Skip to main content

Emotion Semantics Image Retrieval: An Brief Overview

  • Conference paper
Affective Computing and Intelligent Interaction (ACII 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3784))

  • 5606 Accesses

Abstract

Emotion is the most abstract semantic structure of images. This paper overviews recent research on emotion semantics image retrieval. First, the paper introduces the general frame of emotion semantics image retrieval and points out the four main research issues: to exact sensitive features from images, to define users’ emotion information, to build emotion user model and to individualize the user model. Then several algorithms to solve these four issues are analyzed in detail. After that, some future research topics, including construction of an emotion database, evaluation of the user model and computation of the user model, are discussed, and some resolved strategies are presented elementarily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amold, W.M.S., et al.: Content-Based image retrieval at the end of early years. IEEE Trans. On Pattern Analysis And Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  2. Zhao, R., William, I.: Bridging the semanitic gap in image retrieval. In: Distributed multimedia databases: techniques & applications, pp. 14–36. Idea Group Publishing, Hershey (2002)

    Google Scholar 

  3. Ozaki, K., Abe, S., Yano, Y.: Semantic retrieval on art museum database system. IEEE International Conference on Systems Man and Cybernetics 3, 2108–2112 (1996)

    Google Scholar 

  4. Bianchi-Berthouze, N., Kato, T.: K-DIME: An adaptive system to retrieval images from the WEB using subjective criteria. In: IEEE International Conference on System Man and Cybernetic 1999, Tokyo, Japan, vol. 6, pp. 358–362 (1999)

    Google Scholar 

  5. Wang, S.F.: Research on Emotion Information Processing and Its Application in Image Retrieval. In: Doctoral Dissertation, University of Science and Technology of China (May 2002)

    Google Scholar 

  6. Uemura, S., Arisawa, H., Arikawa, M., Kiyoki, Y.: Digital media information base. IEICE Transaction on Information and System E82-D(1), 22–33 (1999)

    Google Scholar 

  7. Arnheim, R.: Art and visual perception: A psychology of the creative eye. Regents of the University of California, Palo Alto (1954)

    Google Scholar 

  8. Itten, J.: Art of Color. Otto Maier, Ravensburg (1961)

    Google Scholar 

  9. Corridoni, M., Bimbo, A., Del Pala, P.: Retrieval of Paintings using Effects Induced by Color Features. In: 1998 International Workshop on Content-Based Access of Image and Video Databases, CAIVD 1998 (1998)

    Google Scholar 

  10. Mao, X., Chen, B., Muta, I.: Affective property of image and fractal dimension. Chaos Solitions and Fractals 13, 905–910 (2003)

    Article  Google Scholar 

  11. Tanaka, S., Iwadate, Y., Inokuchi, S.: An attractiveness evaluation models based on the physical features of image regions. In: IEEE 15th International Conference on Pattern Recognition, Barcelona, Spain, pp. 793–796 (2000)

    Google Scholar 

  12. Kobayashi, Y., Kato, P.: Multi-contrast based texture model for understanding human subjectivity. In: 15th International Conference on Pattern Recognition, Barcelona, Spain, vol. 3, pp. 917–922 (2000)

    Google Scholar 

  13. Sung-Bae, C.: Emotional image and musical information retrieval with interactive genetic algorithm. Proceedings of the IEEE 92(4), 702–711 (2004)

    Article  Google Scholar 

  14. Hayashi, T., Hagiwara, M.: An image retrieval system to estimate impression words from images using a neural network. In: IEEE International Conference on Systems Man and Cybernetics Computational Cybernetics and Simulation’, Orlando, FL, USA, vol. 1, pp. 150–155 (1997)

    Google Scholar 

  15. Shibata, T., Kato, T.: ”Kansei” image retrieval system for street landscape: discrimination and graphical parameters based on correlation of two images. In: IEEE International Conference on System Man and Cybernetic 1999, Tokyo, Japan, pp. 247–252 (1999)

    Google Scholar 

  16. Charles, E.O., Suci, G.J., Tannenbaum, P.H.: The measurement of meaning. University of Illinois Press, Urbana (1957)

    Google Scholar 

  17. Kobayashi, H., Ota, S.: The semantic network of KANSEI words. In: 2000 IEEE International Conference on Systems Man and Cybernetics, Nashville, TN, USA, vol. 1, pp. 690–694 (2000)

    Google Scholar 

  18. Sato, T., Kajiwara, K., Xin, J., Hansuebsai, A., Nobbs, J.: Numerical expression of colour emotion and its application

    Google Scholar 

  19. Yoshida, K., Kato, T., Yanaru, T.: Image retrieval system using impression words. In: 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2780–2784 (1998)

    Google Scholar 

  20. Hayashi, T., Hagiwara, M.: Image query by impression words-the IQI system. IEEE Transactions on Consumer Electronics 44(2), 347–352 (1998)

    Article  Google Scholar 

  21. Miura, K., Ozawa, J., Imanaka, T.: Information retrieval system based on a relative KANSEI model. In: Methodologies for the conception, Design and Application of Soft Computing, Proceedings of IIZUKA 1998, pp. 239–242 (1998)

    Google Scholar 

  22. Zukerman, I., Albrecht, D.W.: Predictive statistical models for user modeling. User Model and User-Adapted Interaction 11, 5–18 (2001)

    Article  MATH  Google Scholar 

  23. Yoshida, K., Kato, T.: Database system for Kansei-oriented communication. Industrial Electronics Society. In: IECON 2000. 26th Annual Conference of the IEEE, Nagoya, Japan, vol. 3, pp. 1604–1607 (2000)

    Google Scholar 

  24. Chin, D.N.: Empirical Evaluation of user models and user-adapted systems. User Model and User-Adapted Interaction 11, 181–194 (2001)

    Article  MATH  Google Scholar 

  25. Lotfi, A.Z.: Applied Soft computing-foreword. Applied soft computing, 1–2 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, S., Wang, X. (2005). Emotion Semantics Image Retrieval: An Brief Overview. In: Tao, J., Tan, T., Picard, R.W. (eds) Affective Computing and Intelligent Interaction. ACII 2005. Lecture Notes in Computer Science, vol 3784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573548_63

Download citation

  • DOI: https://doi.org/10.1007/11573548_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29621-8

  • Online ISBN: 978-3-540-32273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics