4,4)

13-bit (5,4,4)

12-bit (6,3,3)

12-bit (4,4,4)

11-bit (5,3,3)

10-bit (4,3,3)

9-bit (3,3,3)

8-bit (4,2,2)

7-bit (3,2,2)

Figure 18. Original Lena image with converted output images for various pixel word
sizes.

 47

Original News

24-bit (8,8,8)

20-bit (8,6,6)

18-bit (8,5,5)

18-bit (6,6,6)

16-bit (8,4,4)

16-bit (6,5,5)

15-bit (5,5,5)

14-bit (8,3,3)

14-bit (6,4,4)

13-bit (5,4,4)

12-bit (6,3,3)

12-bit (4,4,4)

11-bit (5,3,3)

10-bit (4,3,3)

9-bit (3,3,3)

8-bit (4,2,2)

7-bit (3,2,2)

Figure 19. Original News frame with converted output images for various pixel
word sizes.

 48

Out of several acceptable color representations, the rest of this dissertation

focuses on the 16-bit (6:5:5) YCbCr representation for reduced-memory, embedded video

processing. The 16-bit YCbCr representation reduces the average per pixel word storage

requirements by 33% over the 24-bit representation while maintaining acceptable PSNR

performance. The next section evaluates the 16-bit YCbCr representation on motion

estimation.

2.5.2 Motion Estimation using the 16-bit YCbCr Representation

The effectiveness of the 16-bit (6:5:5) YCbCr representation is evaluated using

motion estimation (ME). In this experiment, the two implementations of ME are executed

using MATLAB for a test suite of two color videos, each containing 40 frames of three-

band CIF resolution (352×288) pixels. One implementation uses 24-bit YCbCr data,

while the other uses 16-bit YCbCr data. In the experiment, a macroblock of 16×16 pixels

and a search range of ±8 are considered.

Figures 20 and 21 show the PSNR values versus frame number for the 24- and

16-bit implementations of ME. The reported PSNR is the average PSNR of the three

channels (e.g., RGB). Experimental results indicate that the overall quality of ME using

the 16-bit YCbCr data format is comparable to the 24-bit YCbCr ME performance,

indicating 30.9 dB versus 31.6 dB for the Foreman video and 32.2 dB versus 32.6 dB for

the News video.

 49

28

30

32

34

36

38

1 11 21 31

Frame No.

PS
N

R
 (d

B
)

24-bit implementation 16-bit implementation

Figure 20. PSNR versus frame number for the Foreman video using motion
estimation.

28

30

32

34

36

38

1 11 21 31

Frame No.

PS
N

R
 (d

B
)

24-bit implementation 16-bit implementation

Figure 21. PSNR versus frame number for the News video using motion estimation.

The vector median filter (VMF) also has been examined with similar results,

shown in Table 2 and Figure 22. In this experiment, each video frame was corrupted with

a 4% impulse noise for each R, G, and B channel. In addition, this reduced pixel format is

efficiently computed in an existing color converter without changing its circuitry, which

is presented next.

 50

Table 2. An average PSNR of the Foreman and News videos using the VMF.

 Foreman News
16-bit VMF implementation 29.5 dB 31.7 dB
24-bit VMF implementation 29.7 dB 32 dB

(a) (b) (c)

(d) (e) (f)

Figure 22. Corrupted images with recovered output images using the VMF
(available in color at [21]): (a) and (d) 4% impulse noise; (b) and (e) the VMF for
24-bit YCbCr data; and (c) and (e) the VMF for 16-bit YCbCr data.

2.5.3 Implementation Costs

The 16-bit (6:5:5) YCbCr representation can be computed from 24-bit RGB pixel

data using existing color conversion hardware. The conversion is defined in (14), where

Y assumes values between [0, 63], and Cb and Cr assume values between [0, 31].

+

−−
−−=

16
16
0

0101.00524.00625.0
0625.00414.00211.0
0285.01468.00748.0

B
G
R

Cr
Cb
Y

(14)

 51

This color transformation matrix can be computed with nine cycle latency and a

three cycle per pixel throughput using the pipelined datapath, shown in Figure 23 (from

[3]). For example, 0.0748 in the upper left-hand corner in (14) can be approximated by

the sum 2-4+2-7+2-8+2-11, and 0.0748R is represented by the sum R(4)+R(7)+R(8)+R(11),

in which R(n) denotes a right shift of R by n bits. Following the same procedure, the 6-bit

Y data can be obtained from

Y = R(4) + R(7) + R(8) + R(11) +

 G(3) + G(6) + G(8) + G(9) +

 B(6) + B(7) + B(8) + B(10).

(15)

The barrel shifter in Figure 23 then loads four data values at a time. For example,

[R(4), R(7), R(8), R(11)] are loaded in the first cycle, [G(3), G(6), G(8), G(9)] are loaded

in the second cycle, and so on. Using pipelining, a color pixel transformation can be

completed every three cycles. To obtain the RGB values from a set of YCbCr values, the

same hardware can also be used for the inverse matrix operation. Thus, the 24-bit RGB to

16-bit YCbCr (6:5:5) conversion can be computed in a simple datapath without the need

for area intense multiplication hardware.

Ba
rre

l S
hi

fte
r +

+

+

latch

+

latch

MUX0

latch

latch

latch
Input

OutputBa
rre

l S
hi

fte
r +++

+++

+++

latch

+++

latch

MUX0

latch

latch

latch
Input

Output

Figure 23. A block diagram of a color converter.

 52

2.5.4 Other Benefits from the 16-bit YCbCr Representation

In addition to reducing pixel storage requirements, the 16-bit YCbCr

representation is useful for an efficient color-aware instruction set (CAX) design.

Employing this reduced pixel format, CAX supports parallel operations on two-packed

16-bit YCbCr data in a 32-bit datapath processor, shown in Figure 24, providing greater

concurrency for processing color image sequences. Chapters 3 through 5 and Appendix A

present the impact of CAX on processing performance and cost for color imaging

applications in three major processor architectures: superscalar, very long instruction

word (VLIW), and embedded single instruction, multiple data (SIMD) array processors.

051015212631

YCbCrYCbCr

051015212631

YCbCrYCbCr

051015212631

YCbCrYCbCr

051015212631

YCbCrYCbCr

051015212631

YCbCr YCbCrYCbCr YCbCr

051015212631

YCbCrYCbCr

051015212631

YCbCr YCbCrYCbCr YCbCr

051015212631

YCbCrYCbCr

051015212631

YCbCr YCbCrYCbCr YCbCr

Figure 24. A 32-bit CAX operation.

2.6 Conclusion

This chapter has explored color imaging for multimedia to provide new

opportunities to define an efficient architecture for embedded multimedia systems.

Several color space models with varying subsampling factors have been evaluated to

determine the most efficient color space that consistently reduces pixel information while

maintaining image quality. The YCbCr space performs the best for all test images out of

four well-known color space models since the human eye is less sensitive to chrominance

channels. This chapter has also investigated the use of color information in multimedia

applications using a vector approach. The vector approach improves the accuracy of the

 53

process and overall image quality since it takes into account the correlation between color

channels. Furthermore, several color representations with varying pixel word sizes have

been evaluated to identify the most efficient representation in terms of storage

requirements and color accuracy. In particular, a 16-bit (6:5:5) YCbCr representation has

been examined for reduced-memory, embedded video processing. The 16-bit YCbCr

representation reduces the average per pixel word storage requirements by 33% over the

24-bit YCbCr representation while maintaining acceptable PSNR performance. Moreover,

employing this reduced pixel format, an efficient color-aware instruction set has been

introduced that supports parallel operations on two-packed, quantized 16-bit YCbCr data

in a 32-bit datapath processor, providing greater concurrency and efficiency for

processing color image sequences. The next chapter presents the impact of CAX on

processing performance and energy consumption for color imaging applications in

superscalar ILP processors.

 54

CHAPTER 3

UTILIZING COLOR SUBWORD PARALLELISM IN SUPERSCALAR ILP
PROCESSORS

3.1 Introduction

As digital multimedia is rapidly revolutionizing our society, its applications,

including color image and video processing, are becoming some of the dominant

computing workloads [24]. These applications, however, demand tremendous

computational and I/O throughput. The abundant data parallelism inherent to these

applications has motivated the development of multimedia extensions on general-purpose

processors (GPPs) to improve the performance of media-centric applications. Examples

include Intel MMXTM [67], SSETM and SSE-2 [70], Hewlett Packard MAX2 for the PA-

RISC architecture [53], Sun VIS for SPARC [80], MIPS MDMX [60], Alpha MVI [75],

and Motorola ALTIVEC for PowerPCTM architecture [63]. These extensions exploit

subword parallelism by packing several small data elements (e.g., eight-bit pixels) into a

single wide register (32-, 64-, or 128-bit) while processing these separate data elements in

parallel without requiring extra registers or operations. While the improvement in

performance has been exciting and encouraging, they poorly support the vector

processing of color image sequences in which each pixel computation is simultaneously

performed on 3-D YCbCr channels. In particular, their performance is limited in dealing

with both color pixel data that are not aligned on boundaries that are powers of two (e.g.,

visually adjacent pixels from each band are spaced three bytes apart) and storage data

types that are inappropriate for computation (necessitating conversion overhead before

and usually following the computation) [77]. Although the band separated format (e.g.,

 55

the red data for adjacent pixels are adjacent in memory) is the most convenient for single

instruction, multiple data (SIMD) processing, a significant amount of overhead for data

alignment is expected prior to SIMD processing. Even if the SIMD multimedia

extensions store the pixel information as a packed 32-bit word composed of an eight-bit

R, G, and B, and unused (U) field (band-interleaved format) in a 32-bit wide register,

subword parallelism cannot be exploited on the operand of the unused field. Moreover,

since the RGB space does not model the perceptual attributes of human vision well, the

RGB to YCbCr conversion is necessary for further color image and video processing

[85][36]. Although the SIMD multimedia extensions can handle the color conversion

process in software, the hardware approach would be much more efficient.

A new color-aware instruction set extension (CAX) for superscalar instruction-

level parallel (ILP) processors is presented to solve the problems inherent to RGB

extensions by supporting parallel operations on two-packed 16-bit (6:5:5) YCbCr data in

a 32-bit datapath processor. As illustrated in the previous chapter, the YCbCr space

allows coding schemes that exploit the properties of human vision by truncating some of

the less important data in every color pixel and allocating fewer bits to the high-

frequency chrominance components that are perceptually less significant. Thus, the 16-bit

YCbCr representation provides satisfactory image quality. In addition, CAX employs

color-packed accumulators that provide a solution to overflow and other issues caused by

packing data as tightly as possible by implicit width promotion and adequate space.

This chapter evaluates CAX in comparison to a representative multimedia

extension, MDMX, an extension of MIPS. MDMX was chosen as a basis of comparison

because it provides an effective way of dealing with reduction operations by using a wide

 56

packed accumulator that successively accumulates the results produced by operations on

multimedia vector registers. Other multimedia extensions poorly support vector

processing in a 32-bit datapath processor without accumulators. To handle vector

processing on a 64-bit or 128-bit datapath, they require frequent packing/unpacking of

operand data, deteriorating their performance.

Experimental results show that CAX outperforms MDMX in speedup (3× to 5.8×

with CAX, but only 1.6× to 3.2× with MDMX over the baseline performance) on the

same dynamically scheduled, four-way issue superscalar processor. CAX also

outperforms MDMX in energy reduction (68% to 83% reduction with CAX, but only

39% to 69% reduction with MDMX over the baseline version). Furthermore, CAX

exhibits higher relative performance for low-issue rates. For example, CAX achieves an

average speedup of 4.7× over the baseline 1-way issue performance, but 3× over the

baseline 16-way issue performance. These results demonstrate that CAX is an ideal

candidate for embedded multimedia systems in which high issue rates and out-of-order

execution are too expensive.

Performance achieved by CAX is further enhanced through loop unrolling (LU)

[26][86], an optimization technique that reorganizes and reschedules the loop body,

which contains the most critical code segments for color imaging applications. In

particular, LU reduces loop overhead while exposing ILP for machines with multiple

functional units within the loops. Experimental results indicate that LU (by a factor of

three for three programs and four for other programs) provides an additional 4%, 19%,

and 21% performance improvement for the baseline, MDMX, and CAX versions,

 57

respectively. These results suggest that the CAX plus LU technique has the potential to

provide the higher performance required by emerging color imaging applications.

The rest of this chapter is organized as follows. Section 3.2 presents multimedia

extensions to general-purpose processors along with research efforts using the

multimedia extensions. Section 3.3 presents a summary of the CAX instruction set along

with pictorial examples. Section 3.4 describes the selected color imaging applications, the

modeled architectures, and the simulation methodology for the evaluation of CAX.

Section 3.5 presents the experimental results and their analysis, and Section 3.6

concludes this chapter.

3.2 Related Research

3.2.1 Multimedia Extensions to General-Purpose Processors

Manufactures of general-purpose processors (GPPs) have included multimedia

extensions to their instruction set architectures (ISAs) to support multimedia applications.

The main idea in the extensions is exploiting subword parallelism within the context of a

dynamically scheduled superscalar ILP machine. Table 3 shows the list of all major

microprocessor vendors and shipped/announced multimedia instruction set extensions for

their architectures [76]. These multimedia extensions support many instructions that

enable simultaneous processing of several small data elements (e.g., eight-bit pixels)

packed into a single wide register (e.g., 64-, or 128-bit). Depending on the target

applications of a vendor, multimedia extensions vary widely. Motorola AltiVec has a

large number of SIMD instructions (162 instructions), while HP MAX-1 has only a few

(eight instructions). Many of the instruction sets, such as AMD 3DNow!, DEC MVI,

 58

Intel MMX, and Sun VIS, are based on 64-bit wide registers, while Motorola AltiVec and

Intel SSE are based on 128-bit wide registers. A notable exception is MIPS MDMX,

which uses a single wide packed accumulator that successively accumulate the results

produced by operations done with multimedia vector registers. Despite the similarities,

each approach is unique. For example, MAX-2 reuses the integer registers and execution

units while requiring virtually no additional execution hardware, but AltiVec requires an

entirely new execution unit.

Table 3. Microprocessor multimedia extensions.

Processor Extension Product Instructions Register File
HP M AX-1 1994 9 Integer (31x64b)
Sun VIS 1995 121 FP (32x64b)
HP M AX-2 1995 8 Integer (32x64b)

M IPS M IPS-V (-) 29 FP (32x64b)
M IPS M DM X (-) 74 FP (32x64b), Acc. (1x92b)
Intel M M X 1997 57 FP (8x64b)
DEC M VI 1997 13 Integer (31x64b)
Cyrix Extended M M X 1997 12 FP (8x64b)
AM D 3D Now! 1998 21 FP (8x64b)
Intel SSE 1999 70 8x128b

M otorola AltiVec 1999 162 32x128b
M IPS M IPS-3D (-) 23 FP (32x64b)
AM D Enhanced 3D Now! 1999 24 FP (8x64b)
Intel SSE2 (-) 144 8x128b

Depending on the vendors, a multimedia instruction set extension contains some

or all of the following instructions:

Modulo/Saturating

Modulo (or wraparound) arithmetic can produce partial results when overflow

occurs, while saturating arithmetic clamps the output value to the largest or smallest

 59

possible value for the given data type. Unlike modulo arithmetic, saturating arithmetic

requires adding a little cost in the form of separate instructions for signed and unsigned

operands because values must be interpreted by the hardware as a particular data type.

Parallel Compare Instructions

There are two types of parallel compare (Pcmp) instructions: an element mask and

a bit mask. The element mask Pcmp instruction compares pairs of the sub-elements in the

two source registers while generating either all 1s or all 0s for each sub-element

comparison. The bit mask Pcmp instruction is similar, except that it generates either a

one-bit true or false indicator for each sub-element comparison. Intel’s MMX pcmpeqw

instruction, for example, compares pairs of the packed 16-bit values in the two 64-bit

source registers while generating either all 1s (0xffff) or 0s (0x0000) of each 16-bit sub-

element for a 64-bit wide element mask. These masks are then used in conjunction with

64-bit logical operations, such as AND, ANDN, and OR to achieve the desired conditional

assignment. On the other hand, Sun’s VIS uses the bit mask Pcmp instruction to control

the partial store instruction. Only sub-elements corresponding to a “1” bit in the bit mask

are written to memory; other sub-elements remain unchanged.

Parallel Min/Max Instructions

Parallel min/max instructions output the minimum or maximum values of the

corresponding elements in the two separate input registers, respectively.

Pack/Unpack Instructions

Pack instructions truncate larger sub-elements into smaller ones in tightly packed

fields, while unpack instructions expand smaller sub-elements into larger ones. Figures

 60

25(a) and (b) illustrate the packing of two registers into one register and the

complementary operation of unpacking, respectively.

Rc
Truncated

B2

Truncated
B1

Truncated
A2

Truncated
A1

A2 A1Rb

B2 B1Rb

Rc
Truncated

B2

Truncated
B1

Truncated
A2

Truncated
A1

A2 A1Rb

B2 B1Rb

(a)

Ra A4 A3 A2 A1

A2 A1Rb

Ra A4 A3 A2 A1

A2 A1Rb

(b)

Figure 25. (a) A pack instruction. (b) An unpack instruction.

Permute/Mix Instructions

Permute instructions having one packed data-type source allow any permutation

of the source quantities in the packed data-type destination, while mix instructions mix

every other quantity of a packed data-type source register with the corresponding quantity

from the second source register. Figures 26(a) and (b) show a permutation instruction in

which one sub-element is repeated twice and a mix instruction, respectively.

Ra A4 A3 A2 A1

Ra A3 A4 A4 A2

Ra A4 A3 A2 A1

Ra A3 A4 A4 A2
(a)

Rb B4 B3 B2 B1

Ra A4 A3 A2 A1

Rc A4 B4 A2 B2

Rb B4 B3 B2 B1

Ra A4 A3 A2 A1

Rc A4 B4 A2 B2

(b)

Figure 26. (a) A permute instruction. (b) A mix instruction.

Memory Instructions

A parallel load instruction can load multiple-packed elements into a register. A

store instruction is similar, except that it stores into memory. All vendors include these

 61

instructions. Moreover, since most multimedia computations have highly predictable

memory access patterns, prefetching instructions are useful to reduce the number of

cache miss penalties by fetching the cache block at a specified address into the cache

from main memory if it is not already there.

Special-Purpose Instructions

Some vendors include special-purpose instructions that accelerate multimedia

kernels. DEC’s MVI, Sun’s VIS, AMD’s enhanced 3DNow!, and Intel’s SSE, for

example, include a sum of absolute differences (SAD) instruction that calculates the

absolute differences of pairs of the sub-elements in the two source registers while

summing all the differences in the destination register, as shown in Figure 27. The SAD

instruction is commonly used in motion estimation for video compression [70][80]. In

addition to the SAD instruction, Intel’s SSE includes a packed average instruction that

enables half-pixel interpolation in motion compensation by averaging a set of pixel

values with pixels spatially offset by one, horizontally, vertically, or both [70]. On the

other hand, AMD’s 3DNow! includes reciprocal and square-root approximation

instructions that typically have very high latency and are implemented as hardware

lookup tables [66]. These instructions are used in 3-D rendering applications that use

floating-point math functions.

Ra

Rb B8 B7 B5B6 B4 B3 B1B2

Rc

A8 A7 A5A6 A4 A3 A1A2

0 0 Sum of
difference0

|A1-B1|+ … + |A8-B8|

Ra

Rb B8 B7 B5B6 B4 B3 B1B2

Rc

A8 A7 A5A6 A4 A3 A1A2

0 0 Sum of
difference0

|A1-B1|+ … + |A8-B8|

Figure 27. A SAD instruction.

