
Principal Component Analysis for
Distributed Data Sets with Updating

Zheng-Jian Bai1,�, Raymond H. Chan1, and Franklin T. Luk2

1 Department of Mathematics, Chinese University of Hong Kong,
Shatin, NT, Hong Kong, China

{zjbai, rchan}@math.cuhk.edu.hk
2 Department of Computer Science, Rensselaer Polytechnic Institute, Troy,

New York 12180, USA
luk@cs.rpi.edu

Abstract. Identifying the patterns of large data sets is a key requirement in data
mining. A powerful technique for this purpose is the principal component analy-
sis (PCA). PCA-based clustering algorithms are effective when the data sets are
found in the same location. In applications where the large data sets are physi-
cally far apart, moving huge amounts of data to a single location can become an
impractical, or even impossible, task. A way around this problem was proposed
in [10], where truncated singular value decompositions (SVDs) are computed lo-
cally and used to reduce the communication costs. Unfortunately, truncated SVDs
introduce local approximation errors that could add up and would adversely af-
fect the accuracy of the final PCA. In this paper, we introduce a new method to
compute the PCA without incurring local approximation errors. In addition, we
consider the situation of updating the PCA when new data arrive at the various
locations.

1 Introduction

Effective clustering of large data sets is a major objective in data mining. Principal
component analysis (PCA) [4,5,9] offers a popular statistical technique to analyze mul-
tivariate data by constructing a concise data representation using the dominant eigen-
vectors of the data covariance matrix. PCA and PCA-based clustering methods play an
important role in various applications such as knowledge discovery from databases [2]
and remote sensing [8]; for more applications, see [7] and the references therein.

PCA is effective for high-dimensional data analysis when the data sets are collo-
cated. However, in present-day applications, the large data sets could be distributed
over a network of distant sites, and PCA-based algorithms may no longer be applicable
since these distributed data sets are often too large to send to a single location. There is
a growing interest in this topic of distributed data sets and here are some relevant works
in the literature: the interaction of huge data sets and the limits of computational fea-
sibility in Wegman [12], parallel methods for spectral decomposition of nonsymmetric
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matrix on distributed memory processors in Bai et al. [1], an efficient out-of-core SVD
algorithm in Rabani et al. [11], an algorithm for data distributed by blocks of columns
in Kargupta et al. [7], and a method for massive data sets distributed by blocks of rows
in Qu et al. [10].

In this paper, we consider the problem described in Qu et al. [10], where the au-
thors use truncated singular value decompositions (SVDs) in the distributed locations
to reduce communications costs. Their approach is very effective when the local data
matrices have low ranks and can be accurately approximated via a truncated SVD (note
that the savings may be nonexistent when the data matrices have high ranks). In addi-
tion, the small local approximation errors may add up substantially when the number of
locations is large. We will present a new algorithm for computing a global PCA of dis-
tributed data sets. In contrast to Qu’s approach [10], our method introduces no local ap-
proximation errors. At the central processor, Qu’s approach works with the approximate
covariance matrix while we work directly with the data matrix. Our technique will likely
require less communication as well. Suppose that there is an ni × p matrix of rank mi

at the ith local site for i = 1, . . . , s. While Qu’s approach [10] requires O(p
∑s

i=1 mi)
communication, our procedure uses O(p2�log2 s�) communication. When s is large, it
is probable that p

∑s
i=1 mi > p2�log2 s� as p � n. We also consider the important

problem of updating, for new data do arise all the time (for example, medical informa-
tion and banking transactions), and we develop a procedure for constructing a global
PCA for distributed data sets with data updating, by suitably combining the PCAs of
past data and the local PCAs of new data.

This paper is organized as follows. Section 2 contains a brief review of the basic
concepts. In Section 3 we present an algorithm for computing the global PCA of dis-
tributed data sets, and we include a numerical example to illustrate the advantages of
our method. In Section 4 we develop a technique for computing the global PCA of dis-
tributed data sets with updating. Load balancing for communications and computation
is discussed in Section 5, and Section 6 concludes the paper.

Remark 1. Throughout this paper, for simplicity, we assume that there is one processor
at each location and so we will use the two words location and processor interchange-
ably.

2 Principal Component Analysis

Let X be an n-by-p data matrix, where rows denote the observations and columns
denote the features with n � p. The data covariance matrix S is given by

nS = XT (I − 1
neneT

n )X, (1)

where
e� ≡ (1, 1, . . . , 1)T

denotes a vector of length �. The PCA of X is given by an eigenvalue decomposition
[3] of nS:

nS = V Σ2V T , (2)
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where
Σ2 = diag(σ2

1 , σ2
2 , . . . , σ2

p),

with
σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

p,

and V is an orthogonal matrix. Let

J ≡ I − 1
neneT

n .

As the matrix J is symmetric and idempotent, we may therefore compute a singular
value decomposition (SVD) [3] of the column-centered data matrix JX :

(I − 1
neneT

n )X = UΣV T . (3)

Therefore, it is not necessary to form the covariance matrix S explicitly. We save work
and improve accuracy by working directly with the data matrix X . The matrices Σ and
V we get in (3) are exactly the matrices we need in (2).

One application of the PCA is to reduce the dimensions of the given data matrix
X . To do so, let Ṽ denote the first m columns of V , corresponding to the m largest
eigenvalues of nS. The m principal components of X is given by the n-by-m matrix

X̃ = (I − 1
neneT

n )XṼ .

It is an optimal m-dimensional approximation of (I − 1
neneT

n )X in the least squares
sense [6]. The ratio ηm, given by

ηm ≡ (
m∑

i=1

σ2
i )/(

p∑

i=1

σ2
i ),

reflects the total variance of X̃ in the original data. If ηm ≈ 1 for some m � p, the n-
by-p transformed data matrix JX can be well represented by the much smaller n-by-m
matrix X̃ , which forms the crux of the approach described in Qu et al. [10].

3 Distributed PCA Without Updating

We start with the case of no updating. The global data matrix X is distributed among s
locations:

X =

⎛

⎜
⎜
⎜
⎝

X0

X1

...
Xs−1

⎞

⎟
⎟
⎟
⎠

,

where Xi is an ni-by-p matrix, and resides at Processor i, for 0 ≤ i < s. So,

n =
s−1∑

i=0

ni
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gives the number of rows in X . Let S be the covariance data matrix corresponding to
X as given in (1). If we are to form S explicitly, then we have to move Xi across the
processors, and the communication cost will be O(np). In [10], Qu et al. compute the
local PCA for each Xi using the SVD. They then send mi, where mi < p, singular
vectors to the central processor where an approximation of S is assembled, and its PCA
is computed. The communication cost of the method is thus O(p

∑s−1
i=0 mi). A draw-

back is that the local SVD will introduce approximation errors. In the following, we
give a method of finding PCA of X exactly using the QR decomposition. For simplic-
ity, we assume that s = 2� and that the global PCA is computed in location 0 (i.e.,
Processor 0).

Algorithm 1:

• At Processor i, for 0 ≤ i < s: Compute the column means of Xi, i.e.,

x̄T
i =

1
ni

eT
ni

Xi.

Form the column-centered data matrix

X̄i = (I − 1
ni

enie
T
ni

)Xi = Xi − eni x̄
T
i . (4)

Then compute its QR decomposition [3]:

X̄i = Q
(0)
i R

(0)
i , (5)

where R
(0)
i are upper triangular p-by-p matrices. Send ni and x̄T

i to Processor 0. If

i ≥ s/2, send R
(0)
i to Processor (i − s/2). There is no need to send any Q

(0)
i .

• At Processor i, for 0 ≤ i < s/2: Compute the QR decomposition of R
(0)
i and

R
(0)
i+s/2 by using Givens’ rotations:

(
R

(0)
i

R
(0)
i+s/2

)

= Q
(1)
i R

(1)
i , (6)

where R
(1)
i are p-by-p upper triangular matrices. If i ≥ s/4, send R

(1)
i to Processor

(i − s/4). Again, there is no need to send any Q
(1)
i .

• Continue until we reach Processor 0 after � = �log2 s� steps.

