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Abstract. This paper reports on the design of an auction mechanism for allo-
cating multiple goods when the buyers have interdependent valuations. We cast
the problem as a multi-agent system consisting of selfish, rational agents and
develop an auction mechanism which is efficient, incentive compatible and indi-
vidually rational. We first discuss the necessary assumptions that any mechanism
developed for this scenario should satisfy so as to achieve the aforementioned
properties. We then present our mechanism and show how it is a generalisation
of the Vickrey-Clarke-Groves mechanism.

1 Introduction

Auction mechanisms have been proposed as a solution for a variety of task and resource
allocation problems that occur in multi-agent systems (MAS) [2, 11, 13]. A common
requirement of these systems is that agents of limited complexity can participate fairly
without the risk of being exploited by more complex agents indulging in strategic be-
haviour. As such, direct mechanisms which are incentive compatible are most often
considered, as under these mechanisms, the equilibrium strategy of all agents is simply
to truthfully report their type to the auctioneer 1. Of these mechanisms, the Vickrey-
Clarke-Groves (VCG) mechanism is the most widely studied because in addition to the
above properties, it ensures that the resulting allocation is efficient (i.e. it maximises the
global welfare) and that the mechanism is individually-rational (i.e. it guarantees any
agent joining the mechanism derives a non-negative utility) [5].

However, a key shortcoming of the VCG mechanism is that it relies on private inde-
pendent valuations to achieve these desirable properties. Such private valuations arise
when an agent forms its valuation of the goods or services based solely on its own ob-
servation or signal (e.g. the value of a particular car to an agent depends solely on the
agent’s own perception of the car’s use and is not dependent on the valuations of other
bidders). However, the more general case is that valuations are actually interdependent
(e.g. if the agents’ valuations were to consider not only the car’s use, but also the po-
tential re-sale value of the car in the future, the valuation would clearly be dependent

1 The revelation principle, which states that any mechanism can be transformed into an incen-
tive compatible and direct revelation mechanism (ICDRM), thereby guarantees that if a more
complex mechanism achieves some desirable properties then there is a corresponding ICDRM
that can also achieve them.



on the valuations of other bidders). Now, in auctions with interdependent valuations,
the desirable properties of the VCG mechanism no longer hold and the auction is not
guaranteed to be efficient.

Interdependent valuations occur most commonly within multi-agent systems when
agents have noisy or uncertain estimates of the true value of a good. For example, con-
sider the case of agents bidding for a service in some form of computational economy
(as is found, with web services or grid computing). In such cases, the value of a service
to an agent is often dependent on the time of response between submitting a request
and receiving the desired service. However, in many such cases, the dynamic and open
nature of most of these systems means that each agent is only likely to have limited
previous experience of a given service and thus it will only have an imprecise estimate
of its expected response time. Now if the agent knew the response time of other agents
who have used this service (e.g. by asking them about their previous experience or by
deducing it from their bidding behaviour), it would be able to form a more accurate
estimate of the future response time (by cross-correlating from a broader set of expe-
riences). Hence each agent’s valuation is dependent on the signals (in this case, the
response time) observed by the other agents bidding for the service and thus we again
have interdependent valuations.

Another instance where interdependent valuations have been documented is in the
FCC spectrum auctions [3] where it was found that bidders formed their valuations
based around the beliefs and actions of other bidders. In these auctions, each bidder
wanted to infer from the bidding actions of the other bidders how much they valued
the spectrum licenses that were being offered. Thus, whilst each bidder had carried out
independent research to gauge the market profitability of these spectrum licenses (i.e.
how much money can an agent potentially make by using the license if it wins it), they
wanted to use the information gained by the other bidders as well.

To overcome the independent valuation limitation, a number of researchers have
developed efficient auctions for interdependent valuation scenarios where a single item
is allocated (see section 2 for more details). However, in this work we are interested
in the case of multiple items being allocated (i.e where agents may be interested in
combinations of items such as a bundle of services). This extension also allows us to
consider the important case of combinatorial allocations. These allocations deal with
items exhibiting complementarities and substitutabilities and are shown to be more effi-
cient than multiple concurrent auctions of single goods [11, 13]. Such allocations occur
in many real world scenarios such as the grid services and FCC spectrum auction.