 62

The multimedia extensions have been such a success in general-purpose

processors because they enhance the performance of multimedia applications with

minimum hardware modification. For example, if the word size of a machine is 32 bits,

the adder can be used to implement four eight-bit or two 16-bit additions in parallel by

disconnecting the carry chain in the adder at every fourth or second position,

respectively. The carry chain prevents an overflow of processing one subword datum into

the next. A possible partitioned arithmetic logic unit (ALU) implementation is shown in

Figure 28. Additional hardware is needed for the specific multimedia functions, but

overall the typical area overhead for multimedia extensions in GPPs is only between

0.1% (HP’s MAX-2) to 3% (Sun’s VIS) of the entire processor die size [32].

16-bit ALU 16-bit ALU
Carry

0

16-bit 16-bit 16-bit 16-bit

16-bit 16-bit

Op1 Op2

16-bit ALU 16-bit ALU
Carry

0

16-bit 16-bit16-bit 16-bit 16-bit 16-bit16-bit 16-bit

16-bit 16-bit16-bit 16-bit

Op1 Op2

Figure 28. Partitioned ALU functional unit implementation.

The main disadvantage of using multimedia extensions is that no efficient

compiler support is available for automating the multimedia extensions because of the

lack of adequate high-level language constructs that utilize subword parallelism. In

general, the partitioned ALU instructions are inserted into high-level language code

manually by programmers in a form of intrinsic functions or assembly libraries provided

by vendors.

 63

3.2.2 Research Efforts Using Multimedia Extensions

Numerous groups and individuals have addressed the effectiveness of multimedia

extensions for multimedia applications on general-purpose processors [63][77][6-52].

Bhargava et al. evaluated the multimedia instruction set extension (MMX) for a set of

DSP and multimedia applications in the x86 architecture [6]. They observed that a finite

impulse response (FIR) filter kernel showed a reasonable speedup of 1.57× (a 57%

performance improvement) over the baseline performance because of the process of one

input at a time. An infinite impulse response (IIR) filter kernel, however, showed a more

impressive speedup of 2.55× due to block processing of the input samples, increasing

data-level parallelism and reducing the number of functions called. In their study, image

applications were the best suited for MMX because an image was stored in a large array

of eight-bit data and properly aligned on eight-byte boundaries, showing a speedup of

5.5× and an 81% reduction in the dynamic instruction count.

Ranganathan et al. [71] evaluated the performance of image and video processing

applications on an UltraSPARC processor with and without the VIS media extensions.

They observed that a 4-way issue, out-of-order processor provided 2.3× to 4.2×

performance improvement over a single-issue, in-order processor, and the VIS extensions

provided an additional 1.1× to 4.2× performance improvement. In [51], Lappalainen et al.

evaluated a video decoder on an Intel Pentium III with streaming SIMD extensions (SSE)

and observed that an SSE-optimized video decoder provided a speedup of 3.41× over the

baseline C version. In [63], Nguyen et al. evaluated the AltiVec technology on the

PowerPC microprocessor in DSP and multimedia algorithms and observed that the

 64

AltiVec technology provided a speedup ranging from 1.6× to 11.7× and 45% to 90%

reductions in the dynamic instruction count.

Unlike the studies discussed above that have focused primarily on a single

instruction set in isolation, Slingerland et al. conducted a thorough evaluation of the

performance among five instruction sets on Berkeley multimedia benchmark kernels

while comparing contemporary implementations of the multimedia ISA extensions with

each other [77]. In [52], Lee presented an overview of three multimedia extensions, MAX

for PA-RISC, MMX for ix86, and VIS for SPARC processor architectures.

Although many researchers have evaluated the performance of multimedia

applications, the existing benchmark suites are still in their initial stage of development

and do not include a variety of color imaging applications that are a large part of

multimedia presentations. Since color imaging applications are simultaneously performed

on 3-D color channels, they require more computational throughput. A color-aware

instruction set extension (CAX) is presented next that improves the performance of color

imaging applications.

3.3 A Color-Aware Multimedia Instruction Set for Color Imaging Applications

A color-aware instruction set (CAX) applied to current microprocessor ISAs

targets the acceleration of color image and video processing applications. CAX supports

parallel operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit datapath

processor, providing greater concurrency and efficiency for processing color image

sequences. In addition, CAX employs color-packed accumulators that provide a solution

to overflow and other issues caused by packing data as tightly as possible by implicit

 65

width promotion and adequate space. Figure 29 illustrates three types of operations: (1) a

baseline 32-bit operation, (2) a 4 × 8-bit SIMD operation used in many general-purpose

processors, and (3) a 2 × 16-bit CAX operation employing heterogeneous (non-uniform)

subword parallelism.

…Register File

031

Unused B3 G3 R3

Unused B1 G1 R1

Unused B2 G2 R2

7

z1 z2 z3 z4

1523

…Register File

031

Unused B3 G3 R3

Unused B1 G1 R1

Unused B2 G2 R2

7

z1 z2 z3 z4

1523

Register File

031

Register File

Unused B3 G3 R3

Unused B1 G1 R1

Unused B2 G2 R2

7

z1 z2 z3 z4

1523

Register File

031

Register File

Unused B3 G3 R3

Unused B1 G1 R1

Unused B2 G2 R2

7

z1 z2 z3 z4

1523

(a) (b)

Register File

051015212631
Y2Cb2Cr2 Y1Cb1Cr1

Y4Cb4Cr4 Y3Cb3Cr3

Y6Cb6Cr6 Y5Cb5Cr5

z3z2z1 z6z5z4

Register File

051015212631
Y2Cb2Cr2 Y1Cb1Cr1

Y4Cb4Cr4 Y3Cb3Cr3Y4Cb4Cr4 Y3Cb3Cr3

Y6Cb6Cr6 Y5Cb5Cr5Y6Cb6Cr6 Y5Cb5Cr5

z3z2z1 z6z5z4z3z2z1 z6z5z4

(c)

Figure 29. Types of operations: (a) a baseline 32-bit operation, (b) a 32-bit SIMD
operation, and (c) a 32-bit CAX operation.

For color images, the band data may be interleaved (e.g., the red, green, and blue

data of each pixel are adjacent in memory) or separated (e.g., the red data for adjacent

pixels are adjacent in memory). The band separated format is the most convenient for

SIMD processing, but a significant amount of overhead for data alignment is expected

prior to SIMD processing. Moreover, traditional SIMD data communication operations

have trouble with the band data that are not aligned on boundaries that are powers of two

(e.g., adjacent pixels from each band are visually spaced three bytes apart) [77]. Even if

the SIMD multimedia extensions store the pixel information in the band-interleaved

 66

format (i.e., |R|G|B|Unused| in a 32-bit register), subword parallelism can not be exploited

on the operand of the unused field. Furthermore, since the RGB color space does not

model the perceptual attributes of human vision well, the RGB to YCbCr conversion is

required prior to color image processing.

CAX solves problems inherent to packed RGB extensions by direct support for

YCbCr data processing and a proper alignment of two-packed 16-bit data on 32-bit

boundaries rather than depending solely on generic subword parallelism. The CAX

instructions are classified into four different groups: (1) parallel arithmetic and logical

instructions, (2) parallel compare instructions, (3) permute instructions, and (4) special-

purpose instructions.

3.3.1 Parallel Arithmetic and Logical Instructions

Parallel arithmetic and logical instructions include packed versions of addition

(ADD_CRCBY), subtraction (SUBTRACT_CRCBY), and averaging (AVERAGE_CRCBY).

The addition and subtraction instructions include a saturation operation that clamps the

output result to the largest or smallest value for the given data type when an overflow

occurs. Saturating arithmetic is particularly useful in pixel-related operations, for

example, to prevent a black pixel from becoming white if an overflow occurs. The

packed average instruction is useful for blending algorithms, which takes two packed

data types as input, adds corresponding data quantities, and divides each result by two

while placing the result in the corresponding data location. The rounding is performed to

ensure precision over repeated average instructions.

 67

3.3.2 Parallel Compare Instructions

Parallel compare instructions include CMPEQ_CRCBY, CMPNE_CRCBY,

CMPGE_CRCBY, CMPGT_CRCBY, CMPLE_CRCBY, CMPLT_CRCBY, CMOV_CRCBY

(conditional move), MIN_CRCBY, and MAX_CRCBY. These instructions compare pairs of

sub-elements (e.g., Y, Cb, and Cr) in the two source registers. Depending on the

instructions, the results are varied for each sub-element comparison. The CMPEQ_CRCBY

instruction, for example, compares pairs of sub-elements in the two source registers while

writing a bit string of 1s for true comparison results and 0s for false comparison results to

the target register. The first seven instructions are useful for a condition query performed

on the incoming data such as chroma-keying [68]. The last two instructions,

MIN_CRCBY and MAX_CRCBY, are especially useful for median filtering, which

compare pairs of sub-elements in the two source registers while outputting the minimum

and maximum values to the target register, respectively, shown in Figure 30.

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2Rs1

Cr3 Y3Cb3Cr4 Y4Cb4Rs2

min(Cr3,Cr1) min(Y3,Y1)min(Cb3,Cb1)min(Cr4,Cr2) min(Y4, Y2)min(Cb4, Cb2)Rd

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2 Cr1 Y1Cb1Cr2 Y2Cb2Rs1

Cr3 Y3Cb3Cr4 Y4Cb4 Cr3 Y3Cb3Cr4 Y4Cb4Rs2

min(Cr3,Cr1) min(Y3,Y1)min(Cb3,Cb1)min(Cr4,Cr2) min(Y4, Y2)min(Cb4, Cb2) min(Cr3,Cr1) min(Y3,Y1)min(Cb3,Cb1)min(Cr4,Cr2) min(Y4, Y2)min(Cb4, Cb2)Rd

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2Rs1

Cr3 Y3Cb3Cr4 Y4Cb4Rs2

max(Cr3,Cr1) max(Y3,Y1)max(Cb3,Cb1)max(Cr4,Cr2) max(Y4, Y2)max(Cb4, Cb2)Rd

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2 Cr1 Y1Cb1Cr2 Y2Cb2Rs1

Cr3 Y3Cb3Cr4 Y4Cb4 Cr3 Y3Cb3Cr4 Y4Cb4Rs2

max(Cr3,Cr1) max(Y3,Y1)max(Cb3,Cb1)max(Cr4,Cr2) max(Y4, Y2)max(Cb4, Cb2) max(Cr3,Cr1) max(Y3,Y1)max(Cb3,Cb1)max(Cr4,Cr2) max(Y4, Y2)max(Cb4, Cb2)Rd

(a) (b)

Figure 30. (a) A packed min instruction. (b) A packed max instruction.

3.3.3 Permute Instructions

Permute instructions include MIX_CRCBY, and ROTATE_CRCBY. These

instructions are used to rearrange the order of quantities in the packed data type. The mix

instruction mixes the sub-elements of the two source registers into the operands of the

target register, and the rotate instruction rotates the sub-elements to the right by an

 68

immediate value. Figures 31(a) and (b) illustrate the rotate and mix instructions,

respectively, which are useful for performing a vector pixel transposition or a matrix

transposition [78].

Y2 Cr1 Y1Cb2 Cb1Cr2Rs1

Rd Y1 Cr2 Y2Cb1 Cb2Cr1

010 515212631

Y2 Cr1 Y1Cb2 Cb1Cr2Rs1

Rd Y1 Cr2 Y2Cb1 Cb2Cr1Rd Y1 Cr2 Y2Cb1 Cb2Cr1

010 515212631 010 515212631

Y2 Cr1 Y1Cb2 Cb1Cr2Rs1

Y4 Cr3 Y3Cb4 Cb3Cr4Rs2

Rd Y2 Cr4 Y4Cb2 Cb4Cr2

010 515212631

Y2 Cr1 Y1Cb2 Cb1Cr2Rs1 Y2 Cr1 Y1Cb2 Cb1Cr2Rs1

Y4 Cr3 Y3Cb4 Cb3Cr4Rs2 Y4 Cr3 Y3Cb4 Cb3Cr4Rs2

Rd Y2 Cr4 Y4Cb2 Cb4Cr2Rd Y2 Cr4 Y4Cb2 Cb4Cr2

010 515212631 010 515212631

(a) (b)

Figure 31. (a) A rotate instruction. (b) A mix instruction.

3.3.4 Special-Purpose Instructions

Special-purpose CAX instructions include ADACC_CRCBY (absolute-differences-

accumulate), MACC_CRCBY (multiply-accumulate), RAC (read accumulator), and ZACC

(zero accumulator), which provide the most computational benefits of all the CAX

instructions. The ADACC_CRCBY instruction, for example, is frequently used in a

number of algorithms for motion estimation. It calculates the absolute differences of pairs

of sub-elements in the two source registers while accumulating each result in the packed

accumulator, shown in Figure 32. The MACC_CRCBY instruction is useful in DSP

algorithms that involve computing a vector dot-product, such as digital filtering and

convolutions. The latter two instructions, RAC and ZACC, are related to the managing of

the CAX accumulator.

These CAX instructions are included in the ISA of a dynamically scheduled

superscalar processor to improve the performance of color imaging applications.

 69

Acc
043 236387107127

Acc + abs(Cr2-Cr4)

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

Acc
043 236387107127 043 236387107127

Acc + abs(Cr2-Cr4)

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

Figure 32. An absolute-differences-accumulate instruction.

3.4 Methodology

This section describes the selected color imaging applications, the modeled

architectures and tools, and a methodology infrastructure to evaluate the CAX instruction

set.

3.4.1 Color Imaging Applications

We study five imaging applications to capture a range of color imaging for

multimedia: color edge detection using a vector Sobel operator (VSobel), the scalar

median filter (SMF), the vector median filter (VMF), vector quantization (VQ), and the

full-search vector BMA (FSVBMA) of motion estimation within the MPEG standard.

Although the SMF is not an example of vector processing, this study includes the SMF in

the application suite because of its useful and well-known sorting algorithm. These

applications, briefly summarized in Table 4 and introduced in Section 2.4, form

significant components of many current and future real-world workloads such as

streaming video across the internet, real-time video enhancement and analysis, and scene-

visualization. All the applications are executed with CIF resolution (352×288) 3-band

(i.e., channel) input image sequences.

 70

Table 4. Summary of the benchmarks used in this study.

Application Description

VSobel Extracts color edge information from an image through a Sobel operator that
accounts for local changes in both luminance and chrominance components.

SMF
Removes impulse noise from an image by replacing each color component with
a median value in a 3 x 3 window that is moved across the entire image. The
three resulting images are then combined to produce a final output image.

VMF Suppresses impulse noise from an image through a vector approach that is
performed simultaneously on three color components (i.e., Y, Cb, and Cr).

VQ

Compresses and quantizes collections of input data by mapping k-dimensional
vectors in vector space Rk into a finite set of vectors [35]. A full search vector
quantization using both the luminance and chrominance components is used to
find the best match in terms of the chosen cost function.

FSVBMA

Removes temporal redundancies between video frames in MPEG/H.26L video
applications. A full search block-matching algorithm using both the luminance
and chrominance components is used to find one motion vector for all
components.

3.4.2 Modeled Architectures and Tools

Figure 33 shows a methodology framework for this study. The Simplescalar-

based toolset [2], an infrastructure for out-of-order superscalar modeling, is used to

simulate a superscalar processor with and without MDMX or CAX, in which MDMX and

CAX instructions are synthesized using annotations in the assembly files. The MDMX

and CAX versions of the programs are generated by identifying the most time-consuming

kernels by profiling and manually replacing the fragments of the baseline assembly

language with ones containing MDMX and CAX instructions. Since the target platform is

an embedded system, operating system interface code (e.g., file system access) is not

included in this study. (Of course, the speedups of MDMX and CAX for complete

programs may be less impressive than those for kernels due to Amdahl’s Law [38].) In

addition, all the implementations exclude the color conversion process. In other words,

this study assumes that the baseline, MDMX, and CAX versions directly support YCbCr

 71

data in the same general data format (e.g., |Unused|Cr|Cb|Y| for baseline and MDMX and

|Cr|Cb|Y|Cr|Cb|Y| for CAX). Moreover, a fair approximation of MDMX is added to the

PISA of the Simplescalar simulator. For example, MDMX is extended with additional

instructions such as absolute-differences-accumulation or parallel-conditional-move in

CAX. Thus, MDMX (containing 30 instructions) has similar instructions as CAX

(containing 34 instructions) except for the permute instructions.

The Wattch-based simulator [10], an architectural-level power modeling, is also

used to estimate energy consumption in each case. For the power estimates of the

MDMX and CAX functional units (FUs), Verilog models for the baseline, MDMX, and

CAX FUs are implemented and synthesized with the Synopsys design compiler (DC)

using a 0.18-micron standard cell library. The reported power specifications of the

MDMX and CAX FUs, shown in Table 5, are then normalized to the baseline FU, and

the normalized numbers are applied to the Wattch simulator to determine the dynamic

power for the superscalar processor with MDMX or CAX.

Table 5. Dynamic power estimates for 32-bit FU designs with 1GHz at operating
voltage of 1.62.

 ALU MAC
Baseline 12.5 mW 262.2 mW
MDMX 15.0 mW 305.2 mW

CAX 18.8 mW 299.9 mW

 72

Benchmark
applications

PISA GCC

PISA GAS

PISA GLD

PISA Object File

SimpleScalar
Simulator

SimpleScalar
Simulator

Synopsys
(Module Builder)

Synopsys
(Module Builder)

Wattch
Simulator
Wattch

Simulator

PISA Assembly CodeCAX
Configuration

Performance
Statistics

Power
Statistics

CAX FU
MDMX FU
Baseline FU

Benchmark
applications

PISA GCC

PISA GAS

PISA GLD

PISA Object File

SimpleScalar
Simulator

SimpleScalar
Simulator

Synopsys
(Module Builder)

Synopsys
(Module Builder)

Wattch
Simulator
Wattch

Simulator

PISA Assembly CodeCAX
Configuration

CAX
Configuration

Performance
Statistics

Performance
Statistics

Power
Statistics

Power
Statistics

CAX FU
MDMX FU
Baseline FU

CAX FU
MDMX FU
Baseline FU

Figure 33. A methodology framework for dynamically scheduled simulations.

Table 6 summarizes the processor configurations used in this study. A wide range

of superscalar processors is simulated by varying the issue width from 1 to 16

instructions per cycle and the instruction window size from 16 to 256. When the issue

width is doubled, the number of functional units, load/store queues, and main memory

widths are scaled accordingly, in which the L1 cache (instruction and data) and the L2

cache are fixed at 16 KB and 256 KB, respectively. This study assumes that both MDMX

and CAX use two logical accumulators, and all the implementations are simulated with a

180 nm process technology at 600 MHz and aggressive, non-ideal conditional clocking.

(Power is scaled linearly with port or unit usage, and unused units are estimated to

dissipate 10% of the maximum power.) With these processor configurations, the next

section evaluates the impact of CAX on processing performance and energy consumption

for the selected color imaging applications.

 73

Table 6. Processor configurations.

Parameter 1-way 2-way 4-way 8-way 16-way
Fetch/decode/issue/commit width 1 2 4 8 16

intALU/intMUL/fpALU/fpMUL/Mem 1/1/1/1/1 2/1/1/1/2 4/2/2/1/4 8/4/2/1/8 16/8/4/1/16

RUU (window) size 16 32 64 128 256
LSQ (Load Store Queue) 8 16 32 64 128
Main memory width 32 bits 64 bits 128 bits 256 bits 256 bits

Branch Predictor
Combined predictor (1 K entries) of bimodal predictor (4
K entries) table and 2-level predictor (2-bit counters and
10-bit global history)

L1 D-cache 128-set, 4-way, 32-byte line, LRU, 1-cycle hit, total of
16 KB

L1 I-cache 512-set, direct-mapped 32-byte line, LRU, 1-cycle hit,
total of 16 KB

L2 unified cache 1024-set, 4-way, 64-byte line, LRU, 6-cycle hit, total of
256 KB

Main memory latency 50 cycles for first chunk, 2 thereafter

Instruction TLB 16-way, 4096 byte page, 4-way, LRU, 30 cycle miss
penalty

Data TLB 32-way, 4096 byte page, 4-way, LRU, 30 cycle miss
penalty

3.5 Experimental Results

In the experiment, the three different versions of the programs are coded and

simulated using the Simplescalar-based simulator for the evaluation of CAX: (1) baseline

ISA without subword parallelism, (2) baseline plus MDMX ISA, and (3) baseline plus

CAX ISA. The three different versions of each program have the same parameters, data

sets, and calling sequences. In addition, the Wattch-based power simulator is used to

evaluate the energy consumption of each benchmark. The dynamic instruction count,

execution cycle count, and energy consumption of each case form the basis of the

comparative study.