• At Processor 0: Compute the QR decomposition of R
(�−1)
0 and R

(�−1)
1 by using

Givens’ rotations: (
R

(�−1)
0

R
(�−1)
1

)

= Q
(�)
0 R

(�)
0 , (7)

where R
(�)
0 is an p-by-p upper triangular matrix. Form the following (s + p)-by-

p upper-trapezoidal matrix and compute its QR decomposition by Householder’s
reflections:
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⎛

⎜
⎜
⎜
⎜
⎜
⎝

√
n0(x̄0 − x̄)√
n1(x̄1 − x̄)

...√
ns−1(x̄s−1 − x̄)

R
(�)
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= QR. (8)

Here, R is an p-by-p upper triangular matrix and

x̄ ≡ 1
n

s−1∑

i=0

nix̄i

gives the column mean of X . The PCA of S can now be obtained by computing the
SVD of R:

R = UΣV T . (9)

Remark 2. Algorithm 1 works for an arbitrary s > 0 if we replace s by s+, where
s+ := 2�log2 s�. For s+ > s, the matrices {Xi}s+

i=s+1 are empty.

Lemma 1. The covariance matrix S as defined in (1) is given by:

nS = R
(�)
0

T
R

(�)
0 +

s−1∑

i=0

ni(x̄i − x̄)(x̄i − x̄)T = RT R. (10)

In particular, the PCA of S is given by the Σ and V computed in (9).

Proof. The last equality in (10) follow from (8). To prove the first equality, we note that

x̄T = 1
neT

nX.

Hence

(I − 1
neneT

n )X = (I − 1
neneT

n )

⎛

⎜
⎝

X0

...
Xs−1

⎞

⎟
⎠ =

⎛

⎜
⎝

X0 − en0 x̄
T

...
Xs−1 − ens−1 x̄

T

⎞

⎟
⎠

=

⎛

⎜
⎝

X0 − en0 x̄
T
0 + en0(x̄0 − x̄)T

...
Xs−1 − ens−1 x̄

T
1 + ens−1(x̄s−1 − x̄)T

⎞

⎟
⎠ =

⎛

⎜
⎝

X̄0 + en0(x̄0 − x̄)T

...
X̄s−1 + ens−1(x̄s−1 − x̄)T

⎞

⎟
⎠ ,

where the last equality follows from the definition in (4). By (4), we see that the column
sums of X̄i are all zero, i.e.,

eT
ni

X̄i = 0,

for 0 ≤ i < s. Hence

nS =
(
X̄T

0 + (x̄0 − x̄)eT
n0

| · · · | X̄T
s−1 + (x̄s−1 − x̄)eT

ns−1

)

⎛

⎜
⎝

X̄0 + en0(x̄0 − x̄)T

...
X̄s−1 + ens−1(x̄s−1 − x̄)T

⎞

⎟
⎠

=
s−1∑

i=0

X̄T
i X̄i +

s−1∑

i=0

ni(x̄i − x̄)(x̄i − x̄)T . (11)
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Using (5)–(7), we have

s−1�

i=0

X̄T
i X̄i =

s−1�

i=0

R
(0)
i

T
R

(0)
i =

s/2−1�

i=0

R
(1)
i

T
R

(1)
i = · · · =

1�

i=0

R
(�−1)
i

T
R

(�−1)
i = R

(�)
0

T
R

(�)
0 .

Put this in (11) and we get (10).
To get the first m principal components of X , we broadcast x̄ and Ṽ (the first m

columns of V ) to every processor. Then the m principal components of X are given by
the matrix X̃:

X̃ = (I − 1
neneT

n )XṼ = (X − enx̄T )Ṽ . (12)

In particular, at Processor i, we have the ni-by-m approximation X̃i:

X̃i = (Xi − eni x̄
T )Ṽ ,

for 0 ≤ i < s. Regarding the communication costs, note that there are �log2 s� steps
in the algorithm. In step j, we need to move a total number (=s/2j) of p-by-p upper

triangular matrices R
(j)
i . Hence the communication cost is O(p2�log2 s�). We state

once more that the PCA (i.e., Σ and V ) we obtain is exact.
We ran some numerical experiments on synthetic data using MATLAB 7.0.1. They

simulated the scenario of distributed data sets to assess computational accuracy and
communication costs. Execution times are not provided since they are not meaningful
in simulations (cf. [10]).

Example (Synthetic data). The data X are generated as follows (cf. [10]). Let

X = GET + N,

where the n-by-d data matrix G is a d-dimensional Gaussian data, i.e., its entries are
identical, independently distributed (iid) as N (0, 1) (normal distribution with mean 0
and variance 1), E is a p-by-d matrix with 1’s on the diagonal and zeros elsewhere, and
N is a p-dimensional Gaussian noise whose entries are iid as N (0, σ2). We partition
the data X among s processors evenly. If the modulus r after n divided by s is not zero,
let the first r processors contain 
n/s�+ 1 observations.