To this end, we develop a novel direct mechanism that can allocate multiple items
in an interdependent valuation scenario where each agent receives a single-dimensional
signal (for example, a time of response in the computational economy or market prof-
itability in the case of the FCC spectrum). We restrict our attention to single-dimensional
signals because in an interdependent valuation scenario it is not possible to develop an
efficient auction for multi-dimensional signals [6]2. Moreover, the single-dimensionality
of the signal is not overly restrictive because in many cases the necessary information

2 However, Mezzetti [8] shows that if we adopt a two-stage approach to the auction design, we
can then achieve efficiency and incentive-compatibility.



can be encompassed into a representative single-dimensional signal. In developing this
mechanism, we advance the state of the art in the following ways:

1. We extend the standard VCG mechanism to deal with interdependent valuations in
the case of multiple goods in which agents receive a single-dimensional signal.

2. We show that our mechanism is general and demonstrate that it reduces to the VCG
mechanism for multiple goods in the case of private values.

3. We prove the economic properties of our mechanism. In particular, we show that
it is incentive-compatible, individually rational and efficient. We also analyse its
computational properties and show that the mechanism does not impose any addi-
tional computational load on the agents, but does so in the case of the centre (as
compared to an independent valuation scenario).

The remainder of the paper is organized as follows: section 2 presents related work.
Section 3 then develops our auction mechanism for the interdependent valuation sce-
nario. We then provide an explanatory example that highlights how the mechanism
works in section 4. In section 5 we prove the economic and computational properties of
the mechanism. Finally, we conclude and suggest areas of future work in section 6.

2 Related Work

The VCG mechanism and its various extensions have been used in a variety of resource
and task allocation scenarios that occur in MAS [11, 13, 7, 5]. However, in these scenar-
ios, work has invariably concentrated on private valuation situations. Specifically, in the
case where an agent observes a single-dimensional signal about the objects it wishes to
bid on and this signal determines its valuation. This single-dimensional signal is often
referred to as the type of the agent.

Recently, however, a number of researchers have started to consider interdependent
auctions [7, 4, 6]. In particular, there are currently two main approaches to finding an
efficient mechanism for the allocation of items with interdependent valuations. Krishna
considers a direct mechanism for efficient allocations for multi-unit single items with
single-dimensional signals [7]. In this case, agents submit their interdependent valu-
ation functions, as well as their signals, to a central auctioneer who then decides on
the efficient allocation. The payment scheme was then devised so that the agents are
incentivised to reveal their signals truthfully.

On the other hand, Dasgupta and Maskin developed an indirect efficient mechanism
for the case of two non-identical items, again with single-dimensional signals [4]. In
their case, agents make contingent bids rather than submitting their valuation functions
and observed signals (i.e. agent 1 submits a range of bids which describes its bid when
agent 2 bids a particular value and vice versa). Thus the bidding is more complex than
in Krishna’s mechanism because the agents have to submit bids based on what other
agents might bid, rather than just revealing their valuation function and signals. This
bidding becomes even more complex in the indirect mechanism they have developed
for the case where multiple items need to be allocated.

Given this, in this paper, we adopt the approach by Krishna, since the bidding is
more straightforward for the agents. Specifically we develop a direct mechanism in



order to deal with the allocation of multiple items where each agent receives a single-
dimensional signal. A naive extension of the VCG mechanism is known not to work
in this case [7] and given this we show how to change the payment scheme in order to
achieve the desirable economic properties of the VCG. We should note here that we do
not concern ourselves with the problem of multi-dimensionality of these signals since
it is known that allowing for multi-dimensionality of signals leads to inefficient alloca-
tions [6] in direct mechanisms. If the agents can observe the outcome of their reports,
then an efficient allocation with multi-dimensional types is possible [8]. However, we
believe that this is impractical in many cases because an agent might not be able to
observe the outcome from a report (see [8] for an example). Thus, in this paper we
consider direct mechanism where the agents can report on their types only once.