 74

3.5.1 Performance-Related Evaluation Results

This section presents the impact of CAX on execution performance for the

benchmarks. The effect of loop unrolling for each program is also presented.

3.5.1.1 Overall Results

Figure 34 illustrates execution performance (speedup in executed cycles) for

different wide superscalar processors with MDMX and CAX, normalized to the baseline

performance without subword parallelism. The results indicate that CAX outperforms

MDMX for all the programs in terms of speedup. For the 4-way issue machine, for

example, CAX achieves a speedup ranging from 3× to 5.8× over the baseline

performance, while MDMX achieves a speedup ranging from only 1.6× to 3.2× over the

baseline.

An interesting observation is that CAX exhibits higher relative performance for

low-issue rates. For example, CAX achieves an average speedup of 4.7× over the

baseline 1-way issue performance, but 3× over the baseline 16-way issue performance.

This result demonstrates that CAX is an ideal candidate for embedded multimedia

systems in which high issue rates and out-of-order execution are too expensive.

 75

0

1

2

3

4

5

1-way 2-way 4-way 8-way 16-way

VSobel

Sp
ee

du
p

baseline
MDMX
CAX

0

1

2

3

4

5

1-way 2-way 4-way 8-way 16-way

SMF

Sp
ee

du
p

baseline
MDMX
CAX

0

1

2

3

4

1-way 2-way 4-way 8-way 16-way

VMF

Sp
ee

du
p

baseline
MDMX
CAX

0

1

2

3

4

5

6

1-way 2-way 4-way 8-way 16-way

VQ

Sp
ee

du
p

baseline
MDMX
CAX

0
1
2
3
4
5
6
7

1-way 2-way 4-way 8-way 16-way

FSVBMA

Sp
ee

du
p

baseline
MDMX
CAX

Figure 34. Speedups for different issue-rate processors with MDMX and CAX,
normalized to the baseline performance.

3.5.1.2 Benefits from CAX

Figure 35 presents the distribution of dynamic instructions for the 4-way out-of-

order processor with MDMX and CAX, normalized to the baseline version. Each bar

divides the instructions into the functional unit (FU, combines ALU and FPU), control,

memory, MDMX, and CAX categories. The use of CAX provides a significant reduction

in the dynamic instruction count across all the programs.

 76

100

50.6

26.1

100

47.9

24

100

54.2

27.8

100

31.4

17.2

100

30

16.4

0

10

20

30

40

50

60

70

80

90

100

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

VSobel SMF VMF VQ FSVBMA

N
or

m
al

iz
ed

 d
yn

am
ic

 in
st

ru
ct

io
n

co
un

t
CAX
MDMX
Memory
Control
FU
Misc

Figure 35. Impact of CAX on the dynamic (retired) instruction count.

Reductions in FU Instructions. The CAX arithmetic and logical instructions allow

multiple arithmetic and logical instructions (typically three by processing three channels

simultaneously) in addition to multiple iterations (typically two by processing two-

packed YCbCr data) with one CAX instruction. Because of this property, all the

programs using CAX reduce a significant number of the FU instructions and loop

overhead, which increments or decrements index and address values. The reduction of the

loop overhead further reduces the FU instruction count. Experimental results indicate that

the FU instruction count decreases 73% to 86% (an average of 81%) with CAX, but only

47% to 73% (an average of 64%) with MDMX over the baseline version.

Reductions in Control Instructions. The CAX compare instructions allow multiple

conditional (or branch) instructions with one equivalent CAX instruction, resulting in a

large reduction in the control instruction count for all the programs. The control

 77

instruction count decreases 47% to 76% (an average of 60%) with CAX, but only 2% to

57% (an average of 26%) with MDMX over the baseline version.

Reductions in Memory Instructions. With CAX, multiple packed data are transported

from/to memory rather than individual components. CAX accumulator instructions (e.g.,

MACC_CRCBY and ADACC_CRCBY) further eliminate memory operations since

immediate results are stored in the accumulator rather than in memory. Experimental

results indicate that the memory instruction count decreases 68% to 83% (an average of

78%) with CAX, but only 37% to 66% (an average of 57%) with MDMX over the

baseline version.

Overall, CAX clearly outperforms MDMX in consistently reducing the number of

dynamic instructions required for each program. Performance improved by CAX can be

further enhanced through loop unrolling, which is presented next.

3.5.1.3 Benefits from Loop Unrolling

Loop unrolling (LU) is a well-known optimization technique that reorganizes and

reschedules the loop body. Since loops contain the most critical code segments for color

imaging applications, LU achieves a higher degree of performance by reducing loop

overhead and exposing instruction-level parallelism (ILP) for machines with multiple

functional units within the loops. Thus, the LU plus CAX technique may provide the

much higher degrees of parallelism and performance. Figures 36(a), (b), and (c) present

an example of the inner loop of the BMA for vector quantization, the code after loop

unrolling, and the loop from the perspective of CAX-level parallelism, respectively. The

original loop is unrolled and reorganized through LU, shown in Figure 36(b). In the

unrolled statement, multiple operands are then packed in each register with CAX, as

 78

shown in the dotted-line boxes in Figure 36(c). CAX then replaces the fragments of the

assembly language for isomorphic statements grouped together in the dashed-line boxes

with ones containing CAX instructions. Since operands are effectively pre-packed in

memory, they do not need to be unpacked when processed in registers. In particular, the

LU plus CAX technique provides the following benefits:

• it reduces branch and address generation overhead,

• it reduces register pressure and memory traffic by transporting multiple packed

data from a register to memory and vice versa, and

• it reduces a significant number of dynamic instruction counts.

for (i=0; i<4; i++) {
sum_y += abs(IV_Y[i] – CV_Y[i]);
sum_Cb += abs(IV_Cb[i] – CV_Cb[i]);
sum_Cr += abs(IV_Cr[i] – CV_Cr[i]);

}
(a)

sum_y += abs(IV_Y[i+0] – CV_Y[i+0]);
sum_Cb += abs(IV_Cb[i+0] – CV_Cb[i+0]);
sum_Cr += abs(IV_Cr[i+0] – CV_Cr[i+0]);
sum_Y += abs(IV_Y[i+1] – CV_Y[i+1]);
sum_Cb += abs(IV_Cb[i+1] – CV_Cb[i+1]);
sum_Cr += abs(IV_Cr[i+1] – CV_Cr[i+1]);
sum_y += abs(IV_Y[i+2] – CV_Y[i+2]);
sum_Cb += abs(IV_Cb[i+2] – CV_Cb[i+2]);
sum_Cr += abs(IV_Cr[i+2] – CV_Cr[i+2]);
sum_Y += abs(IV_Y[i+3] – CV_Y[i+3]);
sum_Cb += abs(IV_Cb[i+3] – CV_Cb[i+3]);
sum_Cr += abs(IV_Cr[i+3] – CV_Cr[i+3]);

sum_y += abs(IV_Y[i+0] – CV_Y[i+0]);
sum_Cb += abs(IV_Cb[i+0] – CV_Cb[i+0]);
sum_Cr += abs(IV_Cr[i+0] – CV_Cr[i+0]);
sum_Y += abs(IV_Y[i+1] – CV_Y[i+1]);
sum_Cb += abs(IV_Cb[i+1] – CV_Cb[i+1]);
sum_Cr += abs(IV_Cr[i+1] – CV_Cr[i+1]);
sum_Y += abs(IV_Y[i+2] – CV_Y[i+2]);
sum_Cb += abs(IV_Cb[i+2] – CV_Cb[i+2]);
sum_Cr += abs(IV_Cr[i+2] – CV_Cr[i+2]);
sum_Y += abs(IV_Y[i+3] – CV_Y[i+3]);
sum_Cb += abs(IV_Cb[i+3] – CV_Cb[i+3]);
sum_Cr += abs(IV_Cr[i+3] – CV_Cr[i+3]);

sum_y += abs(IV_Y[i+0] – CV_Y[i+0]);
sum_Cb += abs(IV_Cb[i+0] – CV_Cb[i+0]);
sum_Cr += abs(IV_Cr[i+0] – CV_Cr[i+0]);
sum_Y += abs(IV_Y[i+1] – CV_Y[i+1]);
sum_Cb += abs(IV_Cb[i+1] – CV_Cb[i+1]);
sum_Cr += abs(IV_Cr[i+1] – CV_Cr[i+1]);
sum_Y += abs(IV_Y[i+2] – CV_Y[i+2]);
sum_Cb += abs(IV_Cb[i+2] – CV_Cb[i+2]);
sum_Cr += abs(IV_Cr[i+2] – CV_Cr[i+2]);
sum_Y += abs(IV_Y[i+3] – CV_Y[i+3]);
sum_Cb += abs(IV_Cb[i+3] – CV_Cb[i+3]);
sum_Cr += abs(IV_Cr[i+3] – CV_Cr[i+3]);

(b) (c)

Figure 36. (a) Original loop. (b) After loop unrolling. (C) CAX-level parallelism
exposed after loop unrolling. IV and CV stand for the image vector and the
codebook vector, respectively.

Table 7 presents speedups for the baseline, MDMX, and CAX versions with LU,

normalized to those without LU, in which the VSobel, SMF, and VMF programs were

 79

unrolled by a factor of three; others were unrolled by a factor of four. LU tends to be

more effective for the CAX version than the baseline and MDMX versions, indicating

21%, 4%, and 19% performance gains in the CAX, baseline, and MDMX versions,

respectively. One of the major reasons is that LU reduces a similar number of loop

overhead instructions for all three versions, but the total number of executed instructions

for the CAX version is smaller than that for the baseline or MDMX versions. The next

section presents energy-related performance since energy is as critical for embedded

multimedia systems as performance.

Table 7. Speedups of the baseline, MDMX, and CAX versions with LU, normalized
to those without LU.

 VSobel SMF VMF VQ FSVBMA Average
Baseline plus LU 1.05 1.06 1.07 1.04 1.02 1.04
MDMX plus LU 1.24 1.23 1.28 1.14 1.09 1.19

CAX plus LU 1.27 1.24 1.29 1.16 1.10 1.21

3.5.2 Energy-Related Evaluation Results

Figure 37 presents the distribution of energy consumption for the 4-way out-of-

order processor with MDMX and CAX, normalized to the baseline version. Each bar

divides the energy consumption into the cache, ALU, clock, window, and others

(combines branch prediction, rename, load-store queue, and result bus) categories. When

execution platforms employ identical clock rates, implementation technologies, and

processor parameters, a shorter execution time results in lower energy consumption [79].

Thus, CAX reduces a large amount of total energy consumption for all the programs

because of a significant reduction in the executed cycle count. Experimental results

indicate that CAX reduces energy consumption from 68% (VMF) to 83% (FSVBMA)

over the baseline. This is in contrast to MDMX, which reduces energy consumption from

 80

only 39% (VMF) to 69% (FSVBMA) over the baseline. Since CAX reduces a large

number of the ALUs, branches, and cache accesses, less energy is spent on the

speculative execution and cache access units.

16.9

30.9

100

19.9

31.9

100

31.9

61.3

100

23.9

47.7

100

28.2

54.2

100

0
10
20
30
40
50
60
70
80
90

100
ba

se
lin

e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

Vsobel SMF VMF VQ FSVBMA

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Others
Window
Clock
ALU
Cache

Figure 37. Impact of CAX on energy consumption.

The energy consumption is further reduced with LU for all three versions of the

programs, showing an average energy reduction of 4.8%, 18.8%, and 19.2% for the

baseline, MDMX, and CAX versions, respectively. In particular, LU reduces a large

percentage of the power dissipation in the branch prediction hardware because it

efficiently reduces branch overhead, indicating an energy reduction of 14.4%, 35.9%, and

36.3% in the branch prediction hardware for the baseline, MDMX, and CAX versions,

respectively. Removing branches using LU also reduces the power dissipation in the

fetch unit. The fetch unit fetches large basic blocks without being interrupted by taken

branches, providing more work for the renaming unit and filling up the register update

unit (RUU) faster. Thus, when the instruction queue and RUU are full, the fetch unit is

stalled during the cycles. Because of this, the power dissipation of the fetch unit is

 81

reduced. Clearly, LU is effective at reducing additional energy consumption for image

processing kernels where loop overhead is significant.

3.6 Conclusion

A new color-aware multimedia extension (CAX) for dynamically scheduled ILP

processors has been presented that improves the performance of color imaging

applications. Harnessing parallelism within the human perceptual color space (e.g.,

YCbCr), CAX supports parallel operations on two-packed, quantized 16-bit YCbCr data

in a 32-bit datapath processor, providing greater concurrency and efficiency for

processing color image sequences. The key findings are the following:

• CAX outperforms MDMX (a representative MIPS multimedia extension) in

speedup (3× to 5.8× with CAX, but only 1.6× to 3.2× with MDMX over the

baseline performance) on the same dynamically scheduled, 4-way issue

processor.

• CAX also outperforms MDMX in energy reduction (68% to 83% reduction

with CAX, but only 39% to 69% with MDMX over the baseline version).

• Moreover, CAX exhibits higher relative performance for low-issue rates. For

example, CAX achieves an average speedup of 4.7× over the baseline 1-way

issue performance, but 3× over the baseline 16-way issue performance). These

results demonstrate that CAX is an ideal candidate for embedded multimedia

systems in which high issue rates and out-of-order execution are too

expensive.

 82

• Performance improved by CAX has been further enhanced through loop

unrolling. LU provides an additional performance gain of 21%, 4%, and 19%

for the CAX, baseline, and MDMX versions, respectively. These results

demonstrate that the CAX plus LU technique has the potential to provide the

higher degrees of performance required by emerging color imaging

applications.

The effectiveness of CAX will be much more obvious in application-specific

embedded systems (e.g., embedded SIMD arrays) that aim at providing sufficient

computational power for specific applications but impose strict constraints on

implementation chip area and energy consumption. This is because CAX benefits from

greater concurrency as well as reduced pixel word storage (buffers, registers, and

memory) that consumes a large percentage of silicon area. The next chapter presents the

impact of CAX on processing performance and on both area and energy efficiency on a

representative SIMD array architecture.

 83

CHAPTER 4

IMPLEMENTATION AND EVALUATION OF THE COLOR-AWARE
INSTRUCTION SET FOR LOW-MEMORY, EMBEDDED VIDEO PROCESSING

IN DATA PARALLEL ARCHITECTURES

4.1 Introduction

Portable multimedia applications demand tremendous instruction throughput with

a small area and limited energy available in a battery. Application-specific integrated

circuits (ASICs) can meet the needed performance and cost goals for such portable

multimedia systems. However, they provide limited, if any, programmability or

flexibility necessary for varied application requirements.

General-purpose microprocessors (GPPs) offer the necessary flexibility and

inexpensive processing elements, and multimedia extensions to GPPs have improved the

performance of multimedia applications with little added cost to the processors. The

designers of digital signal processors (DSPs) such as the Texas Instruments

TMS320C64x families [82] and the Analog Devices TigerSharc processor [31] have

followed the trend. However, despite some performance improvements through

multimedia extensions, neither GPPs nor DSPs will be able to meet the much higher

levels of performance required by emerging multimedia applications on higher resolution

images. This is because they lack the ability to exploit the full data parallelism available

in these applications.

Among many computationally efficient models available for imaging applications,

single instruction, multiple data (SIMD) arrays are promising candidates for application-

specific embedded multimedia systems because they replicate the datapath, data memory,

and I/O to provide high processing performance with low node cost. Whereas instruction-

 84

level or thread-level processors use silicon area for large multiported register files, large

caches, and deeply pipelined functional units, SIMD arrays contain many more simple

processing elements (PEs) for the same silicon area. As a result, SIMD arrays often

employ thousands of PEs while possibly distributing and co-locating PEs with the data

I/O to minimize storage and data communication requirements. The SIMD Pixel (SIMPil)

processor [13][34][8] being developed at Georgia Tech, for example, is a low memory,

monolithically integrated SIMD architecture that efficiently exploits massive data

parallelism inherent in imaging applications while reducing data movement through a

processing-in-place technique in which image data are directly transported into the PEs

and stored there. While 2-D SIMD arrays, including SIMPil, are well suited for many

imaging tasks that require processing of pixel data with respect to either nearest-neighbor

or other 2-D patterns exhibiting locality or regularity, they are less amenable to the vector

processing of color image sequences, in which each pixel computation is simultaneously

performed on 3-D YCbCr channels. More specifically, since the 3-D vector computation

is performed within innermost loops, its performance does not scale with larger PE arrays.

This chapter presents the CAX instruction set for such SIMD arrays as a solution

to this performance limitation by supporting two-packed 16-bit YCbCr data in a 32-bit

wide register, while processing this separate color data in parallel. In addition to greater

concurrency, the ability to reduce data format size drastically reduces system cost. The

reduction in data bandwidth also simplifies system design.

Experimental results using application simulation and technology modeling

indicate that CAX outperforms MDMX across all the selected programs in terms of

speedup (5.2× to 8.9× with CAX, but only 3× to 5× with MDMX over the baseline

 85

performance) on the same representative SIMD array architecture. CAX also outperforms

MDMX on both area efficiency (a 75% increase versus a 25% increase) and energy

efficiency (a 75% increase versus a 24% increase), resulting in better component

utilization and sustainable battery life. Furthermore, CAX improves the performance and

efficiency with a mere 3% increase in the system area and a 5% increase in the system

power, while MDMX requires a 14% increase in the system area and a 16% increase in

the system power.

The rest of this chapter is organized as follows. Section 4.2 discusses related

research. Section 4.3 describes the modeled architectures and a methodology

infrastructure for the evaluation of CAX on a specified SIMD array. Section 4.4 evaluates

the system area and power of the modeled architectures, and Section 4.5 analyzes

execution performance and efficiency for each case. Section 4.6 concludes this chapter.

4.2 Related Research

Research dealing with harnessing the data-level parallelism (DLP) inherent in

color image and video processing applications can be divided into two different groups:

(1) those evaluating the performance of current multimedia extensions [6][71][51] and

(2) those evaluating the performance of highly parallel architectures [34][88][48].

Numerous research groups and individuals have addressed the effectiveness of

multimedia extensions (e.g., Intel MMX, Sun VIS, and MIPS MDMX) for multimedia

applications on general-purpose processors. Ranganathan et al. [71] analyzed the

performance of image and video processing applications on an UltraSPARC processor

with and without the VIS media extensions. They observed that a four-way issue, out-of-

 86

order processor provided 2.3× to 4.2× performance improvement over a single-issue, in-

order processor, and the VIS extensions provided an additional 1.1× to 4.2× performance

improvement. Bhargava et al. evaluated the MMX extensions for a set of DSP and

multimedia applications on the x86 architectures [6]. In their study, the image

applications were the best suited for MMX because the images were stored in a large

array of eight-bit data and properly aligned on eight-byte boundaries, showing an average

speedup 5.5× and an 81% reduction in dynamic instruction count.

