
Colored Petri Nets to Verify Extended
Event-Driven Process Chains

Kees van Hee, Olivia Oanea, and Natalia Sidorova

Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee, o.i.oanea, n.sidorova}@tue.nl

Abstract. Business processes are becoming more and more complex
and at the same time their correctness is becoming a critical issue: The
costs of errors in business information systems are growing due to the
growing scale of their application and the growing degree of automa-
tion. In this paper we consider Extended Event-driven Process Chains
(eEPCs), a language which is widely used for modeling business pro-
cesses, documenting industrial reference models and designing workflows.
We describe how to translate eEPCs into timed colored Petri nets in
order to verify processes given by eEPCs with the CPN Tools.

Keywords: Extended EPCs, semantics, verification, colored Petri nets.

1 Introduction

Event-driven Process Chains (EPC) [15,17] is a popular language for model-
ing business processes, documenting industrial reference models and designing
workflows. EPCs describe the flow of control of business processes as a chain
of functions, events, and logical connectors. Functions represent activities in a
business process. An event expresses a precondition (trigger) for a function or
a postcondition that signals the termination of a function. Logical connectors
and, or, and xor are used according to their names to build the control flow of
a process in a natural way.

EPCs extended with data, resources, time and probabilities, called extended
EPCs (eEPCs) [17], are intensively used in commercial tools like A

¯
r
¯
chitecture

of Integrated I
¯
nformation S

¯
ystems (ARIS) [15] and SAP R/3 [11]. These tools

support modeling and simulation of organizational processes with eEPCs, and
they are widely used in such branches of industry and consultancy as banks,
insurance companies, transportation. The complexity of business processes in
these branches is growing throughout the years. Due to informatisation, which
concerns all aspects of organizational activities, less and less manual work is
involved into the supervision of business processes. This accelerates processes
significantly, but also puts higher requirements to the correctness of process
specifications, since an error in a process design would demonstrate itself in an
automated system too late, when it would already cause a snowball effect.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 183–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 K. van Hee, O. Oanea, and N. Sidorova

We choose to use an available tool for modeling, simulation and analysis
of the constructed model, e.g. model checking which covers the whole system
behavior, and we provide a translation from eEPCs to the input language of
this tool. Petri nets are appropriate for modeling EPCs since all EPC ele-
ments can be translated to places and transitions of Petri nets in a natu-
ral way (see e.g. [1,7,13]). Extended EPCs have such additional features as
data, time and probabilities. Therefore timed colored Petri nets (TCPNs) [10]
are a natural choice for modeling eEPCs. CPN Tools [3] provides modeling,
simulation, and model checking options for TCPNs and thus satisfies our
requirements.

In this paper, we provide a formal definition for eEPCs and present their
semantics in terms of a transition system. We provide a translation from eEPCs
to TCPNs and describe how we can analyze the behavior of an eEPC with the
CPN Tools. We conclude by comparing our method to other approaches for
formalizing the syntax and the semantics of EPCs.

The rest of the paper is organized as follows. In Section 2 we describe the
syntax of eEPCs. In Section 3 we provide the semantics of eEPCs as used in
practice. Section 4 gives a translation from eEPCs to timed colored Petri nets
and discusses some verification issues. In Section 5 we give an account of related
work and discuss some future work.

2 Syntax of Extended Event-Driven Process Chains

In this section, we give a brief description of the syntax of eEPCs taking into
account requirements given in [15] as well as the ones imposed by practice. We
use ARIS [6,9,15,17] as a reference point of our study. However, this approach
can be applied to other tools supporting eEPCs, since they are based on the
same concepts.

ARIS offers a conceptual framework for describing companies, their orga-
nizational structure, processes and resources (material as well as human). In
addition to process modelling, ARIS offers the possibility to analyze process
performance based on simulation. In order to structure process modelling and
to show different angles of an organization, ARIS distinguishes five main views:

Data view uses the entity-relationship models (ERM) to design data models:
entities (e.g. data objects of the environment that are processed by the sys-
tem), their attributes and relationships between entities;

Function view describes functions as tasks performed on objects to support
different company goals; it includes descriptions of procedures, processes,
subfunctions and elementary functions;

Organization view models the relations between company units and the clas-
sification of these units in the organizational hierarchy;

Product/service view describes the products and services produced by the
company as a result of human act or technical procedures;

Control view integrates the previously mentioned views and defines the
dynamic, behavioral aspects. The control flow of a process is described with

Colored Petri Nets to Verify Extended Event-Driven Process Chains 185

an EPC extended with the description of the resources and data involved in
the process, and timed and probabilistic aspects of the behavior.

The control view is essential for process verification, so we concentrate our
study on this view. In what follows, we define generic EPCs and extend them to
eEPCs as they are presented in the control view of ARIS.

2.1 Syntax of EPCs

First we give some basic definitions from algebra and the graph theory we
need here.

– Let S be a set. |S| denotes the number of elements in S. B denotes the
boolean set, N the set of natural numbers, Z the set of integers, R the set of
real numbers and R

+ the set of positive real numbers.
– A multiset (bag) over S is a mapping m : S → N. The set of all multisets over

S is N
S . We use + and − for the sum and the difference of two multisets and

=, <, >, ≤, ≥ for comparisons of multisets. ∅ denotes the empty multiset
and ∈ denotes element inclusion. We write m = 2‘a for a multiset m with
m(a) = 2 and m(x) = 0 for any x ∈ S − {a}.

– Let R ⊆ S × S be a binary relation over a set S. R−1 denotes the converse
relation of R, R+ denotes the transitive closure of R, R∗ denotes the tran-
sitive reflexive closure of R and (R ∪ R−1)∗ is the symmetric, reflexive and
transitive closure of R.

– A directed graph is a tuple G = (N, A), where N is a set of nodes and
A ⊆ N × N is a set of arcs. Every arc a ∈ A is a pair (n1, n2) ∈ N × N
consisting of the input node n1 and the output node n2.