3 The Multiple Good Interdependent Mechanism

In this section, we extend Krishna’s approach to develop a mechanism that is incentive-
compatible, efficient and individually-rational for the case of multiple goods with single-
dimensional signals. In this scenario, there is a set of agents I. Each agent i, i ∈ I,
observes a signal xi ∈ �+ and forms its valuation vi(.) based on the vector of sig-
nals x = [x1, . . . , xI ] (where each element in the vector is observed by one agent and
is correspondingly indexed) and the particular allocation f ∈ F being implemented
(F denotes the set of all possible allocations). Thus, vi : �|I|

+ × F → �+. For ease
of presentation, we shall denote the set I \ i as −i. Furthermore, we shall at times
denote vi(f,x) as vi(.). Our mechanism, (M, r), then consists of an allocation rule

M : �|I|
+ → F which chooses the allocations and a payment rule r : � |I|

+ → �|I|
+

which determines the payments ri to each agent, both being based on the reports of
the signal values x. Finally, we shall denote allocations induced by the true report of
xi (x−i being truthful) as f ∗

0 . As xi is decreased, it is quite natural to expect that the
allocation which is deemed efficient will change because the valuations of each allo-
cation by the agents would also change. These allocations will be denoted by f ∗

l with
l being the index of each successive induced allocation as x i is decreased. Mirroring
this, as xi is increased, the successive efficient allocations are denoted by f ∗

−l. Now,
before presenting our mechanism, we shall discuss the assumptions that are critical for
the auctions to be efficient.

Assumption 1 ∂vi

∂xj
> 0 ∀i, j ∈ I

This implies that higher values of the signal lead to higher valuations for the agent.
This restricts the signal of the agent to vary in one direction only, thereby making it
impossible for an agent to have the same valuation of an allocation for two different
signal values. For example, in the case of a computational economy, this would
imply that the valuation always increases with rapidity of service (which is x i).

Assumption 2 ∂vi

∂xi
>

∂vj

∂xi
∀i, j ∈ I, i �= j.

This implies that an agent’s signal affects its own valuation more than it affects
the valuation of any other agent. This assumption is the single-crossing condition



analogue in the interdependent scenario [7, 9]. Without this condition, no efficient
mechanism can exist. In the case of a computational economy, this implies that the
agent puts more credence on the rapidity of service it measured as opposed to the
one observed by other agents.

Assumption 3 ∂vi

∂xi
(., f∗

p ) ≥ ∂vi

∂xi
(., f∗

q ) if p < q

This implies that if a higher value of xi induces an allocation f ∗
p , then agent i’s value

changes more rapidly in this new allocation than in the previous allocation f ∗
q . This

implies that on receiving a higher xi, the centre allocates a set of goods to i in the
new allocation f ∗

p where i’s valuation changes more rapidly, than in the previous
set f∗

p+1. To better explain this assumption, consider a situation where there are two
services to be allocated and an agent has a complementary valuation of those ser-
vices. Suppose that the agent is allocated a particular service when x i = α. Now,
if xi is increased, there will come a point xi = β > α when it will be efficient
to allocate both services to the agent (since from assumption 2, its valuations will
increase more rapidly than that of other agents). This assumption then implies that
the rate of change of the valuation with respect to x i is greater in this new allocation
than in the previous one. Consider, for example, two agents bidding for two services
being in a grid service economy. Then suppose that as x i is increased, it first be-
comes more efficient to allocate one good (denote this allocation as f ∗−1) and then
both goods to agent i (denote this allocation as f ∗

−2). Then this assumption implies
that ∂vi

∂xi
(xi, x−i, f

∗−2) ≥ ∂vi

∂xi
(xi, x−i, f

∗−1) i.e. agent i’s valuation increases more
rapidly with xi when it is allocated both goods rather than only one.

Given these assumptions, our mechanism then proceeds as follows:

1. Each agent i transmits to the centre its valuation function v i(f, x) for all the possible
allocations f ∈ F . This function is also over all possible values of x

2. Each agent i also transmits its observed signal x̂i. 3

3. The centre then computes the optimal allocation f ∗
0 which is calculated as:

f∗
0 = argmax

f∈F
(∑

i∈I
vi(f, x̂)

)
(1)

4. The centre also calculates the payment ri made by each agent i. To do this, the
centre first finds the m next best allocations as the reported signal x̂ i is decreased
successively, until the presence of i makes no difference to the allocations. That is,
find allocations f ∗

1 . . . f∗
m and the signal values z l

i such that:

zl
i = inf

{
yi :

∑
i∈I

vi(f∗
l , yi,x−i) =

∑
i∈I

vi(f∗
l+1, yi,x−i)

}
(2)

(where each allocation f ∗
l is different) until:

zm
i = inf

{
yi :