Different subword parallelism alternatives (e.g., matrix-oriented multimedia ISA

called MOM and complex streaming instructions called CSI) for multimedia processing

applications have been evaluated in [18][42]. Unlike commercial multimedia extensions

that are restricted to a single row, both MOM and CSI support two-dimensional data

streams, achieving an average of 20% performance gain over the MMX and MDMX

extensions with respect to multimedia applications. Overall, existing multimedia-based

extensions in general-purpose processors provide moderate performance improvement

(2× to 6× speedup) by exploiting subword parallelism. However, their performance is

limited in dealing with both color data that are not aligned on boundaries that are a power

of two and storage data types that are inappropriate for computation. Moreover, general-

purpose processors enhanced with multimedia extensions will not meet the much higher

levels of performance required by emerging multimedia applications since they lack the

ability to exploit the full data parallelism available in these applications.

SIMD array architectures are geared for data parallelism-rich media applications

because they can efficiently exploit massive amounts of data parallelism without

complicated control flow or an excessive amount of inter-processor communication.

 87

Massively data parallel arrays of processors have been applied to image processing for

almost three decades, but early SIMD machines (e.g., the TMC Connection Machine 1

[83]) were limited by I/O technology. Later machines (e.g., TMC CM-2 [81] and MarPar

MP-2 [57]) overcame these limitations through the use of large parallel disk arrays to

buffer images. However, these systems achieved generality by sacrificing low cost and

portability. Although the fine-grain parallel processing architectures MGAP [40] and

ABACUS [7] addressed portability issues, performance was affected by their limited I/O

bandwidth and reconfiguration latency, resulting in low resource utilization.

Unlike these SIMD machines, our baseline architecture, the SIMPil array, benefits

from directly coupling sensors and processors, alleviating I/O bandwidth bottlenecks, and

from short wire lengths, providing compact area and energy efficiency for portable

multimedia systems [13][34][8]. While such 2-D SIMD arrays exploit massive data

parallelism inherent in 2-D image sequences by operating the same instruction sequences

simultaneously on a large number of discrete data sets, their performance is limited by

the vector processing of 3-D color data performed within innermost loops. This chapter

provides a new solution to support color imaging applications by combining the

properties of the human perceptual color space (e.g., YCbCr), color subword parallelism,

and SIMD array architecture.

4.3 Methodology

This section describes the modeled architectures and a methodology infrastructure

for the evaluation of the CAX instruction set on a representative SIMD array architecture.

 88

4.3.1 Modeled Embedded SIMD Architectures

The SIMD Pixel (SIMPil) processor [13][34] is used as the baseline SIMD

imaging architecture for this study. Figure 38 shows the microarchitecture of the SIMD

array system, along with its interconnection network. When data are distributed, the

processing elements (PEs) execute a set of instructions in a lockstep fashion. With 4×4

pixel sensor sub-arrays, each PE is associated with a specific portion (4×4 pixels or 16

pixel-per-processing-element) of an image frame, allowing streaming pixel data to be

retrieved and processed locally. Each PE has a reduced instruction set computer (RISC)

datapath with the following minimum characteristics:

• Small amount of local storage (128 32-bit words),

• Three-ported general-purpose registers (16 32-bit words),

• ALU − computes basic arithmetic and logic operations,

• Barrel shifter − performs multi-bit logic/arithmetic shift operations,

• MACC − multiplies 32-bit values and accumulates into a 64-bit accumulator,

• Sleep − activates or deactivates a PE based on local information,

• Pixel unit − samples pixel data from the local image sensor array,

• RGB2YCC and YCC2RGB unit− converts RGB to/from YCbCr,

• ADC unit − converts light intensities into digital values, and

• Nearest neighbor communications through a NEWS (north-east-west-south)

network and serial I/O unit.

 89

Y

Cb

Cr

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

PE

SIMD Array

ACU

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

PE

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACC

CAX

Sleep

RGB2YCC
YCC2RGB

and

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

PEPE

SIMD Array

ACU

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

PE

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACCMACC

CAXCAX

Sleep

RGB2YCC
YCC2RGB
RGB2YCC
YCC2RGB

and

Y

Cb

Cr

Y

Cb

Cr

Y

Cb

Cr

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

PE

SIMD Array

ACU

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

PE

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACC

CAX

Sleep

RGB2YCC
YCC2RGB

and

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

PEPE

SIMD Array

ACU

PE PE PE PE

PE PE PE

PE PE PE PE

PE PE PE PE

PE

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACCMACC

CAXCAX

Sleep

RGB2YCC
YCC2RGB
RGB2YCC
YCC2RGB

and

Figure 38. Block diagram of a SIMD array and a processing element.

Despite high performance and energy efficiency from short wire lengths and a

specialized microarchitecture, such SIMD imaging systems are not amenable to the

vector processing of 3-D color data. In particular, since the 3-D vector computation is

performed within innermost loops, its performance does not scale with larger PE arrays.

To overcome this performance limitation, the CAX instructions are included in the ISA

of the SIMPil array. For a fair performance comparison, we also add MDMX-type

instructions to the SIMPil ISA, including additional instructions, such as absolute-

differences-accumulation or parallel-conditional-move, equivalent to the CAX

instructions. Thus, MDMX (containing 30 instructions) and CAX (containing 34

instructions) have similar instructions, except for the permute instructions. In the

experiment, the overhead of the color conversion was not included in the performance

evaluation for all the versions. In other words, this study assumes that the baseline,

MDMX, and CAX versions directly support YCbCr data in the band-interleaved format

(e.g., |Unused|Cr|Cb|Y| for baseline and MDMX and |Cr|Cb|Y|Cr|Cb|Y| for CAX).

 90

Moreover, since the CAX version requires smaller pixel word storage for color imaging

applications than the baseline and MDMX versions, this study assumes that the CAX

version uses a 64 32-bit word memory, but both baseline and MDMX versions require a

128 32-bit word memory. These memory sizes are sufficient to complete the selected

application suite. Table 8 summarizes the parameters of the modeled architectures. An

overall simulation infrastructure is presented next.

Table 8. Modeled architecture parameters.

Parameter Value

System Size 44×38 (1,584 PEs)
Image Sensor per PE (pixel per PE ratio) 4×4 (16 PPE)
VLSI Technology 100 nm
Clock Frequency 80 MHz
Interconnection Network Mesh
intALU/intMUL/Barrel Shifter/intMACC/Comm 1 / 1 / 1 / 1 / 1
MDMX/CAX: intALU/intMACC 1 / 1
Local Memory Size (baseline/MDMX/CAX) 128 word / 128 word / 64 word

4.3.2 Methodology Infrastructure

Figure 39 shows a methodology infrastructure for this study that is divided into

three levels: application, architecture, and technology. At the application level, a set of

color imaging applications (e.g., chroma-keying, color edge detection, the scalar median

filter, the vector median filter, and vector quantization, and motion estimation) is written

in the SIMD assembly language and executed through an instruction-level SIMD

simulator, called SIMPilSim. SIMPilSim, shown in Figure 40, allows profiling execution

statistics such as cycle count, dynamic instruction histogram, PE utilization, and PE

memory usage for the three different versions of the programs: (1) baseline ISA without

 91

sumbword parallelism (SIMPil), (2) baseline plus MDMX ISA (MDMX-SIMPil), and (3)

baseline plus CAX ISA (CAX-SIMPil).

At the architecture level, the heterogeneous architectural modeling (HAM) of

functional units for SIMD arrays proposed by Chai et al. [14][15] is used to calculate the

design parameters of the modeled architectures. For the design parameters of the MDMX

and CAX functional units (FUs), Verilog models for the baseline, MDMX, and CAX FUs

were implemented and synthesized with the Synopsys design compiler (DC) using a

0.18-micron standard cell library. The reported area specifications of the MDMX and

CAX FUs were then normalized to the baseline FU, and the normalized numbers were

applied to the HAM tool for determining the design parameters of MDMX- and CAX-

SIMPil. The design parameters are then passed to the technology level.

At the technology level, the Generic System Simulator (GENESYS) developed at

Georgia Tech [65][28] is used to calculate technology parameters (e.g., latency, area,

power, and clock frequency) for each configuration. Finally, the database (e.g., cycle

times, instruction latencies, instruction counts, area, and power of the functional units),

obtained from the application, architecture, and technology levels, is combined to

determine execution times, area efficiency, and energy efficiency for each case. The next

section presents the system area and power of the modeled architectures.

 92

Execution
Database

CAX
MDMX

Applications

SIMD
Simulator

Application Level

CAX
MDMX

baseline

Architecture
Models

Technology
Models

Synopsys
(Module Builder)

HAMGENESYS

Design Space
Explorer

Technology Level Architecture Level

Area Efficiency
Energy Efficiency
Execution Time

Output

Execution
Database

CAX
MDMX

Applications

SIMD
Simulator

Application Level

CAX
MDMX

baseline

Architecture
Models

Technology
Models

Synopsys
(Module Builder)

HAMGENESYS

Design Space
Explorer

Technology Level Architecture Level

Area Efficiency
Energy Efficiency
Execution Time

Output

Figure 39. A methodology framework for exploring the design space of three
modeled architectures: baseline SIMPil, MDMX-SIMPil, and CAX-SIMPil.

Figure 40. A screenshot of the SIMPil simulator during the chroma-keying process.

 93

4.4 System Area and Power Evaluation using Technology Modeling

GENESYS, an analytical technology modeling tool with macro cell capability, is

used to evaluate the system area and power of three modeled architectures: (1) baseline

SIMPil, (2) MDMX-SIMPil, and (3) CAX-SIMPil. GENESYS, introduced in [59],

integrates a hierarchical set of models that capture key limits such as fundamental,

material, device, circuit, and system, shown in Figure 41. The first three levels capture

the physical effects of material properties and switching device behaviors. The circuit

level estimates all components of the signal propagation delay through a gate. The system

level contains architecture, interconnect, and packaging details of a single chip.

GENESYS has been calibrated using the Semiconductor Industry Association’s

International Technology Roadmap for Semiconductors (ITRS) predictions [74] and data

from a wide range of implemented ASICs. Complete details on GENESYS and its

constituent models can be found in [28][65].

Figure 41. GENESYS system hierarchy.

When design parameters (e.g., gate count, gate depth, Rents’ parameters, and

average activity factor) from an architectural block (macro cell) are given as input,

 94

GENSYS calculates the functional performance of each unit and the entire processor

model such as processor area, cycle time, wire delay, dynamic energy, and static power

for a specified technology. Architectural studies of diverse systems, including SIMD

arrays [14] and multiprocessor clusters [20], have used GENESYS for the design

exploration of the systems. To build the design specifications of the three modeled

architectures, the HAM of functional units for SIMD arrays [14] and the Synopsys design

compiler are used. GENESYS then combines the design parameters of each architecture

configuration while calculating the system area and power of each functional unit and the

entire architecture. Table 9 shows system area and power estimates for the modeled

architectures.

Table 9. Area and power estimates for three different SIMPil architectures running
at 80MHz.

 Baseline SIMPil MDMX-SIMPil CAX-SIMPil

Estimated Peak Power [W] 2.7 3.1 2.8

System Area [mm2] 114 129 117

Figure 42 presents additional data showing the system area and power of MDMX-

SIMPil and CAX-SIMPil, normalized to the baseline SIMPil. Experimental results

indicate that MDMX requires a 14% increase in the entire system area and a 16%

increase in the system power. However, CAX only requires a 3% increase in the system

area and a 5% increase in the system power because of the reduced pixel word storage

(local memory). These system area and power results are combined with application

simulations (e.g., issued instructions and cycle times) for determining execution time,

area efficiency, and energy efficiency for each case, which is presented next.

 95

1.05
1.16

1.001.03

1.14

1.00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Baseline MDMX CAX Baseline MDMX CAX

System area Peak system power

N
or

m
al

iz
ed

 s
ys

te
m

 a
re

a
an

d
po

w
er

Serial
Sleep
Decoder
Comm
Memory
Shifter
MACC
ALU
Register File

Figure 42. System area and power of MDMX-SIMPil and CAX-SIMPil, normalized
to the baseline SIMPil.

4.5 Experimental Results

Cycle accurate simulation and technology modeling are used to determine the

performance and efficiency characteristics of the modeled architectures for each

application task. The three versions of the programs (e.g., baseline ISA, baseline plus

MDMX ISA, and baseline plus CAX ISA) are developed in their respective assembly

languages for the SIMPil system, in which all three versions for each program have the

same parameters, data sets, and calling sequences. Their execution statistics (e.g.,

instruction count, execution cycle count, and PE utilization) are then combined with

GENESYS predictions to evaluate each benchmark’s energy consumption, energy

efficiency, and area efficiency. The metrics of the execution cycle count, corresponding

energy consumption, sustained throughput, energy efficiency, and area efficiency of each

case form the basis of the study comparison, defined in Table 10.

 96

Table 10. Summary of evaluation metrics.

execution
time sustained throughput energy efficiency area efficiency

ck
exec f

Ct =
exec

PEexec
sust t

NUOTh ⋅⋅
=]

Joule
Gops[

Energy
NUO PEexec

E
⋅⋅

=η]
mms

Gops[2⋅
=

Area
Thsust

Aη

C is the cycle count, ckf is the clock frequency, execO is the number of executed operations, and
NPE is the number of processing elements. Note that since each CAX and MDMX instruction
executes more operations (typically six and three times, respectively) than a baseline instruction,
we assume that each CAX, MDMX, and baseline instruction executes six, three, and one
operation, respectively, for the sustained throughput calculation.

4.5.1 Execution Performance Evaluation Results

This section discusses the impact of CAX on execution performance for the

selected color imaging applications on the SIMPil system. This section also presents

detailed application implementations with CAX for further insights into the CAX

behavior.

4.5.1.1 Overall Results

Figure 43 illustrates execution performance (speedup in executed cycles) attained

by CAX and MDMX when compared with the baseline performance without subword

parallelism. The results indicate that CAX outperforms MDMX for all the programs in

terms of speedup, indicating a speedup ranging from 5.2× to 8.9× (an average of 6.7×)

with CAX, but only 3× to 5× (an average of 3.8×) with MDMX over the baseline

performance.

 97

4.3

3.2

4.6
5.0

3.6
3.0

3.8

6.9

5.7

8.9 8.8

6.3

5.2

6.7

0

1

2

3

4

5

6

7

8

9

10

Chromakey Vsovel SMF VMF VQ FSVBMA HARMEAN

Sp
ee

du
p Baseline

MDMX
CAX

Figure 43. Speedups of the CAX and MDMX versions over the baseline
performance.

CAX also achieves higher sustained throughput (an average of 194 Gops/sec)

than the MDMX version (an average of 155 Gops/sec) and the baseline version (an

average of 113 Gops/sec) across all the application tasks. Table 11 summarizes the

execution parameters for each case in the SIMPil system. Note that the scalar execution

time was not included in the sustained throughput because vector instructions dominate

instruction histograms in which each issued vector instruction is multiplied by the

number of active processing elements (1,584 PEs in this study). In other words, scalar

instructions execute in the array controller unit concurrently with vector instructions

executing in PEs, and the scalar execution time is effectively hidden during vector

execution [34]. The next section presents an in-depth analysis of the CAX effectiveness

for each benchmark program.

 98

Table 11. Application performance of the baseline, MDMX, and CAX versions on a
1,584 PE system running at 80 MHz.

Memory Size
Application ISA PE

[Byte]
System

[KB]

Vector
Instruction

Scalar
Instruction

System
Utilization

[%]

Sustained
Throughput
[Gops/sec]

Baseline 192 768 1,227 106 88 112
MDMX 192 768 283 106 100 155 Chromakey
CAX 128 512 179 58 100 183

Baseline 344 1,376 7,177 1,011 100 122
MDMX 344 1,376 2,117 371 100 160 VSobel
CAX 216 864 1,257 195 100 207

Baseline 244 976 43,287 2,771 71 89
MDMX 244 976 9,495 2,771 100 181 SMF
CAX 172 688 4,863 1,395 100 260

Baseline 244 976 37,397 7,891 93 118
MDMX 244 976 7,430 3,027 97 158 VMF
CAX 172 688 4,264 1,523 94 203

Baseline 204 816 180,551 20,755 91 115
MDMX 204 816 50,503 20,755 97 133 VQ
CAX 136 544 28,863 11,715 94 151

Baseline 196 784 97,229 10,043 95 120
MDMX 196 784 32,502 10,379 98 140 FSVBMA
CAX 100 400 18,784 7,706 96 159

4.5.1.2 Benefits of CAX for Color Imaging Applications

Figure 44 shows the distribution of issued vector instructions for the SIMPil

system with MDMX and CAX, normalized to the baseline version. Each bar divides the

instructions into the arithmetic-logic-unit (ALU), memory (MEM), communication

(COMM), PE activity control unit (MASK), image pixel loading (PIXEL), MDMX, and

CAX. The use of CAX reduces a significant number of the instruction counts for all of

the programs. In particular, CAX reduces a significant number of ALU and memory

instruction counts due to its instruction definition. An interesting observation is that

unlike the results for the superscalar processor (see Figure 35), the FSVBMA program

has the smallest reduction in the instruction count with CAX. This is because it involves

high inter-PE computation operations that are not affected by CAX. For example, each

PE cannot directly support a macroblock size of 16×16 pixels because 4×4 pixels are

 99

mapped to each PE. As a result, the 4×4 distortions are computed in each PE separately.

Each result is then combined through NEWS communication instructions for the final

distortion between the 16×16 input and reference blocks.

19.3

33.4

16.0

28.0

11.4
19.9

11.2

21.9
17.5

30.9

14.6
23.1

100.0100.0100.0100.0100.0100.0

0

10

20

30

40

50

60

70

80

90

100
B

as
el

in
e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

B
as

el
in

e

M
D

M
X

C
A

X

Chromakey VSobel SMF VMF VQ FSVBMA

N
or

m
al

iz
ed

 v
ec

to
r i

ns
tru

ct
io

n
co

un
t

CAX
MDMX
PIXEL
MASK
COMM
MEM
ALU

Figure 44. The distribution of issued vector instructions for the SIMPil system with
CAX and MDMX, normalized to the baseline version.

Chroma-keying. Chroma-keying is an image overlay technique that is used extensively

to produce special effects (e.g., on television weather programs, the image of the weather

person is overlaid on the weather map image). This application demonstrates how

conditional selection using CAX removes branch mispredictions (or MASK instructions)

while performing multiple selection operations in parallel. In the study, the chroma-

keying program is performed in the YCbCr color space. Figure 45 shows the required C

code operation and the corresponding CAX assembly code implemented on SIMPil,

along with comments and a pictorial representation.

 100

+ =

Compare

Bitmask Mask move

+ =

Compare

Bitmask Mask move

(a)
for (i = 0; i < # of pixels; i++) {
 if (x[i] == blue backing) new_image[i] = y[i];
 else new_image[i] = x[i]; // foreground
}

Loop
pload r1, mem1 ; load two-packed YCbCrs from the picture with the tank object
pload r2, mem2 ; load two-apcked YCbCrs from the blue background frame
pload r3, mem2 ; load two-packed YCbCrs from the picture with the pine road
cmpeqn_crcby r4, r1, r2; if r1(i) != r2(i), r4(i) is all ones. Otherwise, all zeros.
cmov_crcby r3,r2,r4; if r4(i) == all ones, r3(i) ← r2(i). Otherwise, no ops.

(b) (c)

Figure 45. The procedure of a chroma-keying application: (a) a pictorial
representation, (b) required C code, and (c) CAX assembly code. Note that the
MDMX assembly code has the same functional instructions for CAX except that it
loads and processes a packed YCbCr in a 32-bit register.