– A path σ of length m in a graph G = (N, A) is a finite sequence of nodes
σ = n0n1 . . . nm (ni ∈ N for i = 0, . . . , m) such that each pair (vj , vj+1) ∈ A
(j = 0, . . . , m − 1) is an arc. We denote the length of a path by |σ|(= m). σ
is an empty path if |σ| = 0. We denote the set of all finite, possibly empty,
paths by N∗ and the set of finite non-empty paths by N+. A path σ is a
prefix of a path γ if there is a path σ′ with γ = σσ′.

– A graph G = (N, A) is weakly connected if for every two nodes n1, n2 ∈ N ,
(n1, n2) ∈ (A ∪ A−1)∗.

– We denote the set of output nodes of n ∈ N as n•, i.e. n• = {n′|(n, n′) ∈ A}.
Similarly, •n = {n′|(n′, n) ∈ A} is the set of input nodes of n ∈ N . Given a
set of nodes X ⊆ N , we define •X =

⋃
n∈X

•n and X• =
⋃

n∈X n•.
– We denote the set of ingoing arcs of a node n ∈ N as Ain

n , i.e. Ain
n =

{(n, x)|x ∈ n•} and the set of outgoing arcs of n as Aout
n , i.e. Aout

n =
{(x, n)|x ∈ n•}. In case Ain

n is singleton, ain
n denotes the ingoing arc of

the node n. Similarly, if Aout
n is singleton, aout

n denotes the outgoing arc of
the node n.

Now we can give a definition of a generic EPC.

Definition 1 (EPCs). An event-driven process chain (EPC) is defined by a
weakly connected directed graph G = (N, A) that satisfies the following properties:

186 K. van Hee, O. Oanea, and N. Sidorova

1. The set N of nodes is the union of three pairwise disjoint sets E, F and C,
where
– E is the set of events. E = Es ∪ Ef ∪ Ei, where Es, Ef and Ei are

pairwise disjoint sets of start events, final events, and internal events
respectively, with |Es| ≥ 1 and |Ef | ≥ 1;

– F �= ∅ is a set of functions;
– C is a set of connectors of types xor, or, and, i.e. C = Cxor∪Cor∪Cand,

where Cxor, Cor and Cand are disjoint sets. Furthermore, each of these
sets is partitioned into two sets representing split and join connectors:
Cxor = Cxs∪Cxj, Cor = Cos ∪Coj and Cand = Cas∪Caj, and Cs stands
for set of split connectors, and Cj stands for the set of join connectors;

2. Every element from the set A of arcs connects two different nodes. Moreover,
– •es = ∅ and e•f = ∅, for each es ∈ Es and ef ∈ Ef ;
– |n•| = 1 for each n ∈ F ∪Ei ∪Es, and |•n| = 1 for each n ∈ F ∪Ei ∪Ef ;
– each split connector c ∈ Cs satisfies |•c| = 1 and |c•| > 1; similarly each

join connector c ∈ Cj satisfies |•c| > 1 and |c•| = 1;
3. Each node is on a path from a start event to a final event, i.e. for any n ∈ N ,

there is a path σ from some es ∈ Es to some ef ∈ Ef , such that n ∈ σ;
4. Functions and events alternate along the control flow, i.e. each path starting

in an event e ∈ E − Ef and ending in an event ef ∈ Ef has a prefix of the
form eσcf , where σc ∈ C∗ and f ∈ F . Similarly, for each path σ starting
in a function f ∈ F and ending in an event ef ∈ Ef there is a prefix fσce,
where σc ∈ C∗ and e ∈ E − Es;

5. Events do not precede the xor and the or split, i.e. ∀c ∈ Cxs∪Cos: •c∩E = ∅;
6. There is no cycle that consists of connectors only, i.e. for any path

σ = v0v1 . . . vn ∈ C+ : n ≥ 2: v0 �= vn.

2.2 Syntax of Extended EPCs

The control view of an eEPC has an EPC as a skeleton. Data attributes, re-
sources, time and probabilities are linked to different EPC elements to form an
extended EPC.

Functions represent activities that may take time, may require access to
diverse resources and may perform operations on some data or resources.

Functions that perform operations on data attributes are annotated with
expressions denoting the operation performed (see for example Figure 1(a)).
Personnel, material or information resources can be used to execute functions.
We call these objects capacity resources, since they are characterized by mini-
mum and maximum capacities to run the process. Functions are annotated with
a nonnegative integer or real constant denoting the number of resources required,
produced or consumed. In Figure 1(b), function finish products produces 1000
items of resource Item 1 with the capacity domain [100, 5000] and consumes 500
items of resource Item 2.

Furthermore, functions can be either timed, i.e. they may have a duration,
or immediate, i.e they take zero time. The duration of each timed function is
described by a probability distribution.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 187

Order
received

Finish
products

XOR

Products are
sent to

warehouse

Products are
sent for sale

produces

r1 < r2

Item 1

Item 1

r1min=100
r1max =5000
r1 =1000

1000
Item 2

Item 2

consumes
500

r2min=100
r2max =5000
r2 =1000

r1 >= r2

Event

Function

XOR

Condition
event 1

Condition
event 2

Data
Attribute

Data
Attribute

 a := a + 450

Type(a)=Integer
a=5000

a < 7500 a >= 7500

(a) Condition events on a data
attribute

(b) Condition events on resources

Fig. 1. Condition events on data attributes and resources

Events define either conditions on data attributes or resource capacities, or
triggers from elements outside the process.

Processes are instantiated at start events. Start events may be grouped
in start event sets1 that contain events which are synchronized, i.e. a pro-
cess is started at the same time at all the events of the respective set. A
probability distribution is assigned to each start event set, denoting the fre-
quency with which process instances are created for the events in the respect-
ive set.

Conditions (boolean expressions) on data attributes or on resources deter-
mine the terms of the respective event. An event that follows an or split or an xor
split connector and is determined by a condition is called a condition event.
Condition events may have attributes or capacity resources connected to
them and conditions are specified as:

– conditions on one operand that have a constant value of the same type as
the attribute or the capacity value of a resource as comparison criterion.
Figure 1(a) shows two condition events annotated with boolean expressions
on a data attribute;

– conditions on two operands that compare two attribute values or the capacity
values of two resources. In Figure 1(b), the condition events products are sent
to warehouse and products are sent for sale are annotated with the boolean
expressions r1 < r2 and r1 ≥ r2 on the resources Item 1 and Item 2.