∑
i∈I

vi(f∗
m−1, yi,x−i) =

∑
i∈I

vi(f∗
m, yi,x−i)

}
(3)

3 Of course, x̂i may not be equal to xi. However, we prove in section 5 that it is a best strategy
for the agent to set x̂i = xi.



where the allocation f ∗
m is the optimal allocation when i does not exist i.e.

f∗
m = argmax

f∈F

∑
j∈−i

vj(f,x)

Then the transfer 4 to buyer i is:

ri =
m−1∑
l=0

[ ∑
j∈−i

vj(f∗
l , zl

i,x−i) −
∑
j∈−i

vj(f∗
l+1, z

l
i,x−i)

]
(4)

The above scheme rests upon making an agent derive a utility equal to the marginal
contribution that its presence makes to the whole system of agents (which is the same
intuition as used in the VCG). Thus the additional part of this mechanism is to take into
account the effect that an agent’s signal xi has on the overall utility of the system.

This mechanism is general and is shown (below) to reduce to the well-known multiple-
good private value model if we take the case of independent valuations i.e when v i(x, .) =
vi(xi). Then the optimal allocation (from equation 1) is:

f∗
o = arg max

f∈F
(∑

i∈I
vi(f, x̂i)

)

To calculate the payment scheme, we first note that with independent valuations x i only
affects vi(.). Thus repeatedly decreasing xi, until the stopping condition on equation 3,
does not change the valuation of the other agents −i on the different allocations. This
then implies that in the payment (as computed by equation 4) all the terms cancel each
other, except for the first and last, leading to a payment of:

ri =
∑

j∈I\i

vj(f∗
0 , x̂j) −

∑
j∈I\i

vj(f∗
m, x̂j) (5)

This is exactly the payment scheme for the multiple-good private values model. Thus,
this shows that the classical VCG mechanism is an instance of the generalised mecha-
nism developed here. Furthermore, notice that assumption 2 is automatically satisfied
in this independent valuation scenario, since ∂vj

∂xi
= 0 in such a scenario. Also, since an

increase in xi would only increase vi(., xi), any increase in xi that induces a new allo-
cation would imply that the rate of change of v i(., xi) with respect to xi is higher in the
new allocation than in the previous allocation. Thus, assumption 3 is also automatically
satisfied in the independent valuation scenario.

4 Example of an Interdependent Valuation Scenario
In order to better explain how the mechanism operates to achieve efficiency and incentive-
compatibility, in this section, we present an example that demonstrates how it computes
the efficient allocation and the payments. We will also consider the assumptions which
we made in section 3 and show how the mechanism fails when these do not hold.

We consider a very simple case, namely that with two agents 1 and 2 bidding for
two different spectrum licenses A and B. The set of possible allocations consists of

4 If the transfer is negative it implies that buyer i pays to the centre.



four members, which are F = {(AB, ∅), (A, B), (B, A), (∅, AB)}. In this case, each
agent perceives a particular signal xi that determines the market profitability of the
spectrum licenses. Table 1 shows the valuations of player 1 and 2 for each allocation as
well as the sum of their valuations.

Table 1. Valuations of the players with each allocation

Allocation v1(f,x) v2(f,x) vI(f,x)

(AB,∅) 4x1 + 2x2 0 4x1 + 2x2

(A,B) 2x1 + x2 x1 + 2x2 3x1 + 3x2

(B, A) x1 + x2 0.5x1 + 2x2 1.5x1 + 3x2

(∅, AB) 0 x1 + 4x2 x1 + 4x2

We shall now consider how agent 1 views the mechanism as it reports its signal x1.
The explanation for agent 2 is the same and is therefore omitted. Figure 1 shows how
the value of each allocation varies for agents 1, 2 and the set of agents I, as agent 1’s
reported signal x1 is increased. We denote agent 1 by i and agent 2 by−i to demonstrate
how this works in cases of more than two agents. Suppose that agent 1 has observed
x1 = 1.5 and agent 2 has observed a value of x2 = 2. Then from the figure, we
see that the efficient allocation in this case is f ∗

0 = (A, B) (the efficient allocation
is the one that maximises the value of I). Furthermore, the values of x i at which it
becomes more efficient to implement allocations f ∗