The PLOAD instruction loads two-packed YCbCr data from the three pictures: (1)

tank on a blue background, (2) blue background, and (3) pine road. The

CMPEQN_CRCBY instruction then compares pixels from the tank frame and the

equivalent pixels from the blue background while building a mask that is a sequence of

all ones or all zeros in the Y, Cb, and Cr operands of the register. This mask is used on

the same two-packed YCbCr data from the tank frame and the equivalent two-packed

YCbCr data from the pine road. The conditional move instruction CMOV_CRCBY uses the

mask in order to overlay pixels from the tank object onto the pine road. These CAX

instructions remove many MASK instructions while reducing a large number of ALU

instructions by processing multiple selection operations in parallel. Table 12 illustrates a

 101

comparison of instruction counts using the baseline, MDMX, and CAX ISAs for a

conditional selection operation of 4×4 pixels. The instruction count decreases 82% with

CAX, but only 71% with MDMX over the baseline version.

Table 12. A comparison of instruction counts using the baseline, MDMX, and
CAX ISAs for a conditional selection operation of 4×4 pixels.

 Baseline MDMX CAX
ALU 693 101 77
MEM 99 99 59

MASK 384 - -
PIXEL 51 51 27
MDMX - 32 -

CAX - - 16
Scalar Instructions 106 106 58

Total 1,333 389 237

Color Edge Detection. Edge detection is a fundamental task in image processing. Many

image applications, such as object recognition and image segmentation, depend on the

accuracy of edge detection. Unlike monochrome edge detection that may not be sufficient

in color images when neighboring objects have different hues but equal intensities, color

edge detection accounts for local changes in both luminance and chrominance

components to provide crucial information conveyed by color. In this study, color edge

detection based on a Sobel operator is implemented on the SIMPil simulator. Figure 46

illustrates the procedure of the color edge detection implementation using CAX. Each of

two-packed 16-bit YCbCr data is loaded into registers, and some pixels are rearranged

with the ROTATE_CRCBY and MIX_CRCBY instructions for an efficient format of the

multiply-accumulate computation, which involves a vector pixel and its eight neighbors

within a 3×3 window. Also, each of the coefficient values saved in memory is loaded

and then distributed into the Y, Cb, and Cr positions of the target register with the

 102

BCAST_CRCBY instruction. The MACC_CRCBY instruction then multiplies pairs of sub-

elements in the two source registers (one for color components and the other for

coefficients) while accumulating each result in the packed accumulator. Furthermore, two

window boxes are efficiently processed in parallel. This implementation using CAX leads

to a large reduction in the instruction count while reducing register pressure and memory

traffic. Table 13 presents a comparison of instruction counts using the baseline, MDMX,

and CAX ISAs for a Sobel operation of two 3×3 window pixels. The instruction count

decreases 84% with CAX, but only 68% with MDMX over the baseline version.

Local Register

PLOAD

32

Y component
Cr, Cb component

P2P1 P3 P4

P6P5 P7 P8

P10P9 P11 P12

Y1Cb1Cr1 Y2Cb2Cr2

16-bit

Local Register

MIX_CRCBY

C1

C2

C9

BCAST_CRCBY

C1C1C1 C1C1C1

C2C2C2 C2C2C2

C9C9C9 C9C9C9

MACC_CRCBY

X

Acc. Σ(Y*C) Σ(Cr*C) Σ(Y*C)Σ(Cb*C) Σ(Cb*C)Σ(Cr*C)
043 236387107127

P2P1

P4P3

P6P5

P8P7

P10P9

P12P11

P2P1

P3P2

P4P3

P6P5

P7P6

P8P7

P10P9

P11P10

P12P11

C1 C2 C3

C4 C5 C6

C7 C8 C9

Local Register

LOAD

Convolution Mask

First 3x3 box results Second 3x3 box results

010 515212631

ROTATE_CRCBY

Local Register

PLOAD

32

Y component
Cr, Cb component

P2P1 P3 P4

P6P5 P7 P8

P10P9 P11 P12

Y1Cb1Cr1 Y2Cb2Cr2Y1Cb1Cr1 Y1Cb1Cr1 Y2Cb2Cr2 Y2Cb2Cr2

16-bit

Local Register

MIX_CRCBY

C1C1C1

C2C2C2

C9C9C9

BCAST_CRCBY

C1C1C1 C1C1C1C1C1C1 C1C1C1 C1C1C1 C1C1C1

C2C2C2 C2C2C2C2C2C2 C2C2C2 C2C2C2 C2C2C2

C9C9C9 C9C9C9C9C9C9 C9C9C9 C9C9C9 C9C9C9

MACC_CRCBY

X

Acc. Σ(Y*C) Σ(Cr*C) Σ(Y*C)Σ(Cb*C) Σ(Cb*C)Σ(Cr*C)
043 236387107127

Σ(Y*C) Σ(Cr*C) Σ(Y*C)Σ(Cb*C) Σ(Cb*C)Σ(Cr*C)
043 236387107127

P2P1

P4P3

P6P5

P8P7

P10P9

P12P11

P2P1

P3P2

P4P3

P6P5

P7P6

P8P7

P10P9

P11P10

P12P11

P2P1

P3P2

P4P3

P6P5

P7P6

P8P7

P10P9

P11P10

P12P11

C1 C2 C3C1C1 C2C2 C3C3

C4 C5 C6C4C4 C5C5 C6C6

C7 C8 C9C7C7 C8C8 C9C9

Local Register

LOAD

Convolution Mask

First 3x3 box results Second 3x3 box results

010 515212631

ROTATE_CRCBY

Figure 46. The procedure of a color edge detection implementation using the CAX
instructions.

 103

Table 13. A comparison of instruction counts using the baseline, MDMX, and
CAX ISAs for a Sobel operation of two 3×3 window pixels.

 Baseline MDMX CAX
ALU 344 82 43
MEM 110 38 20

MDMX - 22 -
CAX - - 11

Scalar Instructions 54 22 10
Total 508 164 84

The Vector Median Filter. The well-known vector median filter (VMF) is widely used

to filter out noise from color images [69]. In this study, the VMF using the YCbCr

channels (see Section 2.4.1) is implemented on the SIMPil system. The most time-critical

operation for this implementation is the sum of pixel differences between pixels in the

window of size N×N (3×3 in this study). With the ADACC_CRCBY instruction, a VMF

operation can be performed on the two window blocks of pixels in parallel. In particular,

ADACC_CRCBY calculates the absolute differences of pairs of the sub-elements in the

two source registers while accumulating each result in the packed accumulator. Thus, one

ADACC_CRCBY instruction reduces several baseline ALU operations and memory

accesses for intermediate results (since immediate results are stored in the accumulator

rather than in memory). Table 14 presents the number of instruction counts using the

baseline, MDMX, and CAX ISAs for computing the median within two 3×3 window

pixels. The instruction count decreases 89% with CAX, but only 79% with MDMX over

the baseline version.

 104

Table 14. A comparison of the number of instructions using the baseline, MDMX,
and CAX ISAs for computing the median within two 3×3 window pixels.

 Baseline MDMX CAX
ALU 3,510 414 248
MEM 499 178 98

MASK 448 16 16
MDMX - 160 -

CAX - - 80
Scalar Instructions 948 338 169

Total 5,355 1,106 611

The Scalar Median Filter. Like the VMF, the scalar median filter (SMF) is also a noise

reduction technique that eliminates impulse noise spikes from an image by taking the

median pixel value in a 3×3 window that is stepped across the entire image. However, the

SMF differs from the VMF in that it separately replaces each corrupted color component

(e.g., Y, Cb, and Cr) with the median from the reference and its neighboring components.

The most computationally intensive operation of the SMF implementation is to

find the median pixel value from the nine pixels in the processing window. The

MIN_CRCBY and MAX_CRCBY instructions accelerates the bubble sorting algorithm by

comparing pairs of sub-elements in the two source registers while outputting the

minimum or maximum values of the corresponding sub-elements. These instructions lead

to a significant reduction in the ALU and MASK instruction counts. Table 15 presents a

comparison of instruction counts using baseline, MDMX, and CAX ISAs for a sorting

operation of two 3×3 widow pixels. The instruction count decreases 88% with CAX, but

only 75% with MDMX over the baseline version.

 105

Table 15. A comparison of instruction counts using the baseline, MDMX, and CAX
ISAs for a sorting operation of two 3×3 window pixels.

 Baseline MDMX CAX
ALU 4,374 312 157
MEM 516 516 259

MASK 384 - -
MDMX - 256 -

CAX - - 128
Scalar Instructions 308 308 154

Total 5,582 1,392 698

Vector Quantization. Full search vector quantization (VQ) [35] is an attractive

technique for low rate and low power image and video compression. It has a

computationally inexpensive decoding process and low hardware requirement for

decompression, while still achieving an acceptable picture quality at high compression

ratios. However, the encoding process is computationally very intensive. Computational

cost can be reduced by using suboptimal approaches such as tree-searched vector

quantization (TSVQ) [35]. In this study, a parallel implementation of full search VQ is

implemented on a SIMD array system to overcome this computational burden. VQ is

defined as a mapping of k-dimensional vectors in vector space Rk onto a finite set of

vectors V = { yi ; i = 1,…,N}, where N is the size of the codebook. Each vector yi =

(y0,…,yk-1) is called a codebook vector or codeword. Only index i of the resulting code

vector is sent to the decoder. At the decoder, an identical copy of the codebook is

retrieved as the encoder by a simple table-lookup operation. The compression ratio

depends on the cardinality of the codebook, usually much smaller than that of the input

domain.

In this implementation, a codebook of 256 4×4 code vectors designed off-line

through a standard Linda-Buzo-Gray (LBG) training process is used to achieve a 0.5 bit

 106

per pixel encoding for an image in 24-bit color, using 4×4 (k = 16). In the 2-D case, non-

overlapping vectors are extracted from the input image by grouping a number of

contiguous pixels to retain available spatial correlation of data. The input blocks are then

compared with the codebook in a parallel systolic fashion, with a large number of them

compared at any given time in parallel. A key enabling role is played by the toroidal

structure of the interconnection network, which enables communication among the nodes

on opposite edges of the mesh.

The most time-critical operation for this implementation is the distortion

calculation between a 4×4 input block and a local codeword. The distortion can be

efficiently calculated with the ADACC_CRCBY instruction by comparing pairs of sub-

elements in the two source registers while accumulating each result in the packed

accumulator. Table 16 shows a comparison of instruction counts using the baseline,

MDMX, and CAX ISAs for a full search VQ operation of 4×4 pixels. The instruction

count decreases 88% with CAX, but only 81% with MDMX over the baseline version.

Table 16. A comparison of instruction counts using the baseline, MDMX, and CAX
ISAs for a VQ operation of 4×4 pixels.

 Baseline MDMX CAX
ALU 483 37 29
MEM 80 34 18

MASK 34 - -
MDMX - 17 -

CAX - - 9
Scalar Instructions 34 34 18

Total 631 122 74

Motion Estimation. Motion estimation (ME) is a core building block in several video

compression standards (e.g., H.26x and MPEG). Compression is achieved through a

block-matching algorithm (BMA) that subdivides the current frame into small reference

 107

blocks and then finds the best match for each block among the available blocks in the

previous frame. In this implementation, the macroblock size of 16×16 pixels and the

search range of ±8 are used. Since the objective of this study is to achieve accurate

motion estimates, both luminance and chrominance components are used in the program

(i.e., FSVBMA) rather than only the luminance component in the standard BMA (see

Section 2.4.3).

The most time-critical operation is the sum of mean absolute differences (MAD)

computation that involves a reference block of pixels and all the candidate blocks of

pixels in the search area. Similar to the VQ implementation, the MAD block is efficiently

processed with the ADACC_CRCBY instruction by comparing pairs of the sub-elements in

the two source registers (one containing pixels within the candidate block; the other

containing pixels within the reference block) while accumulating each result in the

packed accumulator. This process is iterated until all the candidate blocks are compared

by the reference block. Table 17 shows a comparison of instruction counts using the

baseline, MDMX, and CAX ISAs for a MAD computation of 16×16 pixels. The

instruction count decreases 85% with CAX, but only 75% with MDMX over the baseline

version.

Table 17. A comparison of the number of instructions using the baseline, MDMX,
and CAX ISAs for a MAD operation of 16×16 pixels.

 Baseline MDMX CAX
ALU 392 42 28
MEM 33 33 17

MASK 48 - -
COMM 6 6 6
MDMX - 16 -

CAX - - 8
Scalar Instructions 33 33 17

Total 512 130 76

 108

Overall, CAX clearly outperforms MDMX in consistently reducing the number of

instructions required for each application. For portable multimedia systems, battery life

performance and system area are as important as processing performance. An evaluation

of energy- and area-related performance is presented in the following sections.

4.5.2 Energy Efficiency Results

Figure 47 shows energy consumption for the SIMPil system with MDMX and

CAX, normalized to the baseline version. Each bar divides the energy consumption into

the functional unit (FU, combines ALUs, Barrel Shifter, and MACC), storage (combines

Register file and Memory), and others (combines Comm., Sleep, Serial, and Decoder)

categories. The use of CAX significantly reduces energy consumption for all the

programs because of a large reduction in the issued instruction count, in which all the

implementations have been examined at the same 80 MHz clock frequency and 100nm

technology. (This study assumes that unused units dissipate zero power.) CAX reduces

energy consumption from 80% (FSVBMA) to 89% (VMF), while MDMX reduces

energy consumption from only 60% (FSVBMA) to 79% (VMF) over the baseline version.

As expected, the FSVBMA program using CAX shows the lowest reduction rate in the

energy consumption metric because of the smallest reduction rate in the instruction count.

Since CAX reduces a significant number of ALU and memory instructions, less energy is

spent on the ALU and storage units.

 109

20.1

39.7

16.3

32.4

11.0
21.0

12.4

27.4

16.8

33.5

15.3
25.9

100.0100.0100.0100.0100.0100.0

0
10
20
30
40
50
60
70
80
90

100

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

Chromakey VSobel SMF VMF VQ FSVBMA

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Others
Storage
FU

Figure 47. Energy consumption for the SIMPil system with CAX and MDMX,
normalized to the baseline version.

Figure 48 presents additional data showing energy efficiency, the task throughput

achieved per unit of Joule, for the SIMPil system with MDMX and CAX, normalized to

the baseline version. CAX outperforms MDMX across all the programs in the energy

efficiency metric, indicating a 65% increase with CAX, but only a 21% increase with

MDMX. This is because CAX achieves higher sustained throughputs with a small

increase in the system power. Increasing energy efficiency improves sustainable battery

life for given system capabilities.

 110

0

0.5

1

1.5

2

2.5

3

Chromakey VSobel SMF VMF VQ FSVBMA

N
or

m
al

iz
ed

 e
ne

rg
y

ef
fic

ie
nc

y

baseline
MDMX
CAX

Figure 48. Energy efficiency for the SIMPil system with CAX and MDMX,
normalized to the baseline version.

4.5.3 Area Efficiency Results

Area efficiency is the task throughput achieved per unit of area. Figure 49 shows

the area efficiency for the SIMPil system with MDMX and CAX, normalized to the

baseline version. As with energy efficiency, CAX outperforms MDMX for all the

programs in the area efficiency metric, indicating a 66% increase with CAX, but only a

21% increase with MDMX. This is because CAX achieves higher sustained throughput

with smaller area overhead. Increasing area efficiency improves component utilization

for given system capabilities.

 111

0

0.5

1

1.5

2

2.5

3

Chromakey VSobel SMF VMF VQ FSVBMA

N
or

m
al

iz
ed

 a
re

a
ef

fic
ie

nc
y

baseline
MDMX
CAX

Figure 49. Area efficiency for the SIMPil system with CAX and MDMX,
normalized to the baseline version.

4.6 Conclusion

Future embedded imaging products must achieve greater processing performance

while maintaining low cost and low energy consumption. Application-specific embedded

systems (e.g., 2-D SIMD arrays) have demonstrated the potential to meet the high

computational requirements and cost goals. The SIMPil array, for example, benefits from

the exploitation of abundant data parallelism inherent in multimedia applications, short

wire lengths, and specialized microarchitecture to provide a significant improvement in

energy efficiency. While 2-D SIMD arrays, including SIMPil, provide a convenient

parallel processing model with moderate generality for processing 2-D image sequences,

their performance is limited by the vector processing of 3-D YCbCr channels performed

within innermost loops.

The CAX instruction set has been presented to eliminate this performance

limitation by including parallel operations on two packed 16-bit YCbCr data into the

 112

instruction set architecture of a representative 32-bit datapath SIMD array. CAX obtains

greater concurrency and efficiency for processing color image sequences by harnessing

parallelism within the human perceptual color space (e.g., YCbCr) not reachable by other

multimedia extensions. In particular, the key findings on a specified SIMD array

architecture are the following:

• CAX achieves a speedup ranging from 5.2x to 8.9x (an average of 6.7x) over

the baseline performance. This is in contrast to MDMX, which achieves a

speedup ranging from 3x to 5x (an average of 3.8x) over the baseline.

• CAX reduces energy consumption from 80% to 89%, while MDMX reduces

energy consumption only from 60% to 79% over the baseline version.

• Unlike MDMX, CAX benefits from greater concurrency and reduced pixel

word storage. As a result, the area efficiency increases from 36% to 184% (an

average of 75%) with CAX, but only 8% to 78% (an average of 25%) with

MDMX. In addition, the energy efficiency increases from 35% to 164% (an

average of 75%) with CAX, but only 2% to 63% (an average of 25%) with

MDMX. Increasing area and energy efficiencies imply augmenting

component utilization and sustainable battery life, respectively, for given

system capabilities.

• Furthermore, CAX improves the performance and efficiency with a mere 3%

increase in the system area and a 5% increase in the system power, while

MDMX requires a 14% increase in the system area and a 16% increase in the

system power. Although these overheads can be reduced through optimized

 113

design techniques and advanced VLSI technologies, CAX still has the

potential to provide higher processing performance and efficiency.

In the next chapter, several CAX-PE architectures based on different vector-pixel-

per-processing-element values are analytically studied to identify an ideal design space

that delivers sufficient processing performance with the lowest cost and the longest

battery life.

 114

CHAPTER 5

ANALYTICALLY DETERMINING OPTIMAL GRAIN SIZES IN EMBEDDED
SIMD ARCHITECTURES

5.1 Introduction

A significant issue for focal-plane SIMD image processing architectures is

determining the ideal grain size that provides sufficient processing performance with the

lowest cost and the longest battery life for target applications. In color imaging

applications, the grain size of the processing elements (PEs) determines the number of

vector pixels that are mapped to each PE, which is called the vector-pixel-per-processing-

element (VPPE) ratio. The VPPE ratio has a significant impact on the overall area and

energy efficiency of the computational array.

This chapter explores the effects of different VPPE ratios on performance and

efficiency for a specified PE architecture and implementation technology using cycle

accurate simulation and analytical technology modeling. Cycle accurate simulation

provides execution statistics such as cycle count, dynamic instruction histogram, PE

utilization, and PE memory usage. An analytical technology modeling tool estimates

technology parameters such as system area, power, latency, and clock frequency. These

databases are combined to show the impact of different VPPE values on the performance

and efficiency metrics. Moreover, the impact of CAX on each VPPE configuration is

evaluated to identify the most efficient PE design that delivers sufficient processing

performance with the lowest cost for a specified PE architecture and implementation

technology. Experimental results using architectural and workload simulation indicate

that CAX outperforms MDMX for all of the VPPE configurations for full search vector

 115

quantization (FSVQ) in terms of processing performance, area efficiency, and energy

consumption. Results also suggest that VPPE = 16 with CAX achieves high processing

performance with the lowest cost.

The rest of this chapter is organized as follows. The next section discusses related

research. Section 5.3 describes the VPPE variation while illustrating the correlation

among color image size, VPPE ratio, and PE architecture. Section 5.4 presents modeled

SIMD architectures that have different VPPE values and different amounts of local

memory. Section 5.5 evaluates system area and power for each VPPE configuration with

and without CAX or MDMX using technology modeling. Section 5.6 analyzes execution

performance and efficiency for each case. Section 5.7 concludes this chapter.