The rest of events are used to model triggers from outside the process and
they have a probability value assigned. This value is used during the simulation
to determine whether the execution stops or continues at the respective event.
Probability values for events following and split connectors are 1 since the exe-
cution cannot stop at events following such a connector. The sum of probability
1 In ARIS, event diagrams are used to represent start event sets.

188 K. van Hee, O. Oanea, and N. Sidorova

values for events following xor split connectors is exactly 1 as the execution
can continue only on one outgoing branch. Furthermore, the sum of probability
values for events following or split connectors is greater than 1 as the execution
can continue on one or more outgoing branches.

Or join connectors may also contain some timeout information, called syn-
chronization timeout.

We give a formal definition of eEPCs as they are used in ARIS Toolset.

Definition 2 (eEPC). An extended event-driven process chain (eEPC) is a
tuple Ge = (G, A, R,Type,Expr, PDF,Pr), where

– G is an underlying EPC.
– A is a set of data attributes. We write A =

⋃
f∈F Af for a partition of the

set of data attributes w.r.t. the function performing operations on them.
– R is a set of capacity resources. We partition the set of resources according

to the function performing operations on them: R =
⋃

f∈F Rf such that
these sets are not disjoint (several functions can perform operations on the
same resource). Moreover, we consider a partition of the set of resources
used by a function f into used, produced and consumed resources, i.e. Rf =
Ru

f ∪ Rp
f ∪ Rc

f such that these sets are disjoint (a function can perform just
one type of operation on a resource).

– Type maps each attribute to one of the types Text, Enum, B, Z, or R and
each capacity resource r to a real or integer subtype [rmin, rmax], where rmin
and rmax are the minimum and maximum capacities of resource r.

– Expr = Exprb ∪
⋃

x∈R∪A Exprx maps condition events and functions into
expressions on the attributes or capacity resources linked to them as follows:

• Ec denotes the set of condition events, i.e. events folowing or and
xor split connectors that have conditions on data attributes or resources.
Every condition event e ∈ Ec is mapped to a boolean expression Exprb(e)
of the form v1 x v2 or v1 x c, where v1, v2 are either attributes or resource
capacities, c is a constant so that Type(v1) = Type(v2) = Type(c) and
x is the comparison operator compatible with the types used.

• every function f performing an operation on an attribute a is mapped
to an expression on a, namely Expra(f), having the form a := c, where
c is a constant value with Type(a) = Type(c), or a := a x c, with
Type(a) = Z or Type(a) = R, constant c with Type(a) = Type(c)
and x∈ {+, −, ∗}.

• Exprr(f) maps function f using, producing or consuming a resource
r ∈ Rf to constant cf

r ∈ Type(r), denoting the quantity of resources
used, consumed or produced.

– Ft denotes the timed functions, and Cs denotes the set of or join connec-
tors with synchronization timeout. We consider the set of start events Es

partitioned into start event sets, i.e.
⋃

d∈Is
Ed

s , for some index set Is.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 189

Trade
executed

Monitor
receipt of

trade
confirmation

and
administration

V

XOR

XOR

Trade
Administrated
(manual use)

Trade
Administrated

(electronic
use)

Received
trade

confirmation
(manual)

V

Received
trade

confirmation
(electronic)

V

Visual trade
check

Match BLIM

XOR

XOR

Release
process
started

BLIM
Match

No BLIM
match

0.40 0.60

Trade use

Trade use

Start release
process

tu:=manual

Type(tu)= {manual, electronic}

Reject BLIM

BLIM rejected

tu = manual tu = electronictu = electronictu = manual

Trade
checked

Fig. 2. Trade matching eEPC

PDF =
⋃

k∈(Ft∪Cs∪Is) pdfk denotes a family of continuous or discrete
probability distributions2 for the duration of timed functions, for the syn-
chronization timeouts of synchronized or join connectors, and for the delays
of start event sets.

– Pr : E − Es − Ec → [0, 1] which maps events to their probability values such
that:

•
∑

e∈Ec Pr(e) = 1, for each set of events Ec following an xor split con-
nector c ∈ Cxs that have probability values;

2 In this paper, a probability distribution pdf ∈ PDF refers to a probability distribu-
tion function (we do not mention the word function in order to avoid confusion with
functions as nodes of eEPCs).

190 K. van Hee, O. Oanea, and N. Sidorova

•
∑

e∈Ec Pr(e) ≥ 1, for each set of events Ec that have probability values
and follow an or split connector c ∈ Cos;

• Pr(e) = 1 for each e ∈ Cas
•.

Figure 2 shows an eEPC modeling a part of a trade matching process taking
place in a company. The process checks the timely receipt of a confirmation,
administrates the trade internally and matches the confirmation against the
internal data before the release process can be started.

The process starts with the event trade executed (deal made) that triggers the
function monitor receipt of trade confirmation and administration. This results
in a change of the data attribute trade use. The execution is then split into two
parallel threads, which is modeled by an and split. The left thread models the
check whether the confirmation of the trade has been received electronically or
manually by means of an xor split and two condition events: Received trade con-
firmation (manual) and Received trade confirmation (electronic) that are linked
to a data attribute Trade use. The second thread models the check whether the
trade is administered for manual or electronic use by means of conditions on the
attribute trade use.

The two and join connectors make sure that the matching process continues
either manually or electronically. The visual (manual) check is performed by the
function visual trade check and results in the event trade checked. The result of
the electronic matching of the internal information with BLIM messages has 40%
probability to succeed. In case the trade has been matched either manually or
electronically, which is modeled by an xor join, the process is released by start
release process. If the data registered internally does not match the information
contained in the BLIM message, the message is rejected.

3 Semantics of eEPCs

We introduce first the notions of a process folder and a state of an eEPC necessary
to define the semantics of eEPCs.

A process folder is an object that resides at a node (function or start
event) or at an arc. Furthermore, it carries a folder number and a timestamp
denoting the value of the timer associated to the folder. Timestamps are either
nonnegative numbers indicating the delay after which the folder may be used, or
⊥, denoting that the timer of the process folder is off and the folder can be used
directly. A state of an eEPC is defined by a multiset of process folders together
with a valuation of data attributes and capacity resources.