1 = (∅, AB) and f ∗−1 = (AB, ∅)
are z0

i = 1 and z−1
i = 2 respectively (shown in figure 1). Hence we can calculate the

overall utility that agent 1 derives from reporting truthfully, which from equation 4, is
vi(f∗

0 ,x) + v−i(f∗
0 , z0

i x−i) − v−i(f∗
1 , z0

i x−i) = 5 + 5 − 9 = 1. Now, any report in
the range 1 ≤ xi ≤ 2 will induce the same allocation and transfer and thus agent 1
has no incentive to report xi in this range different from the truthful value. If agent
1 reports xi > 2, it will then derive a utility of vi(f∗−1,x) + v−i(f∗−1, z

−1
i x−i) −

v−i(f∗
0 , z−1

i x−i)+ v−i(f∗
0 , z0

i x−i)− v−i(f∗
1 , z0

i x−i) = 10+0−6+5−9 = 0, which
is less than what it would derive from truthful reporting. Thus agent 1 would not over-
report its observed value. The reason why this occurs is because, as shown in figure 1,
vi(f∗

−1,x) − vi(f∗
0 ,x) is always less than v−i(f∗

0 , z−1
i x−i) − v−i(f∗

1 , z−1
i x−i) when

the true value of xi is in the range 1 ≤ xi ≤ 2. If, on the other hand, the agent reports
xi < 1, it would then derive a utility of vi(f∗

1 ,x) = 0 which is again less than what it
would derive from truthful reporting. We have thus demonstrated how an agent finds it
in its best interest to report truthfully (see section 5 for a more general proof).

The mechanism is guaranteed to work in the above example because the valuations
satisfy the assumptions presented in section 3. We will now show how this mechanism
would fail if ever, one of these assumptions does not hold.

In order to show what happens when assumption 1 fails, consider only the single
good A. Suppose that agent 1 has a valuation of (x1 − 2)2 + x2 for good A and agent 2
still has the same valuation of 0.5x1+2x2. Then the auctioneer in this case has to decide
only between two allocations, namely F = {(A, ∅), (∅, A)}. With these valuations, it
is efficient to allocate good A to agent 2 when 2.25 − √[

(2.25)2 − (4 − x2)
] ≤ x1 ≤

2.25 +
√[

(2.25)2 − (4 − x2)
]
. If x1 ≤ 2.25−√[

(2.25)2 − (4 − x2)
]

agent 1 obtains
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Fig. 1. Valuations of 1, 2 and I for each bundle as x1 is increased

the good and pays 2x2 according to equation 4. If x1 ≥ 2.25−√[
(2.25)2 − (4− x2)

]
,

then agent 1 again obtains good A, but this time, it pays 6 (again using equation 4).
Thus, it is always in the interest of agent 1 to state that its signal is in the lower range if
its signal happens to occur in either of these ranges. Although assumption 1 may seem
to be required only for our mechanism to work, this is not so, as it is required for any
efficient, incentive-compatible mechanism [9].

Now consider that the valuations of the good A are such that v 1((A, ∅),x) = 2x1+
x2 and v2((∅, A),x) = 3x1 +x2−6 (thus assumption 2 is not satisfied). In this case, it
is efficient to allocate A to agent 1 when x1 < 6 and to agent 2 otherwise. However, it
is not possible to achieve an efficient mechanism in this case, since agent 1 will always
state x1 < 6 no matter what the real value of x1 is. In the case of our mechanism, agent
1 pays x2 − 6 if it allocated the good. Since v1(A, ∅) is always higher than this, agent
1 will thus lie and always state a value of x1 < 6. This problem can again be shown
to extend to be symptomatic of any mechanism rather than our mechanism [4]. Notice
that with the original valuations in table 4, such a situation would not arise.

We next consider valuations that break assumption 3. Here the valuations of agents
1 and 2 for the allocation f = (AB, ∅) are v ′

1((AB, ∅),x) = 0.5x1 + 2x2 and
v′2((AB, ∅),x) = 3.5x1 as shown in figure 25. Since vI remains the same for all
the allocations, then z−1

i is still the same as shown in figure 2. Using these modified
valuations, agent 1 derives a higher utility of 1.75 (using equation 4 and the valua-