5.2 Related Research

In the last decade, with the rapid progress in VLSI technology, tremendous

numbers of transistors have enabled the monolithic integration of traditional imaging

systems such as a charge-coupled device (CCD) array, an analog-to-digital conversion

(ADC) unit, and a DSP [30]. The performance of these systems, however, is limited by

the serialized communications between the different modules. As a solution, CMOS

image sensors allow direct pixel access and enable their ability to be co-located [29] or

vertically integrated [72, 8] with the CMOS computing layer. However, none of these

systems have addressed the issue of how much processing capability is needed for each

PE per pixel directly mapped to it.

Recently, Gentile et al. have presented a study to determine the impact of varying

granularity of mapping an image to the PE array [33]. In [39], Herbordt et al. examined

 116

the effects of varying the array size, the datapath, and the memory hierarchy on both cost

and performance. However, these studies measured processing performance and

efficiency on sets of grayscale (1-D) image processing applications, failing to provide a

quantitative understanding of performance and efficiency with respect to 3-D vector

processing for different PE configurations.

This chapter evaluates the effects of different VPPE ratios on performance and

efficiency with respect to 3-D image processing for a specified PE architecture and

implementation technology. This chapter also evaluates the impact of CAX on each

VPPE configuration to identify the most efficient PE granularity.

5.3 Vector-Pixel-per-Processing-Element Ratio

Reconfigurable silicon area usage within an integrated pixel processing array is a

key issue for focal-plane SIMD array architectures because of limited chip resources and

varying application requirements. To determine the effect of varying silicon area usage

on the reference SIMD array, the VPPE ratio (number of vector pixels mapped to each

processor within a SIMD architecture) is selected as the design variable in this study.

Figure 50 pictorially illustrates the assignment of vector pixels based on the VPPE ratio.

In this study, seven VPPE values are used, defined as VPPE = 22i, i = 0,…,6. The

corresponding number of processing elements is defined as NPE = Nimg/VPPE in which

Nimg is the number of pixels in the image. Since all the configurations use a fixed three-

band 256×256 pixel image, the number of PEs in a 256 × 256 pixel system is determined

to be NPE = 22(8-i), i = 0,…,6. Different VPPE configurations and their parameters are

described next.

 117

PE

VPPE = 1 VPPE = 4

PE

VPPE = 16

PE

VPPE = 64

PE

: YCbCr data

PEPE

VPPE = 1 VPPE = 4

PE

VPPE = 4

PEPE

VPPE = 16

PE

VPPE = 16

PEPE

VPPE = 64

PE

VPPE = 64

PEPE

: YCbCr data
Figure 50. Examples of vector pixels per processing element ratio.

5.4 Modeled PE Architectures

Three different reference architectures (e.g., baseline SIMPil, MDMX-SIMPil,

and CAX-SIMPil) are used to evaluate the effects of different VPPE ratios on

performance and efficiency. Each configuration has a different VPPE ratio and a different

amount of local memory to store input images and temporary data produced during

processing. Since each CAX configuration requires smaller pixel word storage than the

corresponding baseline and MDMX configurations, the local memory size is set to twice

the VPPE ratio for the CAX configurations but four times the VPPE ratio for the baseline

and MDMX configurations, except for VPPE = 1 where eight words are used for all three

versions. Table 18 describes all the configurations and their local memory sizes. The next

section describes the system area and power for each configuration using technology

modeling.

 118

Table 18. VPPE configurations and their parameters.

Parameter Value

of PEs 65,536 16,384 4,096 1,024 256 64 16
VPPE values 1 4 16 64 256 1,024 4,096
Base (Memory/PE) [word] 8 16 64 256 1,024 4,096 16,384
MDMX (Memory/PE) [word] 8 16 64 256 1,024 4,096 16,384
CAX (Memory/PE) [word] 8 8 32 128 512 2,048 8,192

VLSI Technology 100 nm
Clock Frequency 50 MHz
Interconnection Network Mesh
intALU/intMUL/Barrel
Shifter/intMACC/Comm 1 / 1 / 1 / 1 / 1

5.5 System Area and Power Evaluation using Technology Modeling

The GENESYS tool [28] is used to determine implementation characteristics (e.g.,

system area and power) for each PE configuration. Figures 51 and 52 show system area

and power estimations versus VPPE values, respectively, in which all the configurations

were examined in the same 100nm technology and 50 MHz node frequency. For VPPEs

at or above 256, both system area and power asymptotically approach a lower limit where

local memory area dominates. Below this point, however, both system area and power

decrease linearly. As a result, a number of configurations are not feasible, requiring

silicon area greater than 1,000 mm2 (the ITRS projected limit in 100 nm CMOS

technology). Although some configurations with power above three watts are not feasible

as well in terms of battery operation and heat removal, power reduction techniques

[49][5][17] (e.g., clock frequency scaling) allow the power dissipation levels required by

portable, battery-operated devices at the expense of performance (execution time).

 119

1

10

100

1000

10000

1 4 16 64 256 1,024 4,096

Vector pixels per processing element

Sy
st

em
 a

re
a

[m
m

2]
Base-SIMPil
MDMX-SIMPil
CAX-SIMPil

Figure 51. System area versus VPPE.

0

1

10

100

1 4 16 64 256 1,024 4,096

Vector pixels per processing element

Pe
ak

 s
ys

te
m

 p
ow

er
 [W

]

Base-SIMPil
MDMX-SIMPil
CAX-SIMPil

Figure 52. Peak system power versus VPPE.

Figures 53 and 54 present additional data showing the distribution of each

functional unit’s area and power, respectively, for SIMPil with MDMX and CAX,

normalized to the baseline configuration. For VPPEs at or above 64, CAX drastically

reduces both system area and power over the baseline configuration because of a large

reduction in local memory. Below this point, however, CAX requires higher system area

and power than the baseline since the area overhead of the CAX execution unit is more

 120

significant than the benefit of the reduced local memory area. MDMX, however,

increases both system area and power for all the configurations. These system areas and

powers are combined with application simulations to determine both area and energy

efficiency for each case, which is presented next.

0

20

40

60

80

100

120

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

N
or

m
ai

iz
ed

 s
ys

te
m

 a
re

a Serial
Sleep
Decoder
Comm
Memory
Shifter
MACC
ALU
Register File

Figure 53. Impact of CAX on system area.

0

20

40

60

80

100

120

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

1VPPE 4VPPE 16VPPE 64VPPE 256VPPE 1024VPPE 4096VPPE

N
or

m
al

iz
ed

 s
ys

te
m

 p
ow

er Serial
Sleep
Decoder
Comm
Memory
Shifter
MACC
ALU
Register File

Figure 54. Impact of CAX on system power.

5.6 Experimental Results

Cycle accurate simulation and technology modeling are used to determine

performance and efficiency for each architectural configuration for full search vector

 121

quantization (FSVQ). (The parallel FSVQ implementation has been discussed in Section

4.5.1.2.) The execution cycle count, area efficiency, and energy consumption of each case

form the basis of the study comparison.

5.6.1 Execution Performance Evaluation Results

This section evaluates the effect of different VPPE ratios on processing

performance for each case. The impact of CAX on each VPPE configuration is also

presented.

5.6.1.1 Impact of Varying VPPE Ratios on Processing Performance

Figure 55 shows sustained throughputs for different VPPE configurations with

and without CAX or MDMX. As expected, the sustained throughput decreases as the

VPPE value increases because of less data parallelism (or a decrease in available

processing elements).

0

1

10

100

1000

10000

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

Su
st

ai
ne

d
th

ro
ug

hp
ut

 [G
op

s/
se

c]

Base
MDMX
CAX

Figure 55. Sustained throughputs for different VPPE configurations with and
without CAX or MDMX.

 122

5.6.1.2 Impact of CAX on Different VPPE Configurations

Figure 56 shows the distribution of issued instructions for each VPPE

configuration with CAX and MDMX, normalized to the baseline version. Each bar

divides the instructions into the arithmetic-logic-unit (ALU), memory (MEM),

communication (COMM), PE activity control unit (MASK), image pixel loading

(PIXEL), MDMX, and CAX. Results indicate that the instruction count decreases from

29.6% (at VPPE = 1) to 89.4% (at VPPE = 4,096) with CAX, but only 24.8% (at VPPE =

1) to 83.6% (at VPPE = 4,096) with MDMX over the baseline version. As expected, both

CAX and MDMX are less effective at reducing vector instructions for VPPEs below 16.

This is because high inter-PE communication operations are involved that are not

affected by CAX or MDMX.

100.0100.0100.0

10.6
16.4

10.7
16.5

10.8
17.0

11.9
18.8

100.0

14.5
24.4

100.0

34.2
41.8

100.0

70.4
75.2

100.0

0
10
20
30
40
50
60
70
80
90

100

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

N
or

m
al

iz
ed

 v
ec

to
r i

ns
tru

ct
io

n
co

un
t

CAX
MDMX
PIXEL
MASK
COMM
MEM
ALU

Figure 56. Issued vector instructions for each VPPE configuration with MDMX
and CAX, normalized to the baseline version.

Figure 57 presents additional data showing speedups for each VPPE configuration

with CAX and MDMX, normalized to the baseline performance. CAX outperforms

 123

MDMX over all VPPE configurations in speedup since CAX consistently reduces more

instructions required for the program, indicating 1.4× (at VPPE = 1) to 9.2× (at VPPE =

4,096) with CAX, but only 1.3× (at VPPE = 1) to 6.1× (at VPPE = 4,096) with MDMX

over the baseline version.

1 1 1 1 1 1 11.33

2.33

4.10

5.32
5.89 6.06 6.12

1.39

2.91

6.78

8.21
9.04 9.13 9.19

0
1
2
3
4
5
6
7
8
9

10

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

Sp
ee

du
p Base

MDMX
CAX

Figure 57. Speedups of each VPPE configuration with CAX and MDMX,
normalized to the baseline performance.

CAX also reduces PE idle cycles from 6% (at VPPE = 1) to 26% (at VPPE =

4,096) over the baseline version, shown in Figure 58. This is because CAX compare

instructions allow multiple conditional (MASK) instructions with one equivalent CAX

instruction, reducing PE idle cycles based on the local information. As with the issued

vector instruction count, CAX is less effective at reducing PE idle cycles for VPPEs

below 16 because of high inter-PE communication operations that are not affected by

CAX. Interestingly, MDMX reduces more PE idle cycles than CAX for all the VPPE

configurations. This is because CAX reduces an additional large number of PE active

cycles without a proportional decrease in the PE idle cycles. Table 19 summarizes all

simulation results. The next two sections evaluate energy- and area-related performance

for each case.

 124

0

10

20

30

40

50

60

70

80

90

100

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

PE
 id

le
 c

yc
le

s

Baselne
MDMX
CAX

Figure 58. PE idle cycles for each VPPE configuration with CAX and MDMX,
normalized to the baseline version.

Table 19. Application performance for each VPPE configuration with and without
MDMX or CAX running at 50 MHz.

of VPPE
(# of PE) ISA Vector

Instruction
Scalar

Instruction

System
Utilization

[%]

Execution
Time

[msec]

Sustained
Throughput
[Gops/sec]

Baseline 34,101 14,873 80.8 0.68 2,646
MDMX 25,653 14,873 82.1 0.51 2,798

1 VPPE
(65,536

PEs) CAX 24,014 11,609 82.0 0.48 3,116
Baseline 59,392 18,731 82.8 1.19 678
MDMX 24,832 18,731 87.3 0.50 789

4 VPPE
(16,384

PEs) CAX 20,302 13,343 85.1 0.41 873
Baseline 183,860 20,755 92.0 3.68 188
MDMX 44,850 20,755 96.0 0.90 235 16 VPPE

(4,096 PEs)
CAX 26,602 12,259 93.9 0.53 285

Baseline 684,689 49,707 92.3 13.69 47
MDMX 128,657 49,707 96.4 2.57 62 64 VPPE

(1,024 PEs)
CAX 81,361 28,203 94.2 1.63 79

Baseline 2,674,449 164,483 92.0 53.49 12
MDMX 454,417 164,483 96.2 9.09 16 256 VPPE

(256 PEs)
CAX 287,761 91,779 94.0 5.76 21

Baseline 10,634,161 623,469 92.0 212.68 2.9
MDMX 1,754,033 623,469 96.2 35.08 4.1 1,024 VPPE

(64 PEs)
CAX 1,132,513 347,013 94.0 22.65 5.2

Baseline 42,464,544 2,455,523 91.9 849.29 0.7
MDMX 6,944,032 2,455,523 96.2 138.88 1.0 4,096 VPPE

(16 PEs)
CAX 4,488,368 1,364,907 94.0 89.77 1.3

 125

5.6.2 Area-Related Evaluation Results

Figure 59 presents area efficiency for each case. All three versions achieve their

maximum area efficiency at VPPE = 16 due to the inherent definition of the FSVQ

program. For VPPEs above 16, the area efficiency decreases almost linearly because the

number of operations to perform the task increases more rapidly with VPPE than the area

level at which local memory area dominates.

0

0.2

0.4

0.6

0.8

1

1.2

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

A
re

a
ef

fic
ie

nc
y

[G
op

s/
(s

ec
*m

m
2)

]

Base
MDMX
CAX

Figure 59. Area efficiency versus VPPE.

5.6.3 Energy-Related Evaluation Results

Figure 60 presents energy consumption for each VPPE configuration with

MDMX and CAX, normalized to the baseline version. Each bar divides the energy

consumption into the functional unit (FU, combines ALUs, Barrel Shifter, and MACC),

storage (combines Register file and Memory), and others (combines Comm., Sleep,

Serial, and Decoder) categories. The results indicate that energy consumption for each

program is reduced from 26% (at VPPE = 1) to 89% (at VPPE = 4,096) with CAX, but

only 24% (at VPPE = 1) to 84% (at VPPE = 4,096) with MDMX over the baseline. For

 126

VPPEs below 16, both MDMX and CAX are less efficient at reducing energy

consumption because of the smaller reduction rate in the instruction count.

100.0

76.474.0

100.0

41.6
36.9

100.0

23.7
15.0

100.0

18.4
12.6

100.0

16.6
11.4

100.0

16.1
11.3

100.0

16.0
11.2

0

10

20

30

40

50

60

70

80

90

100

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Others
Storage
FU

Figure 60. Energy consumption for each VPPE configuration with CAX and
MDMX, normalized to the baseline version.

5.7 Conclusion

Reconfigurable silicon area usage within an integrated pixel processing array is a

key issue for focal-plane SIMD architectures because of limited chip resources and

varying application requirements. In this regard, this chapter has explored the effects of

varying the VPPE ratio (number of vector pixels mapped to each processor within a

SIMD architecture). Moreover, the impact of CAX on each VPPE configuration has been

evaluated to identify the most efficient grain size for a specified SIMD array and

implementation technology. Experimental results using architectural and workload

simulation indicate that CAX outperforms MDMX for all of the VPPE configurations for

full search vector quantization in terms of processing performance, area efficiency, and

energy reduction. Results also suggest that high processing performance with the lowest

cost is achieved at VPPE = 16 with CAX.

 127

CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation has addressed application-, architecture-, and technology-level

issues in existing processing systems to provide efficient processing of multimedia in

many, or ideally all, of its forms. In particular, this dissertation has explored color

imaging for multimedia while focusing on two architectural enhancements for embedded

color video and still-image processing: (1) a pixel-truncation technique and (2) a color-

aware multimedia instruction set extension (CAX) for embedded multimedia systems.

Unlike typical subsampling techniques (e.g., 4:2:2 and 4:2:0) used in image and video

compression applications, the pixel-truncation technique reduces information contents in

individual pixel word sizes rather than in each dimension while inheriting the

chrominance components (Cb and Cr) of the luminance (Y). Thus, this technique

significantly reduces the bandwidth and memory required to transport and store color

images without a perceivable distortion of color while maintaining the pixel storage

format of vector processing in which each pixel computation is simultaneously performed

on 3-D color components. Employing the reduced pixel format, CAX supports parallel

operations on two-packed, truncated 16-bit YCbCr data in a 32-bit datapath processor,

providing greater concurrency and efficiency for processing color image sequences. Thus,

CAX, coupled with the pixel-truncation technique, enables higher degrees of parallelism

and performance required by emerging imaging applications.

 128

This dissertation has presented the impact of CAX on performance and efficiency

with respect to color imaging applications in three major processor architectures:

dynamically scheduled (superscalar), statically scheduled (VLIW), and embedded SIMD

array processors. Results from the research presented in this dissertation are summarized

in the rest of this chapter along with future research directions.

6.1 Summary of Results

6.1.1 Exploring Color Imaging for Multimedia

This research explored color imaging for multimedia to provide new opportunities

that define an efficient architecture for embedded multimedia systems. Several color

specification models were evaluated to identify the most suitable color space that

achieves a natural extension of the imaging operation. In addition, the use of color

information in multimedia applications was investigated using a vector approach,

improving the accuracy of the process and overall image quality. Furthermore, several

color representations with varying pixel word sizes were evaluated to determine the most

efficient representation in terms of storage requirements and color accuracy, In particular,

a 16-bit (6:5:5) YCbCr representation was examined for reduced-memory, embedded

video processing. The 16-bit YCbCr representation reduces the average per pixel word

storage requirements by 33% when compared to the baseline 24-bit YCbCr format.

Overall video quality remains high, and color imaging applications continue to perform

well using the reduced pixel format.

 129

6.1.2 Utilizing Color Subword Parallelism in Superscalar ILP Processors

A new color-aware multimedia extension (CAX) for dynamically scheduled

superscalar processors was presented to support color imaging applications. Unlike

typical multimedia extensions, CAX obtains substantial performance and code density

improvements through direct support of color data processing. Rather than depending

solely on generic subword parallelism, CAX supports parallel operations on two-packed,

quantized 16-bit YCbCr data in a 32-bit datapath processor, providing greater

concurrency and efficiency for processing color image sequences. The key findings

follow. CAX achieves a speedup ranging from 3× to 5.8× over the baseline performance

on a dynamically scheduled, 4-way issue superscalar processor. This is contrast to

MDMX (a representative MIPS multimedia extension), which achieves a speedup of only

1.6× to 3.2× over the baseline. CAX also outperforms MDMX in energy reduction (68%

to 83% reduction with CAX, but only 39% to 69% reduction with MDMX over the

baseline version). Furthermore, CAX exhibits higher relative performance for low-issue

rates. These results demonstrate that CAX is an ideal candidate for embedded multimedia

systems in which high issue rates and out-of-order execution are too expensive.

Performance improved by CAX was further enhanced through loop unrolling

(LU) that reorganizes and reschedules the loop body. LU provides an additional

performance gain of 4%, 19%, and 21% for the baseline, MDMX, and CAX versions,

respectively. These results demonstrate that the CAX plus LU technique has the potential

to provide the higher degrees of parallelism and performance required by emerging

imaging applications.

 130

6.1.3 Implementation and Evaluation of the Color-Aware Instruction Set for Low-
Memory, Embedded Video Processing in Data Parallel Architectures

The CAX instruction set was implemented and evaluated for color imaging

applications on a representative SIMD array architecture. CAX harnesses parallelism

within the human perceptual color space (e.g., YCbCr). In addition, CAX’s ability to

reduce data format size reduces system cost. The key findings are the following.

• CAX outperforms MDMX across all the selected programs in speedup (5.2× to

8.8× with CAX, but only 3× to 5× with MDMX over the baseline performance)

on the same data parallel SIMD execution platform.

• CAX also outperforms MDMX in both area efficiency (a 75% increase versus a

25% increase) and energy efficiency (a 75% increase versus a 24% increase),

resulting in better component utilization and sustainable battery life.