We took n = 6, 000, p = 20, d = 2, and σ = 0.2, and we set the local and global
PC selection thresholds to be

√
0.8 and 0.8, respectively. To further characterize the

data X , we plot the eigenvalue distribution of the theoretical covariance matrix with
these parameters in Figure 1. Ten simulations were run using the distributed principal
component algorithm (DPCA) proposed by Qu et al. [10] (Method a) and our algorithm
(Method b) for various values of s. In Table 1, we report the means and standard devia-
tions (sd) of the quantities given as follows.

Tae =
Ta

Te
, Tbe =

Tb

Te
and Tba =

Tbe

Tae
,

where Ta = (
∑s−1

i=0 mi)(p + 1) + s(p + 3) with mi being the number of PCs selected
from the ith processor, Tb = 1

2p(p + 1)� + s(p + 1) and Te = np. The quantities Tae

and Tbe provide the ratios of the communication costs.
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da =
‖(I − n−1eneT

n )(X̂ − X)‖2

‖(I − n−1eneT
n )X‖2

,

db =
‖(I − n−1eneT

n )(X̄ − X)‖2

‖(I − n−1eneT
n )X‖2

and

dba =
db

da
,

where X̂ is the dimension reduced data obtained by the DPCA [10] and X̄ = X̃Ṽ T .
Here, X̃ is defined in (12) where m is the number of global PCs which is obtained
based on the global PC selection threshold. da and db are the relative error between
the original data X and the data approximated by Methods a and b, respectively. From
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Fig. 1. Eigenvalue distribution of covariance matrix for synthetic data

Table 1. Numerical results for synthetic data

s 1 4 8 16 32 64 128
Tae mean .0025 .0092 .0182 .0348 .0653 .1193 .2065

sd .0000 .0001 .0001 .0004 .0008 .0011 .0017
Tbe mean .0002 .0042 .0067 .0098 .0143 .0217 .0347

sd 0 .0000 .0000 .0000 .0000 0 .0000
Tba mean .0709 .4556 .3645 .2814 .2197 .1819 .1678

sd 0 .0041 .0025 .0036 .0028 .0016 .0014
da mean .2054 .2030 .2025 .2042 .2043 .2049 .2044

sd .0017 .0025 .0018 .0024 .0021 .0016 .0015
db mean .1993 .1976 .1979 .1988 .1988 .1992 .1988

sd .0014 .0018 .0014 .0021 .0021 .0012 .0016
dba mean .9703 .9737 .9778 .9738 .9731 .9726 .9725

sd .0042 .0063 .0061 .0066 .0033 .0042 .0034
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Fig. 3. Comparison of data approximate error for synthetic data

Table 1 and Figures 2 and 3, we see that our method behaves better than the DPCA in
terms of both communication costs and data approximation errors.

4 Distributed PCA with Updating

In this section, we develop an algorithm for computing the PCA when new data arise
in the s locations. We assume that the initial time t0 = 0. In our algorithm, we use a
global synchronization to keep track of the updating and the evaluation of the PCA for
the global data matrix. More precisely, we fix the time instants t1, t2, . . ., when updating
is stopped and the evaluation of PCA for the global data commences.
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In particular, let X
(k)
i denote the block of data of size n

(k)
i -by-p added to Processor

i between tk−1 < t ≤ tk where k ≥ 1. The updated matrix for this time interval is
denoted by

Xn(k) =

⎛

⎜
⎜
⎜
⎜
⎝

X
(k)
0

X
(k)
1
...

X
(k)
s−1

⎞

⎟
⎟
⎟
⎟
⎠

,

where n(k) =
∑s−1

i=0 n
(k)
i is the number of rows in Xn(k) . We will use Xn(0) to denote

the data matrix already present at the processors at time t0 = 0. For k ≥ 0, let

x̄T
n(k) = 1

n(k) e
T
n(k)Xn(k) (13)

denote the column means of Xn(k) . The p-by-p covariance matrix Sk corresponding to
Xn(k) is given by

n(k)Sk = XT
n(k)(I − 1

n(k) en(k)eT
n(k))Xn(k) . (14)

We note that for each k ≥ 0, the PCA of Sk can be obtained by Algorithm 1 in Section 3.
We want to compute the PCA of the global data matrix collected from t0 = 0 up to

tk, k ≥ 0. Let Xg(k) denote this global data matrix

Xg(k) =

⎛

⎜
⎜
⎜
⎝

Xn(0)