5 Of course, in practice, agent 2 having a valuation for nothing is highly unlikely to occur.
However, we need to use this particular valuation in this case due to the simplicity of our
example in order to demonstrate what happens when one of the assumptions fails.
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Fig. 2. Modified valuations of 1, 2 and I for allocations (AB, ∅) and (A,B) as x1 is increased

tion function) if it reports xi > 2 thereby leading to the mechanism no longer being
incentive-compatible. The reason this occurs is because if assumption 3 is broken we
then have that vi(f∗

−1,x)−vi(f∗
0 ,x) > v−i(f∗

−1, z
−1
i x−i)−v−i(f∗

0 , z−1
i x−i) as shown

in figure 2. As a result, the agent has an incentive to lie and quote a higher value than
z−1

i . Notice that this did not occur with the original valuations. Again this assumption
is required in order to find an efficient, incentive-compatible mechanism and is thus not
idiosyncratic to our mechanism [4].

Having thus illustrated the working of our mechanism and the necessity of the as-
sumptions via the use of an example, we now turn to formally proving the properties of
our mechanism.

5 Properties of the Mechanism

We next prove the properties of our mechanism. We first consider the economic prop-
erties; namely that it is incentive-compatible, efficient and strategy proof, whilst in-
tuitively explaining why the mechanism has the aforementioned properties. We then
consider the computational properties of the mechanism, showing that the mechanism
does not impose any added complexity on the agents’ bidding process compared to
what it would already face in an independent value scenario. However, it does increase
the complexity of calculating the payment, a computational load borne by the centre.

5.1 Economic Properties

Proposition 1. The mechanism is incentive-compatible in ex-post Nash Equilibrium.



A mechanism is incentive-compatible in ex-post Nash Equilibrium if it is a best re-
sponse strategy for the players to reveal their types truthfully even after they have com-
plete information about the signal values x.

Proof. Let v−i(.) =
∑

j∈−i(vj(.)) and vI(.) =
∑

i∈I(vi(.)). Suppose now that all
players except i report their signals truthfully (i.e. x̂−i = x−i). Let the optimal alloca-
tion when i reports truthfully be f ∗

0 . We can then analyse the utility ui(.) that agent i
derives by reporting a certain x̂i. There are two cases that should be analysed namely
when x̂i < xi and x̂i > xi. The utility of an agent on reporting x̂ i = xi is:

ui(f∗
0 ,x) = vi(f∗

0 ,x) +
m−1∑
l=0

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i)

)
(6)

Now suppose an agent reports x̂i �= xi but this does not change the optimal allocation
f∗
0 implemented. Then, ui(f∗

0 ,x) = ui(f∗
0 , x̂i,x−i). This is because if the allocation

does not change then the agent derives the same value v i(f∗
0 ,x) and payment as the

signals z0
i . . . zm

i are computed by the centre. Now consider the case that an agent re-
ports x̂i < xi such that this changes the allocation. Then some other optimal allocation,
which is necessarily one of the allocations f ∗

1 , . . . , fm , is implemented. Denote the
resulting allocation when x̂i < xi as f∗

n (i.e. zn
i < x̂i ≤ zn−1

i ).
The utility that the agent gets from this new allocation is then:

ui(f∗
n,x) = vi(f∗

n ,x) +
m−1∑
l=n

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i)

)
(7)

The difference, Dn = ui(f∗
0 ,x) − ui(f∗

n,x) between truthful reporting and under re-
porting (as given by equations 6 and 7 respectively) is:

Dn = vi(f∗
0 ,x) − vi(f∗

n,x) +
n−1∑
l=0

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i)

)

= vi(f∗
0 ,x) + v−i(f∗

0 , z0
i ,x−i) − v−i(f∗

n, zn
i ,x−i) − vi(f∗

n,x)

+
n∑

l=1

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l , zl+1
i ,x−i)

)

Since ∂v−i(f
∗
l ,x)

∂xi
≥ 0, we thus have:

Dn >vi(f∗
0 ,x) + v−i(f∗

0 , z0
i ,x−i) − v−i(f∗

n, zn
i ,x−i) − vi(f∗

n,x)

>vi(f∗
0 ,x) − vi(f∗

0 , z0
i ,x−i) − vi(f∗

n,x) + vi(f∗
n, zn

i ,x−i) + vI(f∗
0 , z0

i ,x−i)
− vI(f∗

n, zn
i ,x−i)