• Furthermore, CAX improves the performance and efficiency with a mere 3%

increase in the system area and a 5% increase in the system power, while

MDMX requires a 14% increase in the system area and a 16% increase in the

system power.

6.1.4 Analytically Determining Optimal Grain Sizes in Embedded SIMD
Architectures

Reconfigurable silicon area usage within an integrated pixel processing array is a

key issue for focal-plane SIMD imaging architectures because of limited chip resources

and varying application requirements. The effects of varying the VPPE ratio (number of

vector pixels mapped to each processor within a SIMD architecture) on performance and

efficiency were evaluated for a specified PE architecture and implementation technology.

 131

Moreover, the impact of CAX on each VPPE configuration was evaluated to identify the

most efficient PE granularity that delivers required performance with the lowest cost and

the longest battery life. Experimental results for a case study, full search vector

quantization, indicate that the VPPE ratio at 16 with CAX provides the most efficient

operation for the specified workload.

6.1.5 Static versus Dynamic Scheduling

The performance of static versus dynamic architectures with and without CAX or

MDMX was compared to determine whether static or dynamic scheduling is more

desirable for color imaging applications. Experimental results through a common

simulation framework indicate that the dynamic approach with a four-way issue achieves

an average speedup of 2.7× over the static approach with a four-way issue. This is

because the static approach is limited by the basic block scheduling algorithm, and the

static code schedules are poorly adapted to the run-time conditions of the processor. CAX

achieves an additional speedup of 7.6×, while MDMX achieves an additional speedup of

only 2.7×.

6.2 Future Research Directions

The research presented in this dissertation is the first to explore and evaluate color

imaging for multimedia with novel color-aware multimedia instruction sets in various

processor architectures including superscalar, VLIW, and embedded SIMD imaging

processors. While a comprehensive evaluation regarding application-, architecture-, and

 132

technology-level issues for supporting color imaging applications has been provided in

this dissertation, a number of interesting issues exist for future research.

6.2.1 Color Imaging Metrics and Cost Models

• Evaluate more color space models for identifying the most advantageous color

space that achieves the most effective results in color image processing.

• Develop reliable quality metrics for visual performance evaluation because, in

many cases, objective image quality measures, such as the mean square error

(MSE), the mean absolute error (MAE), and signal-to-noise ratio (SNR), do not

provide an accurate or even correct measure of the actual visual quality

degradation.

• Develop hardware implementation cost models for several color representations

with and without the pixel-truncation technique with respect to the target

applications to analyze the implementation efficiency.

6.2.2 An In-depth Analysis of the CAX Instruction Set

• Perform an in-depth analysis of CAX with completed video-processing

applications, such as MPEG and H.26L. This will be performed in the context of

various processor architectures, ranging from fully custom to fully programmable

architectures (e.g., ASICs, superscalar, VLIW, and embedded media processors).

This will likely result in adding new instructions (in particular, those performing

complex operations) for the completion of the CAX instruction set.

 133

• Compare CAX with a wider ranger of multimedia extensions, industrial as well as

those proposed in academic research, while extending the datapath by 64 bits.

• Explore compiler support for extracting color subword parallelism from high level

language programs to overcome tedious hand optimization and/or special

programming libraries.

6.2.3 Adaptable and Scalable Architectures

• Extend the analysis for variable VPPE mappings to a variety of color imaging

applications. This will provide accurate database (e.g., performance, area

efficiency, and energy efficiency) for each VPPE configuration.

• Develop heuristic techniques for traversing the design space and extracting both

data-level parallelism (DLP) and subword parallelism from a high level language

to automatically analyze various workloads. Continued advances in multimedia

computing will rely on architecture scalability and adaptability.

 134

APPENDIX A

STATIC VERSUS DYNAMIC SCHEDULING

This appendix compares the performance of static and dynamic architectures with

and without CAX or MDMX to determine whether static or dynamic scheduling is more

desirable for color imaging applications. All the simulations are conducted through a

common simulation framework. Experimental results using the SimpleScalar-based

simulator and a retargeting tool indicate that the dynamic approach with a four-way issue

achieves an average speedup of 2.7× over the static approach with a four-way issue. CAX

achieves an additional speedup of 7.6×, but MDMX achieves an additional speedup of

only 2.7×.

Simulation Methodology

Figures 61(a) and (b) present methodology frameworks for dynamically- and

statically-scheduled programs, respectively. The Simplescalar-based simulator [2] is used

to profile execution statistics for the three different versions (e.g., baseline, MDMX, and

CAX) of both static and dynamic programs. For static programs, however, a modified

retargeting tool [11] is also used to retarget portable ISA (PISA) assembly code into

PISA-derived code amenable for statically-scheduled simulations on the Simplescalar-

based simulator with the out-of-order execution capability disabled. Since existing tools,

such as a PISA assembler, linker, and binary loader, can be immediately used without

modifications, the simulation process is simplified.

 135

Benchmark
applications

PISA GCC

PISA GAS

PISA GLD

PISA Object File

CAX
Configuration

CAX
Configuration

SimpleScalar
Execution File

SimpleScalar
Simulator

SimpleScalar
Simulator

Performance
Statistics

Benchmark
applications

PISA GCC

PISA GAS

PISA GLD

PISA Object File

CAX
Configuration

CAX
Configuration

SimpleScalar
Execution File

SimpleScalar
Simulator

SimpleScalar
Simulator

Performance
Statistics

Benchmark
applications

PISA GCC
and linker

PISA GCC

PISA BIN

PISA
Disassembler

PISA Binaries

Retargeting
Tool

Retargeting
Tool

CAX
Configuration

CAX
Configuration

Assembly
Listing and Disorg

PISA Assembly Codes

Statically-Scheduled PISA
Assembly Codes

Statically-Scheduled
PISA Binaries

SimpleScalar
Simulator

SimpleScalar
Simulator

Performance
Statistics

Benchmark
applications

PISA GCC
and linker

PISA GCC

PISA BIN

PISA
Disassembler

PISA Binaries

Retargeting
Tool

Retargeting
Tool

CAX
Configuration

CAX
Configuration

Assembly
Listing and Disorg

PISA Assembly Codes

Statically-Scheduled PISA
Assembly Codes

Statically-Scheduled
PISA Binaries

SimpleScalar
Simulator

SimpleScalar
Simulator

Performance
Statistics

(a) (b)

Figure 61. Methodology frameworks: (a) dynamically-scheduled simulations and (b)
statically-scheduled simulations.

The MDMX and CAX versions of the programs are created by replacing

fragments of the baseline assembly language with ones containing MDMX and CAX

instructions. The three different versions of each program have the same parameters, data

sets, and calling sequences. Since the target platform is an embedded system, operating

system interface code (e.g., file system access) is not included in this study. In the

experiment, five color imaging applications (e.g., VSobel, SMF, VMF, VQ, and

FSVBMA), summarized in Table 4, are executed on the Simplescalar simulator.

Moreover, the same technology and processor configuration, summarized in Table 20, are

used.

 136

Table 20. Default processor parameters.
Parameter Value

Fetch /decode/issue/commit width 4 instructions/cycle
intALU/intMUL/fpALU/fpMUL/Mem 4/2/2/1/4

RUU (window) size 16 instructions
LSQ (Load Store Queue) 8 instructions

Branch Predictor Combined predictor (1K entries) of bimodal predictor
(4K entries) table and 2-level predictor (2-bit counters
and 10-bit global history)

L1 D-cache 128-set, 4-way, 32-byte line, LRU, 1-cycle hit, total
of 16 KB

L1 I-cache 512-set, direct-mapped 32-byte line, LRU, 1-cycle
hit, total of 16 KB

L2 unified cache 1,024-set, 4-way, 64-byte line, LRU, 6-cycle hit, total
of 256 KB

Memory latency (memory width) 50 cycles for first chunk, 2 thereafter (64 bits)
Instruction TLB 16-way, 4,096 byte page, 4-way, LRU, 30 cycle miss

penalty
Data TLB 32-way, 4,096 byte page, 4-way, LRU, 30 cycle miss

penalty

Experimental Results

Figure 62 shows execution performance (speedup in executed cycles) for two

variations of the baseline architecture, each without subword parallelism, with MDMX,

and with CAX. The two architecture variations are (1) static and four-way issue and (2)

dynamic and four-way issue. All the execution performance is normalized to the baseline

static performance without subword parallelism. The dynamic approach without subword

parallelism achieves a speedup ranging from 2.6× to 3× (an average speedup of 2.7×)

over the baseline static performance. This is because the static approach is limited by the

basic block scheduling algorithm, and the static code schedules are poorly adapted to the

run-time conditions of the processor. CAX achieves an additional speedup of 7.6×, but

MDMX achieves an additional speedup of only 2.7×. This is because CAX supports more

color data elements in a register while processing these separate color elements in parallel.

 137

0
2
4
6
8

10
12
14
16
18

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

VSobel SMF VMF VQ FSVBMA

Sp
ee

du
p

Static
Dynamic

Figure 62. Speedups for the dynamically scheduled superscalar processor with and
without MDMX or CAX over the baseline static performance without subword
parallelism.

Conclusion

Although static architectures (e.g., VLIW and DSP) have been exclusively used in

existing media processors because of low cost and power, they will not meet the higher

demands for performance required by emerging multimedia applications. Thus, the

dynamic aspects of processing become more pronounced. This appendix has compared

the performance of dynamic versus static approaches with and without subword

parallelism to determine which approach is more desirable for color imaging applications.

Experimental results using a common simulation framework indicate that the dynamic

approach with a four-way issue achieves an average speedup of 2.7× over the static

performance with a four-way issue. CAX achieves an additional speedup of 7.6×.

 138

APPENDIX B

CAX: A COLOR-AWARE INSTRUCTION SET

CAX applied to current microprocessor ISAs is targeted to accelerating color

image- and video-processing applications. Combined with a 32-bit datapath processor,

CAX supports parallel operations on two-packed, quantized 16-bit (6:5:5) YCbCr data,

providing greater concurrency and efficiency for processing color image sequences.

Moreover, CAX employs 128-bit color-packed accumulators that provide solutions to

overflow and other issues caused by packing data as tightly as possible by implicit width

promotion and adequate space.

CAX Instructions (grouped by functionality)

Table 21 lists all the CAX instructions available. These CAX instructions exploit

color subword parallelism within the context of three major processor architectures:

dynamically scheduled (superscalar), statically scheduled (VLIW), and embedded SIMD

array processors.

Table 21: CAX instruction descriptions.

Instructions Description

Parallel ALU Instructions
C_PADD_SW Parallel Addition – Signed Wrap Around

C_PADD_UW Parallel Addition – Unsigned Wrap Around

C_PADD_SS Parallel Addition – Signed Saturation

C_PADD_US Parallel Addition – Unsigned Saturation

C_PSUB_SW Parallel Subtraction – Signed Wrap Around

C_PSUB_UW Parallel Subtraction – Unsigned Wrap Around

C_PSUB_SS Parallel Subtraction – Signed Saturation

C_PSUB_US Parallel Subtraction – Unsigned Saturation

C_PAVG_U Parallel Average – Unsigned

 139

Table 21: (Continued)
Parallel Compare Instructions
C_PCMP_EQ Parallel Compare Equal

C_PCMP_NE Parallel Compare Not Equal

C_PCMP_LT Parallel Compare Less Than – Signed

C_PCMP_LE Parallel Compare Less Equal – Signed

C_PCMP_GT Parallel Compare Greater Than – Signed

C_PCMP_GE Parallel Compare Greater Equal – Signed

C_PCMP_LT_U Parallel Compare Less Than – Unsigned

C_PCMP_LE_U Parallel Compare Less Equal – Unsigned

C_PCMP_GT_U Parallel Compare Greater Than – Unsigned

C_PCMP_GE_U Parallel Compare Greater Equal – Unsigned

C_PMAX_U Parallel Maximum – Unsigned

C_PMIN_U Parallel Minimum – Unsigned

C_PCMOV Parallel Conditional Move

Permute Instructions
C_MIX_L Mix Left

C_MIX_R Mix Right

C_ROTATE_R Rotate Right

C_BCAST_SS Broadcast – Signed Saturation

Special-Purpose Instructions
C_PADACC_U_S Parallel Absolute Differences Accumulation with Unsigned Values –

Signed
C_PMACC_U_S Parallel Multiply and Accumulation with Unsigned Value – Signed

C_PMACC_U_S_S Parallel Multiply and Accumulation with U/S Values – Signed

C_ZACC Zero Accumulator

C_RACL Read the Least Significant 32 bits of an Accumulator

C_RACS Read the Second Significant 32 bits of an Accumulator

C_RACT Read the Third Significant 32 bits of an Accumulator

C_RACH Read the Most Significant 32 bits of an Accumulator

 140

Parallel Add Instructions

C_PADD_SW Parallel Addition – Signed Wrap Around
C_PADD_UW Parallel Addition – Unsigned Wrap Around
C_PADD_SS Parallel Addition – Signed Saturation
C_PADD_US Parallel Addition – Unsigned Saturation

Format: c_padd_sw Rd,Rs1,Rs2
 c_padd_uw Rd,Rs1,Rs2
 c_padd_ss Rd,Rs1,Rs2
 c_padd_us Rd,Rs1,Rs2

Description: Rd[i]← Rs1[i] + Rs2[i]

The parallel add instructions add the sub-elements of Rs1 from the

corresponding sub-elements of Rs2. The results are then written to Rd.

The c_padd_sw instruction uses signed wrap around; the c_padd_uw

instruction uses unsigned wrap around; the c_padd_ss instruction uses

signed saturation; and the c_padd_us instruction uses unsigned saturation.

For saturated arithmetic operations, overflows and underflows clamp to

the largest or smallest value before writing to the destination register.

 141

Parallel Subtract Instructions

C_PSUB_SW Parallel Subtraction – Signed Wrap Around
C_PSUB_UW Parallel Subtraction – Unsigned Wrap Around
C_PSUB_SS Parallel Subtraction – Signed Saturation
C_PSUB_US Parallel Subtraction – Unsigned Saturation

Format: c_psub_sw Rd,Rs1,Rs2
 c_psub_uw Rd,Rs1,Rs2
 c_psub_ss Rd,Rs1,Rs2
 c_psub_us Rd,Rs1,Rs2

Description: Rd[i]← Rs1[i] - Rs2[i]

The parallel subtract instructions subtract the sub-elements of Rs2 from

the corresponding sub-elements of Rs1. The results are then written to Rd.

The c_psub_sw instruction uses signed wrap around; the c_psub_uw

instruction uses unsigned wrap around; the c_psub_ss instruction uses

signed saturation; and the c_psub_us instruction uses unsigned saturation.

For saturated arithmetic operations, overflows and underflows clamp to

the largest or smallest value before writing to the destination register.

 142

Parallel Average Instructions

C_PAVG_U Parallel Average – Unsigned

Format: c_pavg_u Rd,Rs1,Rs2

Description: Rd[i]← round(avg(Rs1[i], Rs2[i]))

The parallel average instruction adds the sub-elements of Rs1 to the

corresponding sub-elements of Rs2. The sums are then shifted right by one

bit. (If each sum has a positive value, the most significant bit becomes 0

during shifting to the right. Otherwise, the most significant bit becomes 1.)

The shifted results are then written to Rd, in which the least significant bit

of each resulting subword is obtained by a logical or operator of the two

least significant bits of the shifted sums. These instructions are useful for

blending algorithms.

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2Rs1

Cr3 Y3Cb3Cr4 Y4Cb4Rs2

avg(Cr3,Cr1) avg(Y3,Y1)avg(Cb3,Cb1)avg(Cr4,Cr2) avg(Y4, Y2)avg(Cb4, Cb2)Rd

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2 Cr1 Y1Cb1Cr2 Y2Cb2Rs1

Cr3 Y3Cb3Cr4 Y4Cb4 Cr3 Y3Cb3Cr4 Y4Cb4Rs2

avg(Cr3,Cr1) avg(Y3,Y1)avg(Cb3,Cb1)avg(Cr4,Cr2) avg(Y4, Y2)avg(Cb4, Cb2) avg(Cr3,Cr1) avg(Y3,Y1)avg(Cb3,Cb1)avg(Cr4,Cr2) avg(Y4, Y2)avg(Cb4, Cb2)Rd

Figure 63. An example of a parallel average instruction.

 143

Parallel Compare Instructions

C_PCMP_EQ Parallel Compare Equal
C_PCMP_NE Parallel Compare Not Equal
C_PCMP_LT Parallel Compare Less Than – Signed
C_PCMP_LE Parallel Compare Less Equal – Signed
C_PCMP_GT Parallel Compare Greater Than – Signed
C_PCMP_GE Parallel Compare Greater Equal – Signed
C_PCMP_LT_U Parallel Compare Less Than – Unsigned
C_PCMP_LE_U Parallel Compare Less Equal – Unsigned
C_PCMP_GT_U Parallel Compare Greater Than – Unsigned
C_PCMP_GE_U Parallel Compare Greater Equal – Unsigned
C_PCMOV Parallel Conditional Move

Format: c_pcmp_fuc Rd,Rs1,Rs2 (fuc : EQ, NE, LT, LE, GT, GE)
 c_pcmov Rd,Rs1,Rs2

Description: Rd[i]← (Rs1[i] cond Rs2[i])

The c_pcmp_fuc instructions compare pairs of the sub-elements in Rs1

and Rs2 and write the results to Rd. Depending on the instructions, the

results are varied for each sub-element comparison. The c_pcmp_eq

instruction, for example, compares pairs of the sub-elements in Rs1 and

Rs2 and writes a bit string of 1s for true comparison results and 0s for

false comparison results to Rd.

In the c_pcmov instruction, the packed operands of Rd are

1) the sub-elements of Rs1 if each sub-element of Rs2 is equal to all 1s,

2) Rd otherwise.

 144

Parallel Max/Min Instructions

C_PMAX_U Parallel Maximum – Unsigned
C_PMIN_U Parallel Minimum – Unsigned

Format: c_pmax_u Rd,Rs1,Rs2
 c_pmin_u Rd,Rs1,Rs2

Description: Rd[i]← max(Rs1[i], Rs2[i]) or Rd[i]← min(Rs1[i], Rs2[i])

The c_pmax_u instruction compares pairs of the unsigned sub-elements in

the two source registers and outputs the maximum values to the

destination register.

The c_pmin_u instruction compares pairs of the unsigned sub-elements in

the two source registers and outputs the minimum values to the destination

register.

 145

Permute Instructions

C_MIX _L Mix Left
C_MIX_R Mix Right
C_ROTATE_R Rotate Right
C_BCAST_SS Broadcast – Signed Saturation

Format: c_mix_l Rd,Rs1,Rs2
 c_mix_r Rd,Rs1,Rs2

c_rotate_r Rd,Rs1,Imm
c_bcast_ss Rd,Rs1,Imm

Description: Rd[i]← select(i,Rs1[i], Rs2[i])

The mix instructions mix the sub-elements of Rs1 and Rs2 into the

operands of Rd.

The rotate instruction rotates the sub-elements to the right by an

immediate value.

The broadcast instruction writes the selected sub-elements of Rs1 by an

immediate indicator to all the sub-elements of Rd.

Rs1

Rs2

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Cr3 Y3Cb3Cr4 Y4Cb4

Rd Cr4 Y4Cb4Cr2 Y2Cb2

Rs1

Rs2

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Cr3 Y3Cb3Cr4 Y4Cb4

Rd Cr4 Y4Cb4Cr2 Y2Cb2

Figure 64. An example of a mix left instruction.

 146

Parallel Absolute Differences Accumulation Instructions

C_PADACC_U_S Parallel Absolute-Differences-Accumulate with Unsigned Values – Signed

Format: c_padacc_u_s Rd,Rs1,Rs2

Description: acc[i]← acc[i] + abs(Rs1[i] – Rs2[i]), Rd[i]← abs(Rs1[i] – Rs2[i])

The sum of absolute-distance-accumulate instruction calculates the

absolute differences of pairs of the sub-elements in Rs1 and Rs2 while

accumulating each result in the accumulator. In the mean time, each

absolute result is stored to Rd. This instruction is frequently used by a

number of algorithms for motion estimation.