For the rest of the paper, we consider the discrete time domain N⊥ = N∪{⊥}
and discrete probability distributions for durations. We denote the domain of
a discrete probability distribution pdf ∈ PDF by Dom(pdf) ⊆ N. The same
approach can be applied for continuous time and continuous probability distri-
butions. We consider process folder numbers to take values from N. Formally:

Definition 3. Let Ge = (G, A, R,Type,Expr, PDF,Pr) be an eEPC. A pro-
cess folder is a tuple p = (n, (i, t)) where n ∈ Es ∪ F ∪ A is a start event,

Colored Petri Nets to Verify Extended Event-Driven Process Chains 191

a function or an arc, i ∈ N is a process folder number and t ∈ N⊥ is a timestamp.
A state of Ge is a tuple s = (m,Val), where m is a multiset of process folders,
i.e. m : ((F ∪ A ∪ Es) × (N × N)) → N, and Val is a valuation function that
maps every resource r ∈ R into some value Val(r) ∈ Type(r) and every data
attribute a ∈ A to some value Val(a) ∈ Type(a).

We denote the timestamp of a process folder p by pt. We will say that a
process folder has its timer off when pt =⊥ and its timer on when pt ≥ 0. We
call a process folder with the timer on active if it has the timestamp 0. If pt > 0,
the process folder is waiting to become active.

Every start event of a start event set has initially an active process folder
with the index of the start event set as its folder number. The initial state
is thus s0 = (m0,Val0) and contains one active process folder on every start
event so that for every start event set (es, (i, 0)) ∈ m0 for all es ∈ Ei

s, and
every resource and data attribute has an initial value according to the
specification.

Probability distributions are used in eEPCs to model the behavior of the
environment or to describe nondeterminism in the system (when decisions need
to be made), and for performance analysis. Since all events that have Pr(e) > 0
can occur and the errors in a model (eEPC) having probabilistic events can
thus be detected on the model without probabilities, we do not take prob-
abilities further into consideration, as they are irrelevant to our verification
purposes. In order to express nondeterminism without probabilities, we ex-
tend the mapping Expr to non-condition events and set Exprb(e) = true,
for every event e ∈ (Cos ∪ Cxs)• − Ec, and subsequently extend the set of
condition events to all events following an or and xor split connector, i.e.
Ec = (Cos ∪ Cxs)•.

Let eval be the evaluation function for expressions, such that:

– eval(Exprb(e),Val) ∈ B is the evaluation function of the boolean expression
of condition events e ∈ Ec in the valuation Val.

– eval(Expra(f),Val) ∈ Type(a) is the evaluation function of the expression
Expra(f) on some data attribute a ∈ Af in the valuation Val that computes
a new value for a from the right hand side expression of Expra(f).

For any r ∈ R, we introduce a variable r such that Val0(r) = Val0(r) in
order to keep track of resources that would be modified by several functions. We
denote the set of variables newly introduced by R.

We describe the semantics of an eEPC by means of a transition relation
between states as follows:

Definition 4. Let Ge = (G, A, R,Type,Expr, PDF,Pr) be an eEPC. The se-
mantics of an eEPC is given by a transition system TS = (Σ, s0, →), where Σ is
the set of states of Ge, s0 is the initial state, and →⊆ Σ ×Σ is a transition rela-
tion described by the rules (a) − (j) below. Let s = (m,Val) and s′ = (m′,Val′)
be two states in Σ.

192 K. van Hee, O. Oanea, and N. Sidorova

(a) start event set rule Let Ed
s be a start event set such that there is a process

folder on each of its start events and all the folders have the same folder
number and are active. Then a step can be taken that results in removing
all the folders on the events of Ed

s and producing a process folder on each of
the outgoing arcs of Ed

s which have the same folder number as the original
process folders and their timers are set to off. Furthermore, a new process
folder is generated on each event of Ed

s ; all these new process folders have
the same newly generated folder number and the same timestamp which is
drawn from the probability distribution of the start event set.
Formally, if (e, (i, 0)) ∈ m for all e ∈ Ed

s , d ∈ Is and i ∈ N, then s → s′, with
m′ = m−

∑
e∈Ed

s
(e, (i, 0))+

∑
e∈Ed

s
(aout

e , (i, ⊥))+
∑

e∈Ed
s

(e, (i + |Is|, t)), for
some t ∈ Dom(pdfd).

(b) event rule Let ain
e be the incoming arc for an event e such that there is a

process folder on ain
e . Then, the process folder can be removed from ain

e and
placed on the outgoing arc of the event aout

e . Formally, if (ain
e , (i, ⊥)) ∈ m

for some i ∈ N and e ∈ E − Es − Ec − Ef , then (m,Val) → (m′,Val) with
m′ = m + (aout

e , (i, ⊥)) − (ain
e , (i, ⊥)).

(c) function rule Let ain
f be the incoming arc of a function f such that there

is a process folder on ain
f . The function rule consists of two steps:

– if the resources may be used, consumed or produced, the process folder
is removed from the incoming arc of the function, and a new process
folder having the same folder number as the original folder and a times-
tamp from the time distribution interval of the function is placed on the
function, and resources are consumed.
Formally, if (ain

f , (i, ⊥)) ∈ m, for some f ∈ F and i ∈ N, Val(r) −
Exprr(f) ≤ rmin for all r ∈ Ru

f ∪ Rc
f , Val(r) + Exprr(f) ≤ rmax for

all r ∈ Rp
f , then s → s′, where s′ = (m′,Val′), m′ = m − (ain

f , (i, ⊥)) +
(f, (i, t)), where t = 0 if t ∈ F − Ft and t ∈ Dom(pdff) if t ∈ Ft,
Val′(r) = Val(r) − Exprr(f) for all r ∈ Rc

f ∪ Ru
f , Val′(r) = Val(r) −

Exprr(f) for all r ∈ Rc
f , Val′(r) = Val(r) + Exprr(f) for all r ∈ Rp

f

and Val′(x) = Val(x) for all x ∈ (R ∪ R ∪ A) − (Rc
f ∪ Ru

f ∪ Rc

f ∪ Rp

f).
– Let f be a function such that there is an active process folder on it.