However, by construction we know that vI(f∗
0 , z0

i ,x−i) > vI(f∗
n, zn

i ,x−i) and
from assumption 3 we also know that vi(f∗

0 ,x) − vi(f∗
0 , z0

i ,x−i) > vi(f∗
n,x) −

vi(f∗
n, zn

i ,x−i). We thus have Dn ≥ 0. On the other hand, if an agent reports x̂ i > xi



and this induces an allocation f ∗
−n, then the utility it derives is:

ui(f∗
−n,x, ) = vi(f∗

−n,x, ) +
m−1∑
l=−n

(
v−i(f∗

l , zl
i,x−i, ) − v−i(f∗

l+1, z
l
i,x−i, )

)
(8)

The difference, D−n = ui(f∗
0 ,x) − ui(f∗−n,x) between truthful reporting and under

reporting (as given by equations 6 and 7 respectively) is:

D−n = vi(f∗
0 ,x) − vi(f∗

−n,x) −
−1∑

l=−n

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i)

)

= vi(f∗
0 ,x) − vi(f∗

−n,x) −
−1∑

l=−n

(
vI(f∗

l , zl
i,x−i) − vI(f∗

l+1, z
l
i,x−i)

)

+
−1∑

l=−n

(
vi(f∗

l , zl
i,x−i) − vi(f∗

l+1, z
l
i,x−i)

)

= vi(f∗
−n, z−n

i ,x−i) − vi(f∗
−n,x) − vi(f∗

0 , z−1
i x−i) + vi(f∗

0 ,x)

−
−1∑

l=−n+1

(
vi(f∗

l , zl−1
i ,x−i) − vi(f∗

l , zl
i,x−i)

)

Using assumption 3 implies that D−n ≥ 0. We thus see that i derives highest utility
when reporting x̂i = xi.

Proposition 2. The mechanism is efficient.

This implies that the centre finds the outcome such that f ∗ = arg maxf

∑
i∈I vi(f,x).

Proof. The above is a result of the incentive-compatibility of the mechanism. Since the
goal of the centre is to achieve efficiency, then given truthful reports, the centre will
achieve efficiency.

Proposition 3. The mechanism is individually rational.

A mechanism is individually rational if there is an incentive for agents to join it rather
than opting out of it. We begin by assuming that the utility an agent derives from not
joining the mechanism is 0. Then, we need to prove that the utility an agent derives in
the mechanism is always ≥ 0.

Proof. Given that the agents are incentivized to report truthfully, agent i derives utility:

ui(f∗
0 ,x) = vi(f∗

0 ,x) +
m−1∑
l=0

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i

)

= vi(f∗
0 ,x) +

m−1∑
l=0

(
vI(f∗

l , zl
i,x−i) − vI(f∗

l+1, z
l
i,x−i)

)

−
m−1∑
l=0

(
vi(f∗

l , zl
i,x−i) − vi(f∗

l+1, z
l
i,x−i)

)



Since vI(f∗
l , zl

i,x−i) = vI(f∗
l+1, z

l
i,x−i) (from equation 2):

ui(f∗
0 ,x) = vi(f∗

0 ,x) −
m−1∑
l=0

(
vi(f∗

l , zl
i,x−i) − vi(f∗

l+1, z
l
i,x−i)

)

= vi(f∗
0 ,x) − vi(f∗

0 , z0
i ,x−i) + vi(f∗

m, zm
i ,x−i)

+
m−1∑
l=1

(
vi(f∗

l , zl
i,x−i) − vi(f∗

l , zl+1
i ,x−i)

)

From equation 3, vi(f∗
m, zm

i ,x−i) = 0. Now, since ∂vi(K,x)
∂xi

≥ 0, thus ui(f∗
0 ,x) > 0.

5.2 Computational Properties

In order for a mechanism to be of use in real world scenarios, we must not only consider
its economic properties but also its computational complexity. An important distinction
is to differentiate between the computational load which is imposed on the agents within
the auction and that imposed on the auctioneer or centre. Specifically, we will analyse
the computational properties of the mechanism as opposed to that faced by agents in
a standard VCG mechanism. In so doing, we aim to quantify the computational cost
that the added richness of this mechanism (namely the ability to express interdependent
valuation) imposes.