Xn(1)

...
Xn(k)

⎞

⎟
⎟
⎟
⎠

, (15)

where g(k) =
∑k

j=0 n(j) is the number of rows in Xg(k). We emphasize that the data

blocks {X(j)
i }s−1

i=0 always reside on their respective processors and will not be moved.
The p-by-p covariance matrix Sk corresponding to Xg(k) is given by

g(k)Sk = X
T
g(k)(I − 1

g(k)eg(k)eT
g(k))Xg(k). (16)

We now show that Sk can be obtained from the covariance matrices Sj of {Xn(j)}k
j=0.

Theorem 1. For any positive integer k,

g(k)Sk =
k∑

j=0

n(j)Sj +
k∑

j=1

g(j − 1)n(j)

g(j)
(
x̄g(j−1) − x̄n(j)

) (
x̄g(j−1) − x̄n(j)

)T
,

(17)
where Sj and x̄n(j) are given by (14) and (13) respectively, and

x̄T
g(k) = 1

g(k)e
T
g(k)Xg(k), (18)

is the column mean of Xg(k), which can be obtained by x̄g(k) = 1
g(k)

∑k
j=0 n(j)x̄n(j) .
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Proof. We use induction to prove the lemma. For k = 0, the equation (17) is obviously
true. Let us assume that it is also true for k − 1. We first write

I − 1
g(k)eg(k)eT

g(k) =
(

I − 1
g(k−1)eg(k−1)eT

g(k−1) 0
0 I − 1

n(k) en(k)eT
n(k)

)

+

(
[ 1
g(k−1) − 1

g(k) ]eg(k−1)eT
g(k−1) − 1

g(k)eg(k−1)eT
n(k)

− 1
g(k)en(k)eT

g(k−1) [ 1
n(k) − 1

g(k) ]en(k)eT
n(k)

)

≡ Ek + Fk.

For Ek, using (14) and (16), we have

X
T
g(k)EkXg(k) =

(
Xg(k−1)

Xn(k)

)T

Ek

(
Xg(k−1)

Xn(k)

)

= g(k − 1)Sk−1 + n(k)Sk. (19)

For Fk, using (13) and (18), we have

X
T
g(k)FkXg(k)

=
1

g(k)

(
Xg(k−1)

Xn(k)

)T
(

n(k)

g(k−1)eg(k−1)eT
g(k−1) −eg(k−1)eT

n(k)

−en(k)eT
g(k−1)

g(k−1)
n(k) en(k)eT

n(k)

)(
Xg(k−1)

Xn(k)

)

=
1

g(k)

(
Xg(k−1)

Xn(k)

)T
(

n(k)eg(k−1)x̄T
g(k−1) − n(k)eg(k−1)x̄T

n(k)

−g(k − 1)en(k) x̄T
g(k−1) + g(k − 1)en(k) x̄T

n(k)

)

=
g(k − 1)n(k)

g(k)

{
x̄g(k−1)x̄T

g(k−1) − x̄g(k−1)x̄T
n(k) − x̄n(k) x̄T

g(k−1) + x̄n(k) x̄T
n(k)

}

=
g(k − 1)n(k)

g(k)
(x̄g(k−1) − x̄n(k))(x̄g(k−1) − x̄n(k))T . (20)

Adding (19) and (20), and invoking the induction hypothesis, we get (17).
For each update matrix Xn(j) , by Algorithm 1 and (10), its covariance matrix Sj is

given by
n(j)Sj = RT

n(j)Rn(j) ,

where Rn(j) is p-by-p upper triangular. Hence by (17),

g(k)Sk =
k∑

j=0

RT
n(j)Rn(j) +

k∑

j=1

g(j − 1)n(j)

g(j)
(x̄g(j−1) − x̄n(j) )(x̄g(j−1) − x̄n(j) )T .

(21)
Let Rg(0) = Rn(0) . Using Householder’s reflections, we can recursively obtain the QR
decomposition of the following (2p + 1)-by-p matrix:

⎛

⎜
⎝

Rg(k−1)√
g(k−1)n(k)

g(k) (x̄g(k−1) − x̄n(k))
Rn(k)

⎞

⎟
⎠ = Qg(k)Rg(k), (22)
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where k ≥ 1 and Rg(k) is an p-by-p upper triangular matrix. It is easy to check from
(21) that

g(k)Sk = R
T
g(k)Rg(k).