Then, the active process folder is removed from the function, and a new
process folder is produced on the outgoing arc of the function; this new
folder has the same folder number as the removed one and the timer
off; attributes are evaluated and resources are produced or released. For-
mally, if (f, (i, 0)) ∈ m, for some f ∈ F and i ∈ N, then s → s′, with
s′ = (m′,Val′), m′ = m − (f, (i, 0)) + (aout

f , (i, ⊥)), where Val′(a) =
eval(Expra(f),Val) for all a ∈ Af , Val′(r) = Val(r) + Exprr(f) for
all resources r ∈ Rp

f ∪ Ru
f produced or used, and Val′(x) = Val(x) for

all x ∈ (R ∪ R ∪ A) − (Af ∪ Rp
f ∪ Ru

f).
(d) and split rule Let ain

c be the ingoing arc of an and split connector c such
that there is a process folder on ain

c . The rule results in removing the process
folder from ain

c and placing a process folder on each outgoing arc of the and
split connector such that all new process folders have the same folder number

Colored Petri Nets to Verify Extended Event-Driven Process Chains 193

as the removed folder. Formally, if (ain
c , (i, ⊥)) ∈ m, for some i ∈ N and

c ∈ Cas, then s → s′ with s′ = (m,Val) and m′ = m+
∑

a′∈Aout
c

(a′, (i, ⊥))−
(ain

c , (i, ⊥)).
(e) xor split rule Let ain

c be the incoming arc of an xor split connector c such
that there is a process folder on ain

c . Then the process folder is removed from
the arc ain

c and

– if the xor split leads to a non-final condition event whose boolean ex-
pression is evaluated to true, a process folder with the same number as
the removed one is placed on the outgoing arc of the event;

– if there is an outgoing arc of the xor split leading to a final condition
event whose boolean expression is evaluated to true or to another con-
nector, then a process folder with the same number as the removed one
is placed on the respective arc.

Formally, if (ain
c , (i, ⊥)) ∈ m, for some i ∈ N and c ∈ Cxs, then s → s′, with

s′ = (m′,Val) and m′ = m + (a′, (i, ⊥)) − (ain
c , (i, ⊥)), where

– a′ = aout
e if eval(Exprb(e),Val) = true for some event e ∈ c• − Ef , or

– a′ = (c, e), if eval(Exprb(e),Val) = true for some final event e ∈ c• ∩
Ef , or

– a′ = (c, c′) for some c′ ∈ C.

(f) or split rule Let ain
c be the ingoing arc of an or split connector c such that

there is a process folder on ain
c . The rule results in removing this folder from

ain
c and placing a process folder with the same folder number on at least one

of the outgoing arcs of the non-final condition events that have a true boolean
expression or the outgoing arcs of the or split connector leading to final
condition events with boolean expression evaluated to true or to connectors.
Formally, if (ain

c , (i, ⊥)) ∈ m, for some i ∈ N and c ∈ Cos, then s → s′,
with s′ = (m′,Val) and m′ = m − (ain

c , (i, ⊥)) +
∑

a∈A′∪A′′(a, (i, ⊥)), where
A′ ⊆ {aout

e |e ∈ c• ∩ (Ec − Ef) ∧ eval(Exprb(e),Val) = true} and A′′ ⊆
{(c, e) ∈ Aout

c |e ∈ c• ∩ (Ec ∩ Ef) ∧ eval(Exprb(e),Val) = true} ∪ {(c, c′) ∈
Aout

c |c′ ∈ C} and A ∩ A′′ �= ∅.
(g) and join rule Let Ain

c be the set of all incoming arcs of an and join con-
nector c. If all arcs of Ain

c have process folders with the same folder num-
ber, the rule can be applied resulting in the removal of these process fold-
ers from Ain

c , and the production of a process folder with the same pro-
cess folder number as the original folders on the outgoing arc of the con-
nector. Formally, if there is a c ∈ Caj such that (a, (i, ⊥)) ∈ m, for all
arcs a ∈ Ain

c and some i ∈ N, then s → s′ with s′ = (m′,Val), and
m′ = m + (aout

c , (i, ⊥)) −
∑

a∈Ain
c

(a, (i, ⊥)).
(h) xor join rule Let a be an incoming arc of an xor join connector such

that there is a process folder on a. Then, the folder is removed from a and
placed on the outgoing arc of the connector. Formally, if (a, (i, ⊥)) ∈ m
for some i ∈ N, c ∈ Cxj and a ∈ Ain

c , then s → s′ with s′ = (m′,Val),
m′ = m + (aout

c , (i, ⊥)) − (ain
c , (i, ⊥)).

194 K. van Hee, O. Oanea, and N. Sidorova

(i) or join rule Let A′ be the set of incoming arcs of an or join connector that
have process folders with timers off and the same folder number. The rule
consists of one or more steps (depending on whether the connector has a
synchronization time or not):

– (or join unsynchronized) In case the or connector does not have a syn-
chronization timeout, the rule results in removing all the folders with
timers off and the same folder number on A′ and producing a pro-
cess folder with the same folder number as the original folders and the
timer off on the outgoing arc of the connector. Formally, if there is
a c ∈ Coj − Cs such that A′ = {a ∈ Ain

c |(a, (i, ⊥)) ∈ m} �= ∅, for some
i ∈ N, then s → s′ with s′ = (m′,Val) and m′ = m + (aout

c , (i, ⊥)) −∑
a′∈A′(a′, (i, ⊥)).

– (or join synchronized waiting) Let A′′ be a set of incoming arcs of a
synchronized or join connector that have waiting process folders on them
with the same folder numbers as the folders on A′. The rule results in re-
moving the process folders with timers off and the same folder number on
A′ and producing new process folders on A′ having the same folder num-
ber as the removed ones and a timestamp that is either the synchroniza-
tion time of the or connector in case A′′ is empty or the timestamp of the
folders in A′′ if A′′ is non-empty. Formally, let A′ = {a = (x, c) ∈ A|x ∈
N ∧ (a, (i, ⊥)) ∈ m} �= ∅ and A′′ = {a ∈ Ain

c |(a, (i, t′′)) ∈ m ∧ t′′ > 0}
for some i ∈ N and c ∈ Cs. If A′′ = ∅ then let t′ = t be the times-
tamp of the process folders p = (a, (i, t)) ∈ m, where a ∈ A′′, oth-
erwise let t ∈ Dom(pdff). Then, s → s′ with s′ = (m′,Val) and
m′ = m +

∑
a′∈A′(a′, (i, t′)) −

∑
a′∈A′(a′, (i, ⊥)).