Outcome Determination. In our mechanism, the centre will need to solve equation 1,
which is similar to the winner determination equation in the VCG mechanism, in
order to determine the efficient allocation. In both cases the computation involves
solving a combinatorial allocation problem which is, in the general case, NP-hard
[12]. In fact, the size of the set over which the optimisation is carried out is the
same in both cases since this is determined by the number of items |M |. Thus our
mechanism imposes no additional computational load in terms of the centre calcu-
lating the allocation. However, in terms of calculating the payments to the agents,
our mechanism does impose a larger computational load. In the case of the VCG
mechanism, calculating the payment involves performing the winner determination
problem |I| times over the reduced set of agents I \ i (see [5] for more details).
However in our case, the centre needs to successively reduce the value of the re-
port from each agent (and calculate the optimal allocation at each stage) until it
reaches an allocation which is the optimal one for the reduced set of agents I \ i
(see equations 2 and 3). In the worst case scenario, we have to traverse through all
possible allocations (except the efficient one) when calculating the different z l

i for
each agent i ∈ I. For m goods in a combinatorial auction, this requires 2 m−1 cal-
culations and is thus exponential in complexity. However, typically, the number of
allocations that need to be traversed (i.e the K i

l ) will be much less than 2m and there
is some redundancy between the calculation of the K i

l in between the agents in I.
We will exploit this redundancy in future work so as to reduce the computational
load on the centre.



Preference Formulation. In the case of a direct mechanism such as the VCG mech-
anism or our mechanism, the agents do not have additional computational load in
formulating their preferences over all possible outcomes. This is because the agents
transmit their observed signal θi to the centre and thus do not actually compute
vi(K, θ) over all K ∈ K. Rather it is the centre which performs this calculation for
each agent when solving the winner determination problem. Thus, our mechanism
in this case does not add any computational load on the agents.

Strategy Selection. In the VCG mechanism the agent knows a priori that it has a dom-
inant strategy, and thus this computational problem does not arise. In our case, an
agent has an ex-post Nash strategy. Thus if all the agents are behaving rationally,
there is no computational load on the agent in this particular case. However, if it
becomes common knowledge that some agent is not playing its best-response strat-
egy (i.e. some agent is not rational) then the agents will have to search through their
space of strategies again to find their best-response.

Thus, we can observe that there is no additional computational load on the agents
when compared with a standard VCG mechanism. Thus we can use the computation-
ally efficient bidding languages developed for VCG mechanisms [11, 10]. This is im-
portant since in many proposed applications, whilst the centre may have significant
computational power, the agents will be represented by distributed devices of limited
computational power.

6 Conclusions and Future Work
In this paper we considered an important class of auctions in which the bidders have in-
terdependent valuations (based on a single dimensional signal measured by each bidder)
and bid for multiple goods. In this context, we have significantly extended the standard
VCG mechanism and proved that the ensuing mechanism has the ideal economic prop-
erties of being efficient, incentive compatible and individually rational. Our mechanism
is general and reduces to the VCG mechanism whenever there are independent valua-
tions (as seen in section 3). Thus, we can visualise our mechanism being used even in
MAS where the designer is unsure whether the valuations are interdependent or not.

Whilst we have presented our mechanism in terms of resource allocation, it can
be easily converted into a task allocation scenario. In such a scenario, agents will first
submit cost functions instead of valuation functions. Then, we need to perform a min-
imisation instead of a maximisation in equations 1, 2 and 3 and take supremums instead
of infimums in equations 2 and 3. With these changes, the mechanism still conserves
both its computational and economic properties in the task allocation scenario.

Our future work in this area concerns two issues. The first issue will concentrate
on how to design mechanisms which take into consideration multi-dimensional signals.
Such signals are known to better characterise the preferences of agents in certain MAS
such as in a procurement auction where both the price and date of delivery are impor-
tant [1]. These mechanisms are known not be efficient in an interdependent scenario as
a result of the impossibility result due to Jehiel and Moldovanu [6]. However, we aim
to calculate the loss in efficiency when taking into consideration multi-dimensionality.
The second issue is concerned with the question of the computational complexity of the



resulting mechanism. We have seen that allowing for interdependent valuations comes
at the cost of additional computational complexity on the centre. We intend to investi-
gate methods to reduce this load, by reducing the space of allocations that need to be
considered when computing the payments to the agents (as discussed in section 5). Our
aim is to achieve a mechanism whose complexity is no greater than that of performing
the task of winner determination in the underlying auction.
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