Acc

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2

043 236387107127

Acc + abs(Cr4-Cr2)
Cr3 Y3Cb3Cr4 Y4Cb4

Acc

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2

043 236387107127

Acc + abs(Cr4-Cr2)
Cr3 Y3Cb3Cr4 Y4Cb4

Figure 65. An example of a PADACC instruction.

 147

Parallel Multiply-Accumulate Instructions

C_PMACC_U_S Parallel Multiply and Accumulation with Unsigned Values – Signed
C_PMACC_U_S_S Parallel Multiply and Accumulation with U/S Values – Signed

Format: c_pmacc_u_s Acc,Rs1,Rs2
 c_pmacc_u_s_s Acc,Rs1,Rs2

Description: acc[i]← acc[i] + abs(Rs1[i] * Rs2[i])

The c_pmacc_u_s instruction multiplies the unsigned sub-elements of Rs1

with the corresponding unsigned sub-elements of Rs2 while accumulating

each result in the packed signed operands of the accumulator.

The c_pmacc_u_s_s instruction multiplies the unsigned sub-elements of

Rs1 with the corresponding signed sub-elements of Rs2 while

accumulating each result in the packed signed operands of the accumulator.

These instructions are useful in DSP algorithms that involve computing a

vector dot-product, such as digital filtering and convolutions.

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Coef CoefCoefCoef CoefCoefRs2

Acc
043 236387107127

Acc + (Cr4*Coef)

Rs1
010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Coef CoefCoefCoef CoefCoefRs2

Acc
043 236387107127

Acc + (Cr4*Coef)

Acc
043 236387107127

Acc + (Cr4*Coef)

Figure 66. An example of a multiply-accumulate instruction.

 148

ZACC Instructions

C_ZACC Zero Accumulator

Format: c_zacc Acc(i)

Description: Acc(i) ← 0

The zero accumulator instruction initializes the value of the accumulator

to zero.

Examples:

c_zacc acc1 ;; acc1 ← 0
c_pmacc_u_s_s acc1,r5,r7 ;; acc1new ← r5 * r7 + 0
c_pmacc_u_s_s acc1,r5,r7 ;; acc1new ← r5 * r7 + acc1old
c_zacc acc1 ;; acc1 ← 0

 149

 Read Accumulator Instructions

C_RACL Read the Least Significant 32 bits of an Accumulator
C_RACS Read the Second Significant 32 bits of an Accumulator
C_RACT Read the Third Significant 32 bits of an Accumulator
C_RACH Read the Most Significant 32 bits of an Accumulator

Format: c_racl Rd,Acc
 c_racs Rd,Acc
 c_ract Rd,Acc
 c_rach Rd,Acc

Description: Rd ← acc{low, mid_left, mid_right, high}

Read either the least significant, second most significant, third most

significant, or most significant fourth of bits of the accumulator.

 150

REFERENCES

[1] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” Proc. of the IEEE,
vol. 78, no. 4, pp. 678-689, April 1990.

[2] T. Austin and D. Burger, “The SimpleScalar Tool Set, Version 2.0,” TR-1342,
Computer Sciences department, University of Wisconsin, Madison.

[3] B. Barnett, Handbook of Image Processing, A. Bovik, ed., Academic Press, 2000.

[4] K. E. Batcher, “Design of a massively parallel processor,” IEEE Trans. Computers
C-29, pp. 836-840, 1980.

[5] A. Bellaouar and M. I. Elmasry, Low-Power Digital VLSI Design: Circuits and
Systems. Boston: Kluwer Academic, 1995.

[6] R. Bhargava, L. John, B. Evans, and R. Radhakrishnan, “Evaluating MMX
technology using DSP and multimedia applications,” Proc. of IEEE/ACM Sym. on
Microarchitecture, pp. 37-46, 1998.

[7] M. Bolotski, R. Armithrajah, W. Chen, "ABACUS: A High Performance
Architecture for Vision," in Proceedings of the International Conference on
Pattern Recognition, 1994.

[8] S. Bond, S. Jung, O. Vendier, M. Brooke, N. M. Jokerst, S. Chai, A. Lopez-
Lagunas, and D. S. Wills, “3D stacked Si CMOS VLSI smart pixels using through-
Si optoelectronic interconnections,” in Proc. IEEE Lasers and Electro-Optics Soc.
Summer Topical Meeting on Smart Pixels, pp. 27-28, July 1998.

[9] W. J. Bouknight, S. A. Denenberg, D. E. McIntre, J. M. Randall, A. H. Sameh, and
D. L. Slotnick, “The Illiac IV system,” Proc. IEEE, vol. 60, no. 4, pp. 369-388,
1972.

[10] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-
level power analysis and optimizations,” in Proc. Intl. Symposium on Computer
Architecture, pp. 83-94, June 2000.

[11] S. Bunchua, “Fully distributed register files for heterogeneous clustered
microarchitectures,” PhD dissertation, Georgia Inst. of Technology, July 2004.

 151

[12] K. Castille, “TMS320C6000 power consumption summary,” Application Report
SPRA486B, Texas Instruments, C6000 Application team, Nov. 1999.

[13] H. H. Cat, A. Gentile, J. C. Eble, M. Lee, O. Verdier, Y. J. Joo, D. S. Wills, M.
Brooke, N. M. Jokerst, A. S. Brown, and R. Leavitt, “SIMPil: An OE integrated
SIMD architecture for focal plane processing applications,” in Proc. Massively
Parallel Processing Using Optical Interconnection (MPPOI-96), pp. 44-52, Oct.
1996.

[14] S. M. Chai, T. M. Taha, D. S. Wills, and J. D. Meindl, “Heterogeneous
architecture models for interconnect-motivated system design,” IEEE Trans. VLSI
Systems, special issue on system level interconnect prediction, vol. 8, no. 6, pp.
660-670, Dec. 2000.

[15] S. M. Chai, “Real time image processing on parallel arrays for gigascale
integration,” PhD dissertation, Georgia Inst. of Technology, Nov. 1999.

[16] A. P. Chandrakasan, Low-power Digital CMOS Design, Kluwer Academic
Publishers, 1995.

[17] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS digital
design,” IEEE J. Solid-State Circuits, vol. 5, no. 2, pp. 140-149, April 1992.

[18] J. Cobal, M. Valero, and R. Espasa, “Exploiting a new level of DLP in multimedia
applications,” in Proc. IEEE Intl. Symp. on Microarchitecture (MICRO-32), pp.
72-79, Nov. 1999.

[19] Coding of Moving Pictures and Audio, ISO/IEC JTC1/SC29/WG11 N3312, 2000.

[20] L. Codrescu, S. P. Nugent, J. D. Meindl, and D. S. Wills, “Modeling technology
impact on cluster microprocessor performance,” IEEE Trans. VLSI Systems, vol.
11, no. 5, pp. 909-920, Oct. 2003.

[21] A color version of this dissertation along with all color images used:
http://www.ece.gatech.edu/research/pica/grads/jmkim/thesis/

[22] T. M. Conte, P. K. Dubey, M. D. Jennings, R. B. Lee, A. Peleg, M. Schlansker, P.
Song, and A. Wolfe, “Challenges to combining general-purpose and multimedia
processors,” IEEE Computer, vol. 30, no. 12, pp. 33-37, Dec. 1997.

[23] A. Cuhadar, D. Sampson, and A. Downton, “A scalable parallel approach to vector
quantization,” Real-Time Imaging, vol. 2, no. 4, pp. 241-247, Oct. 1996.

 152

[24] K. Diefendorff and R. Dubey, “How multimedia workloads will change processor
design,” IEEE Computer, vol. 30, no. 9, pp. 43-45, Sept. 1997.

[25] K. Dezhgosha, M. M. Jamali, and S. C. Kwatra, “A VLSI architecture for real-time
image coding using a vector quantization based algorithm,” IEEE Trans. Image
Processing, vol. 40, no. 1, pp. 181-189, 1992.

[26] J. J. Dongarra and A. R. Hinds, “Unrolling loops in Fortran,” Software-Practice
and Experience, vol. 9, no. 3, pp. 219-226, 1979.

[27] J. C. Eble, “A generic system simulator with novel on-chip cache and throughput
models for gigascale integration,” PhD dissertation, Georgia Inst. of Technology,
1998.

[28] J. C. Eble, V. K. De, D. S. Wills, and J. D. Meindl, “A generic system simulator
(GENESYS) for ASIC technology and architecture beyond 2001,” in Proc. of the
Ninth Ann. IEEE Intl. ASIC Conf., pp. 193-196, Sept. 1996.

[29] E. R. Fossum, “Digital camera system on a chip,” IEEE Micro, vol.18, no. 3, pp. 8-
15, 1998.

[30] E. R. Fossum, "Architectures for Focal Plane Image Processing," Optical
Engineering, vol. 28, no. 8, pp. 865-871, 1989.

[31] J. Fridman and Z. Greenfield, “The TigerSHARC DSP architecture,” in Proc.
IEEE/ACM Intl. Sym. on Computer Architecture, pp. 124-135, May 1999.

[32] J. Fritts, “Architecture and compiler design issues in programmable media
processors,” Ph.D. Thesis, Dept. of Electrical Engineering, Princeton University,
2000.

[33] A. Gentile, S. Sander, L. M. Wills, and D. S. Wills, “Impact of pixel to processing
ratio in embedded SIMD image processing architectures,” in Journal of Parallel
and Distributed Computing, vol. 64, no. 11, pp. 1318-1332, Nov. 2004.

[34] A. Gentile and D. S. Wills, “Portable Video Supercomputing,” IEEE Trans. on
Computers, vol. 53, no. 8, pp. 960-973, Aug. 2004.

[35] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer
Academic Press, 1992.

[36] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Ed., Prentice Hall,
2002.

 153

[37] H.-M. Hang and B. G. Haskell, “Interpolative vector quantization of color
images,” IEEE Transactions on Communications, vol. 36, no. 4, pp. 465-470,
April 1988.

[38] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, 2003.

[39] M. C. Herbordt, A. Anand, O. Kidwai, R. Sam, and C. C. Weems,
“Processor/memory/array size tradeoffs in the design of SIMD arrays for a
spatially mapped workload,” in Proc. IEEE Intl. Workshop on Computer
Architecture for Machine Perception, pp. 12-21, Oct. 1997.

[40] M. J. Irwin, R. M. Owens, "A Two-Dimensional, Distributed Logic Processor,"
IEEE Transactions on Computers, vol. 40, no. 10, pp. 1094-1101, 1991.

[41] M. D. Jennings and T. M. Conte, “Subword extensions for video processing on
mobile systems,” IEEE Concurrency, vol. 6, no. 3, pp. 13-16, July-Sept. 1998.

[42] B. Juurlink, D. Tcheressiz, S. Vassiliadis, and H. A. G. Wijshoff, “Implementation
and evaluation of the complex streamed instruction set,” in Proc. IEEE Intl. Conf.
on Parallel Architectures and Compilation Techniques, pp. 73-82, Sept. 2001.

[43] J. Kim, S. Ryu, A. Gentile, L. M. Wills, and D. S. Wills, “Impulse noise removal
on an embedded, low memory SIMD processor,” in Proc. of the IEEE Intl. Conf.
on Digital Signal Processing, pp. 1257-1260, July 2002.

[44] J. Kim, L. M. Wills, and D. S. Wills, “Effective detection and elimination of
impulse noise for reliable 4:2:0 YCbCr signals prior to compression encoding,” to
appear in Proc. of the IEEE Conf. on Acoustics, Speech, and Signal Processing
(ICASSP 05), March 2005.

[45] J. Kim and D. S. Wills, “Evaluating a 16-bit YCbCr (6:5:5) color representation
for low memory, embedded video processing,” in Proc. of the IEEE Conf. on
Consumer Electronics (ICCE’05), pp. 181-182, Jan. 2005.

[46] J. Kim and D. S. Wills, “Efficient processing of color image sequences using a
color-aware instruction set on mobile systems,” in Proc. of the IEEE Conf. on
Application-Specific Systems, Architectures, and Processors, pp. 137-149, Sept.
2004.

[47] A. Koschan, “A comparative study on color edge detection,” in Proc. of the
Second Asian Conference on Computer Vision, vol. III, pp. 574-578, Dec. 1995.

 154

[48] A. Krikelis, I. P. Jalowiecki, D. Bean, R. Bishop, M. Facey, D. Boughton, S.
Murphy, and M. Whitaker, “A programmable processor with 4096 processing units
for media applications,” in Proc. of the IEEE Intl. Conf. on Acoustics, Speech, and
Signal Processing, vol. 2, pp. 937-940, May 2001.

[49] T. Kuroda, “Low power CMOS digital design for multimedia processors,” in Proc.
of Intl. Conf. on VLSI and CAD, pp. 359-367, Oct. 1999.

[50] S. C. Kwatra, C. M. Lin, and W. A. Whyte, “An adaptive algorithm for motion
compensated color image coding,” IEEE Trams. Commun., vol. COM-35, pp. 747-
754, July 1987.

[51] V. Lappalainen, “Performance of an advanced video codec on a general-purpose
processor with media ISA extensions,” IEEE Transactions on Consumer
Electronics, vol. 46, no. 3, pp. 706-716, 2000.

[52] R. B. Lee, “Multimedia extensions for general-purpose processors,” Proc. IEEE
Workshop on Signal Processing Systems, pp. 9-23, 1997.

[53] R. B. Lee, “Subword parallelism with MAX-2,” IEEE Micro, vol. 16, no. 4, pp.
51-59, Aug. 1996.

[54] R. B. Lee and M. D. Smith, “Media processing: A new design target,” IEEE Micro,
vol. 16, no. 4, pp. 6-9, August 1996.

[55] Y. Y. Lee and J. W. Woods, “Motion vector quantization for video coding,” IEEE
Trans. Image Processing, vol. 4, no. 3, pp. 378-382, 1995.

[56] M. Manohar and J. C. Tilton, “Progressive vector quantization on a massively
parallel SIMD machine with application to multispectral image data,” IEEE Trans.
on Image Processing, vol. 5, no. 1, pp. 142-147, Jan. 1996.

[57] MasPar (MP-2) System Data Sheet, MasPar Corp., 1993.

[58] MATLAB Homepage: http://www.mathworks.com/

[59] J. D. Meindl, “Low power microelectronics: Retrospect and prospect,” in Proc.
IEEE, vol. 83, no. 4, pp. 619-635, April 1995.

[60] MIPS extension for digital media with 3D, Technical Report http://www.mips.com,
MIPS technologies, Inc., 1997.

 155

[61] M. J. Nadenau and J. Reichel, “Opponent color, human vision and wavelets for
image compression,” in IS&T/SID Seventh Color Imaging Conference, pp. 237-
242, Nov. 1999.

[62] A. Nakada, T. Shibata, M. Konda, T. Morimoto, and T. Ohmi, “A fully parallel
vector-quantization processor for real-time motion-picture compression,” IEEE J.
Solid-State Circuits, vol. 34, no. 6, pp. 822-830, 1999.

[63] H. Nguyen and L. John, “Exploiting SIMD parallelism in DSP and multimedia
algorithms using the AltiVec technology,” in Proc. Intl. Supercomputer
Conference, pp. 11-20, June 1999.

[64] T. Nozawa et al., “A parallel vector-quantization processor eliminating redundant
calculations for real-time motion picture compression,” IEEE J. Solid-State
Circuits, vol. 35, no. 11, pp. 1744-1751, 2000.

[65] S. Nugent, D. S. Wills, and J. D. Meindl, “A hierarchical block-based modeling
methodology for SoC in GENESYS,” in Proc. of the 15th Ann. IEEE Intl.
ASIC/SOC Conf., pp. 239-243, Sept. 2002.

[66] S. Obereman, G. Favor, and F. Weber, “AMD 3DNow! technology: architecture
and implementations,” IEEE Micro, vol. 19, no. 2, pp. 37-48, 1999.

[67] A. Peleg and U. Weiser, “MMX technology extension to the Intel architecture,”
IEEE Micro, vol.16, no. 4, pp. 42-50, Aug. 1996.

[68] A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for multimedia PCs,” in Proc.
Communications of the ACM, vol. 40, no. 1, pp. 25-38, Jan. 1997.

[69] K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and
Applications, Springer Verlag, 2000.

[70] S. K. Raman, V. Pentkovski, and J. Keshava, “Implementing streaming SIMD
extensions on the Pentium III processor,” IEEE Micro, vol. 20, no. 4, pp.28-39,
Aug. 2000.

[71] R. Ranganathan, S. Ave, and N. Jouppi, “Performance of image and video
processing with general-purpose processors and media ISA extensions,” Proc. of
IEEE/ACM Sym. on Computer Architecture, pp. 124-135, 1999.

[72] A. L. Rosenberg, “Three-dimensional integrated circuits,” VLSI systems and
computations, H. T. Kung, R. F. Sproull and G. L. Steele (eds.), Computer Science
Press, Rockville, MD, pp. 69-80, 1981.

 156

[73] J. Scharcanski and A. N. Venetsanopoulous, “Edge detection of color images suing
directional operators,” IEEE Trans. on Circuit and Systems for Video Technology,
vol. 7, no. 2, pp. 397-401, April 1997.

[74] Semiconductor Industry Assoc., The International Technology Roadmap for
Semiconductors, 2003, Available at http://public.itrs.net.

[75] R. Sites, Ed., Alpha Reference Manual, Burlington, MA: Digital, 1992.

[76] N. T. Slingerland and A. J. Smith, “Measuring instruction sets for general purpose
microprocessors: A survey,” University of California at Berkeley Technical Report
CSD-00-1122, 2000.

 [77] N. T. Slingerland and A. J. Smith, “Measuring the performance of multimedia
instruction sets,” IEEE Transactions on Computers, vol. 51, no. 11, pp. 1317-1332,
2002.

[78] J. Suh and V. K. Prasanna, “An efficient algorithm for out-of-core matrix
transposition,” IEEE Trans. on Computers, vol. 51, no. 4, pp. 420-438, April 2002.

[79] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low energy: An
overview,” in Proc. Symp. Low Power Electron., pp. 38-39, Oct. 1994.

[80] M. Tremblay, J. M. O’Connor, V. Narayanan, and L. He, “VIS speeds new media
processing,” IEEE Micro, vol. 16, no. 4, pp. 10-20, Aug. 1996.

[81] “Connection machine model CM-2 technical summary,” Thinking Machines Corp.,
version 51, May 1989.

[82] TMS320C64x DSP Technical Brief.
Available: http://www.ti.com/sc/docs/products/dsp/c6000/c64xmptb.pdf

[83] L. W. Tucker and G. G. Robertson, “Architecture and applications of the
connection machine,” IEEE Computer, vol. 21, no. 8, pp. 26-38, 1988.

[84] M. J. Vrhel, “Color imaging: current trends and beyond,” in Proceedings of the
IEEE International Conference on Image Processing, vol. 1, pp. 513-516, Sept.
2000.

[85] Y. Wang, J. Ostermann, and Y-Q. Zhang, Video Processing and Communications,
Prentice Hall, 2002.

 157

[86] S. Weiss and J. E. Smith, “A study of scalar compilation techniques for pipelined
supercomputers,” in Proc. Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, pp. 105-109, 1987.

[87] C. C. Yang, “Effects of coordinate systems on color image processing,” MS
Thesis, University of Arizona, Tucson, 1992.

[88] N. Zingirian and M. Maresca, “On the efficiency of image and video processing
programs on instruction level parallel processors,” Proceedings of the IEEE, vol.
90, no. 7, pp. 1230-1243, July 2002.