– (or join synchronized firing) Let A′′ be the set of incoming arcs of an or
connector that have an active process folder on them and all these folders
on A′′ have the same folder number. Then these process folders are re-
moved from A′′ and a new process folder is produced on the outgoing arc
of the connector, so that it has the same folder number as the original
folders and the timer off. Formally, if for some c ∈ Coj − Cs and i ∈ N,
A′′ = {a ∈ Ain

c |(a, (i, 0)) ∈ m} �= ∅, then s → s′ with s′ = (m′,Val) and
m′ = m + (aout

c , (i, ⊥)) −
∑

a′∈A′′(a′, (i, 0)).

(j) time step rule This rule has the lowest priority, i.e. the rule is applied
if no other rule can be applied. Time passage is applied when all process
folders with timers on in a state are waiting (have a strictly positive times-
tamp) and results in decreasing the timestamp of all process folders of the
state by the minimal timestamp of the folders with timers on. Formally, if
P ′ = {p ∈ m|pt > 0} �= ∅ and st = min{pt|p ∈ P ′} > 0 and there is no
other state s′′ �= s′ such that s → s′′, then s → s′, with s′ = (m′,Val), where
m′ = m +

∑
(x,(i,t))∈P ′(x, (i, t − st)) −

∑
p∈P ′ p.

Remark 5 (Uniqueness of newly generated folder numbers). Folder numbers gen-
erated at some start event set Ed

s (d ∈ Is) have the form d+k ·n, where n = |Is|
and k ∈ N. Therefore, all folder numbers produced at Ed

s are equal modulo the

Colored Petri Nets to Verify Extended Event-Driven Process Chains 195

index number of the start event set, i.e. d. As a result, all process folder numbers
that are generated are unique.

Remark 6 (Time progress). The time step rule decreases the timestamp of a
waiting process folder until it becomes active (its timer expires). Note that all
other steps have the same higher priority than the time progress and their seman-
tics is interleaving. The time progress problem reduces to the situation where no
other rule can be applied or to the situation where there is an infinite sequence
of (timeless) rules that can be applied. We therefore assume that there is a finite
number of process folder numbers such that the states contain a finite number
of process folders with the same folder number.

4 Verification of eEPCs Using CPN Tools

To verify the correctness of eEPCs, we use the CPN Tools [3] which are based
on colored Petri nets [10] as modeling and analysis language. (Timed) Colored
Petri nets (TCPNs) combine the expressive power of classical PNs, which are
suitable for modeling the logical behavior of a control flow, with the modeling
of data and time by means of timed color sets and a global clock. A state of
a TCPN is called a marking and represents the distribution of (timed) colored
tokens on places. Tokens belonging to a timed color set have a timestamp and
they can only be used if the value of the timestamp is less than the value of the
global clock.

Let Ge be an arbitrary eEPC and TS = (Σ, s0, →) the transition system de-
scribing the semantics of Ge. We denote the timed integer color corresponding to
the set of process folders numbers by PF, and for each capacity resource and data
attribute, we define a place having the corresponding untimed color type. The
locations at which process folders can reside correspond to TCPN places having
type PF and local steps in TCPNs are depicted by transitions. A step that can
be taken in the eEPC corresponds to a transition firing, given preconditions and
postconditions expressed as expressions on arcs or guards (boolean expressions)
on transitions. The global clock (model time) advances the timestamps of all
timed tokens with the smallest amount of time needed to make at least one token
active, which corresponds to the time step rule in eEPCs in which timers de-
crease their values. Token delays are positioned on transitions or on outgoing arcs
of transitions.

4.1 Transformation of eEPCs into TCPNs

For mapping of eEPCs into TCPNs, we first identify generic eEPC patterns
and provide their translation into TCPN patterns, and then we show how the
obtained TCPN patterns can be fused together to form a TCPN.

We define eEPC patterns taking into account the rules of the semantics
given in Section 3 (except for the time step rule), covering all patterns that
would allow us to build an arbitrary eEPC. An eEPC pattern consists of in-
coming and outgoing arc(s) and other elements necessary for the rule to occur.

196 K. van Hee, O. Oanea, and N. Sidorova

Figures 3(a-i) and 4 show instances of these patterns having the incoming (out-
going) arcs dotted and their corresponding TCPN pattern. In what follows we
describe these transformations in more detail.

Start event set pattern. Let Ed
s be a start event set for some d ∈ Is and let

n = |Ed
s |. The corresponding TCPN pattern is represented by a place which

is initially marked with a token d@0 (with timestamp 0) and where a newly
generated token with a delay is deposited; a transition that generates a new
token, adds a delay to its timestamp and puts the token from the former
place on the places corresponding start events of the start event set. Figure
3(a) shows the eEPC pattern and the TCPN pattern for a start event set
with two start events.

Event pattern. Let e ∈ E − Es − Ef − Ec be an event. The corresponding
TCPN pattern is shown in Figure 3(b). Note that final events are not trans-
lated.