Hence the PCA of Sk can be obtained by computing the SVD of Rg(k):

Rg(k) = UΣV
T ,

where Σ and V are p-by-p matrices. To get the first m principal components of the
global data matrix Xg(k), we broadcast x̄g(k) and Ṽ (the first m columns of V) to every
processor. Then the m principal components of Xg(k) are given by the matrix X̃g(k):

X̃g(k) = (I − 1
g(k)eg(k)eT

g(k))Xg(k)Ṽ = (Xg(k) − eg(k)x̄T
g(k))Ṽ.

From (21), we see that the PCA of the global data matrix Xg(k) at time tk can be
obtained from the R factors Rn(j) of the updated matrices Sj , for j = 0, . . . , k. These
R factors can be computed in turn by Algorithm 1 as in (8). Once these factors are
computed, they can be assembled at a particular processor to form Rg(k) as in (22)
and then the PCA of Sk can be computed. One potential problem is that it may create
bottlenecks at certain processors if the assembling are not scheduled correctly.

5 Load Balancing

In this section, we give a procedure such that the loads among the processors will be
balanced provided that the size of the data blocks are more or less the same on each
processor. For notational simplicity, we will denote the set of all R factors of X̄n(k) by
{R(0)

n(k)} (see (4) and (5)), and the subsequent set of R factors of {R(i)

n(k)} by {R(i+1)

n(k) }
(see (6) and (7)). We illustrate the main idea with s = 8. Figure 4 gives the flowchart
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of our algorithm when s = 8, i.e. � = log2 s = 3. In the figure, each time interval
(tj−1, tj ] is divided into two phases: the computation phase where the QR decomposi-
tion are done, and the communication phase where the R factors are moved across the
processors.

For example, in (t0, t1], we first compute all the R factors {R(0)

n(0)} of X̄n(0) using
Algorithm 1 (marked in the figure by X−�R). There are 8 of them. Then during the
communication phase, half of them will be sent to Processor i, i < s/2 = 4, according
to Algorithm 1 (marked by the solid arrows in the figure). Then in (t1, t2], we compute

all the R factors {R(0)

n(1)} of X̄n(1) (marked by X−�R), and the R factors {R(1)

n(0)} of

{R(0)

n(0)} (marked by R−�R). Half of these R factors will be moved during the com-

munication phase. However, in order to achieve load balancing, the factors {R(0)

n(1)}
should not be moved according to Algorithm 1 again, but according to the figure, i.e. to
Processors 2, 3, 4, and 5 (marked by dashed arrows in the figure).

Continuing in this manner, we see that the R factor Rn(0) of the covariance matrix
S0 will be formed at Processor 0. (Recall that Rn(0) = Rg(0) and S0 = S0.) Also Rn(1)

and Rn(2) will be formed at Processors 4 and 6 respectively (see the marked circles).
Once Rn(k) are formed, they can be combined with previously obtained Rg(k−1) to form
Rg(k) by using (22), provided that Rg(k−1) are sent there from the previous time-step
(marked by curve arrows in the figure).

In this procedure, we assume that once Rn(k) is formed at time step tk+�, it will be
merged with Rg(k−1) to form Rg(k), see the circled-R in Figure 4. However, one can
also send all these Rn(k) to a central processor, where all the Rg(k) are formed. The
nice thing about this alternate approach is that if for some reasons, Rn(k) arrive to the
central processor before Rn(j) , for some j < k, then we can still form the Rg(k) at the
central processor without waiting for Rn(j) . Of course, Rg(k) so formed is the R factors
of Xg(k) without the update block Xn(j) , i.e. it is equivalent to Xn(j) = O in (15). When
Rn(j) arrives at a later time, we can do the updating of Rg(k) first, and then include the
contribution of Xn(j) .

6 Conclusions

In this paper, we propose a new algorithm for finding the global PCA of distributed
data sets. Our method works directly with the data matrices and has a communications
requirement of only O(p2�log2 s�), (i.e., independent of n, the number of observations,
which is very large). As compared against the DPCA algorithm [10], our algorithm
introduces no local PCA approximation errors. We also consider data updating, and we
present a method for computing the PCA for the new extended data sets after new data
are added.
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