Function pattern. Let f be a (timed) function connected to the set of re-
sources Rf and to the set of data attributes Af . The corresponding TCPN
pattern has two transitions and an intermediate place depicting the two steps
of the function rule. Figure 3(c) shows the pattern and its translation operat-
ing on an attribute, a resource that is used, a resource that is produced and
a resource that is consumed. The operations on the resources and attributes
are described on the arc inscriptions.

and split, and join, and xor join patterns. These patterns are parameter-
ized by the number of the outgoing and incoming arcs, respectively. Figure
3(d-f) shows the respective patterns with two incoming, respectively outgo-
ing arcs;

xor split pattern. Let c be an or split connector. The TCPN pattern con-
sists of a place with outgoing transitions. The boolean expressions on the
condition events of c (on resources or attributes) become guards for the
transitions. Figure 3(g) shows an or split connector having a condition
event linked to an attribute or resource, a condition event with condition
true and a connector on the outgoing arcs and the corresponding TCPN
pattern.

or split pattern. Let c be an or split connector. The TCPN pattern con-
tains a transition and a non-deterministic choice is implemented in the code
segment of the transition by means of generation of boolean variables for
each outgoing arc of the transition corresponding to outgoing arcs lead-
ing to non-conditional events. Figure 3(h) shows an instance of the pattern
and its translation. In case at least one of the boolean expressions corre-
sponding to conditions on attributes or resources is true, a boolean variable
generated for each arc that does not lead to a condition event with con-
ditions on attributes or resources. In case all the boolean expressions on
attributes or resources are false or there are no condition events on data
attributes or resources, the boolean variables generated for the rest of the
arcs must have at least one true value. The boolean expressions on the con-
dition events and the boolean values generated become conditions in the arc
inscriptions.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 197

start
event 1

start
event 2

Start event set Ed
s

pdfd

PF

d

outgoing 1

PF

outgoing 2

PF

start event
 set

i
i

i (i+n)@+Delay()

event
incoming

PF

outgoing

PF

event
i i

(a) Start event set pattern (b) Event pattern

f

Resource
to be useduses Exprru(f)

Attribute

[rumin,, rumax]

a:A t
Expra(f)

Resource to
be

consumed

consumes
Exprrc(f)

[rcmin,, rcmax]

Resource
to be

produced
produces Exprrp(f)

[rpmin,, rpmax]

Attribute

TypeA

ca
resource
to be used

TypeRU

rv

functionPFP
resource to be
consumed

TypeRC

rv
resource
to be produced

TypeRP

rv

incoming PF

outgoing PF

function
consuming

(ru-c>=rumin) andalso
(rp+c<=rpmax) andalso
(rc-c>=rcmin)

@+Delay()

function
producing

a

ru
(i,a)

(i,a)
ru+cexpra(a)

ru-c

ru

rc-c
rc

rp

rp+c

rp

rp
i

i

(c) Function pattern

V
outgoing1

PF

outgoing 2

PF

incoming

PF

and
split

i

i

i

V

incoming 1 PF incoming 2

PF

outgoing PF

and
join

i

i

i
XOR

xor
join PF

incoming 1

PF

incoming 2

PF

t1 t2

i i

i i

(d) and split (e) and join (f) xor join pattern

XOR

condition
event 1

C
condition
event 2

Attribute/
Resource

Exprb
x(e) truex:X

xor
split PF

Attribute/
Resource

X

outgoing
 1

PF

outgoing
 2

PF

outgoing
 3

PF

condition
event 1

exprb(x)

condition
event 2 t

i
i

xx

i

i i i

(g) xor split pattern

condition
event 1

C
condition
event 2

V

Attribute/
Resource

Exprb
x(e)x:X

outgoing 1

PF

outgoing 2

PF

outgoing 3

PF

Attribute/
Resource

X

c

incoming

PF

d

or split

input (x);
output (b1,b2);
action
let
 val bbb=gen(exprb(x));
 val b1=(#1 bbb);
 val b2=(#2 bbb);
in
 (b1,b2)
end

if exprb(x) then 1‘i else empty if b1 then 1‘i else empty
if b2 then 1‘i else empty

xx
i

color BB=product BOOL*BOOL;
fun or(x,y)=(x orelse y);
color BBT = subset BB by or;
fun gen(x)=if x then BB.ran() else BBT.ran();

(h) or split pattern

Fig. 3. Translation of the eEPC patterns into TCPN patterns

198 K. van Hee, O. Oanea, and N. Sidorova

V
t

incoming

PF

waiting
folders

PFL

[]

waiting

PF

outgoing

PF

or join
waiting

or join
firing

i

i

i

if isin(i,l1) then l1 else i::l1

l1

if isin(i,l1) then empty else 1‘i@+Delay()

i

i

l1

filter (equal i) l1

incoming

PF

waiting
folders

PFL

[]

outgoing

PF

or join
collector

or join
firing

input (l1);
output (i);
action
let
val x=rand(l1);
in x
end

l1<>[]

i

i

i

if isin(i,l1) then l1 else i::l1
l1

i

l1
filter (equal i) l1

Fig. 4. or join pattern (synchronized and unsynchronized)

or join pattern. Figure 4 shows the pattern with two incoming arcs. In the
TCPN pattern, place incoming collects all the tokens on the incoming arcs.
The or join waiting transition decides whether the token will receive a de-
lay by checking if the folder number is already in the list of waiting fold-
ers (in the place waiting folders). The or join firing transition becomes
enabled, then the timestamp of the tokens in place waiting expires and
the firing removes the token from the list of waiting tokens present in the
place waiting folders. Note that in the untimed version the place waiting is
eliminated.

Two eEPC patterns are called adjacent if an outgoing arc of a pattern co-
incides with an ingoing arc of another pattern. Two TCPN patterns are called
adjacent if the corresponding eEPC patterns are adjacent. Adjacent TCPN pat-
terns are fused, i.e. for every two adjacent patterns, if they have the same input
and output nodes (e.g. both are either transitions or places), then the two nodes
are fused; otherwise, a directed arc is added between them.

4.2 Verification

A TCPN obtained using the translation procedure described in the previous
section can be simulated and analyzed by the CPN Tools [3], using state-space
analysis (which is basically an exhaustive search through all possible states of
the model).

The first check on eEPCs to be performed is whether the semantics of diverse
connectors is respected. For xor join connectors, this coincides with checking
whether there are reachable markings having two tokens in the places corre-
sponding to xor join connectors. If there are, we can conclude that the eEPC
model is not correct and we can provide a simulation of the TCPN that leads to
this error.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 199

If an or split has condition events on all its outgoing arcs, at least one of the
conditions should be evaluated to true at every reachable marking. The violation
of this requirement can be easily checked by finding a marking with at least one
token on the place corresponding to the incoming arc of the or split such that
all boolean expressions on resources or data attributes are false.

CPN Tools can provide a report on the state space of the constructed TCPN
that includes information about dead markings (marking at which no transition
is enabled). In case the only dead markings of the TCPN are markings having
tokens on the places corresponding to incoming arcs of final events, we can
conclude that the original eEPC terminates properly. Dead markings can also
provide information about deadlocks in the eEPC, e.g. functions that cannot
execute due to non-availability of resources or non-synchronization. Furthermore,
the CPN Tools can verify properties of the model which are defined as temporal
logic formulas in ASK-CTL [4].

5 Related and Future Work

Related work. There are different approaches to the formalization of the syntax
and semantics of EPCs.

One approach is to use Petri nets to specify their semantics. An EPC is
translated into a PN using a set of transformation rules. The semantics of EPCs
is defined as the semantics of resulting Petri nets. Van der Aalst [1] and Dehnert
[7] use a subclass of PNs — workflow nets that is suitable to describe EPCs
and use specific verification methods developed for PNs in order to verify EPCs.
In [1], an EPC is considered to be correct if and only if the workflow obtained
as the translation of an EPC is sound. Langner, Schneider and Wehler [13] use
a transformation into boolean nets which are colored Petri nets with a single
color of type boolean and formulas from the propositional logic as guards. The
correctness criterion is the well-formedness of the corresponding boolean net,
which is too strict for some practical applications.

Another approach is to consider the transition systems-based semantics. In
[16], [2] and [12], the dynamic behavior of an EPC is defined in terms of transition
systems. In [2] and [12], the state of an EPC is defined as a mapping of the set
of arcs to {0, 1} and is represented by the presence or absence of process folders
on the arcs of the EPC. Moreover, [2] proposes a non-local semantics of the xor
and or join connector that refers to checking certain conditions that depend on
the overall behavior of the EPC. An xor join has to wait for a folder on one of
its input arcs in order to propagate it to its output arc. However, if a process
folder is present or could arrive at some other input arc, the xor join should not
propagate the folder. For an or join, the propagation of a process folder from
its input arcs is delayed as long as a process folder could possibly arrive at one
of the other input arcs. Computing the transition relation of an EPC has been
implemented and tested in [5] using symbolic model checking.

In our paper we consider the semantics of extended event-driven process
chains, i.e. EPCs extended with data, resources, and time as it is specified in the

200 K. van Hee, O. Oanea, and N. Sidorova

ARIS Toolset [9]. We provide a formal definition of their semantics in terms of a
transition system. This can be further used as a base for behavioral (functional)
verification of eEPCs using different model checkers.

Furthermore, we provide a translation to timed colored Petri nets and formu-
late some correctness criteria for eEPCs that can be checked on the translated
eEPCs using CPN Tools.

Future work. For future research, it would be interesting to consider an auto-
matic translation of eEPCs to colored Petri nets and perform verification exper-
iments on large case studies. Since verification by model checking could lead to
a blow-up of the state space, reduction techniques would be beneficial (see [8]
for an overview). Another line of investigation is the development of a classifi-
cation of correctness requirements for business processes like it is already done
for software processes [14].

References

1. W. van der Aalst. Formalization and verification of event-driven process chains.
Information and Software Technology, 41(10):639–650, 1999.

2. W. M. P. van der Aalst, J. Desel, and E. Kindler. On the semantics
of EPCs: A vicious circle. In EPK 2002, Proceedings des GI-Workshops
und Arbeitskreistreffens (Trier, November 2002), pages 71–79. GI-Arbeitskreis
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten, 2002.

3. The CPN Tools Homepage. http://www.daimi.au.dk/CPNtools.
4. A. Cheng, S. Christensen, and K. Mortensen. Model Checking Coloured Petri Nets

Exploiting Strongly Connected Components. In M. Spathopoulos, R. Smedinga,
and P. Kozak, editors, Proceedings of the International Workshop on Discrete Event
Systems, WODES96, pages 169–177, 1996.

5. N. Cuntz and E. Kindler. On the semantics of EPCs: Efficient calcula-
tion and simulation. In M. Nüttgens and F. J. Rump, editors, EPK 2004:
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten, Gesellschaft
für Informatik, pages 7–26, Bonn, 2004.

6. R. Davis. Business Process Modeling with ARIS: A Practical Guide. Springer-
Verlag, 2001.

7. J. Dehnert. A Methodology for Workflow Modeling - From business process model-
ing towards sound workflow specification. PhD thesis, TU Berlin, 2003.

8. C. Girault and R. Valk. Petri Nets for Systems Engineering - A Guide to Modeling,
Verification, and Applications. Springer, 2003.

9. IDS Scheer AG. ARIS Methods Manual, 2003.
10. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical.

Springer-Verlag, 1992.
11. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation: Iterative

Process Prototyping. Addison-Wesley, 1998.
12. E. Kindler. On the semantics of EPCs: A framework for resolving a vicious circle.

In J. Desel, B. Pernci, and M. Weske, editors, Business Process Management, BMP
2004, volume 3080 of Lecture Notes in Computer Science, pages 82–97. Springer,
2004.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 201

13. P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event-
Driven Process Chains. In 19th Int. Conf. on Application and Theory of Petri
Nets, volume 1420 of LNCS, pages 286–305. Springer, 1998.

14. G. S. A. Matthew B. Dwyer and J. C. Corbett. Patterns in Property Specifications
for Finite-state Verification. In Proceedings of the 21st International Conference
on Software Engineering, 1999.

15. K. G. Nüttgens and A.-W. Scheer. Semantische Prozeßmodellierung auf der
Grundlage Ereignisgesteuerter Prozeßketten (EPK). Technical report, Scheer, A.-
W. (Hrsg.): Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89,
Saarbrücken, 1992.

16. M. Nüttgens and F.J.Rump. Syntax und Semantik Ereignisgesteuerter Processket-
ten (EPK). In J. Desel and M. Weske, editors, Promise 2002- Processorientierte
Methoden und Werkzeuge für die Entwiklung von Informationssystemen, volume
LNI, pages 64–77, 2002.

17. A.-W. Scheer. ARIS : business process modeling. Springer-Verlag, Berlin, 2nd
edition, 1998.

	Introduction
	Syntax of Extended Event-Driven Process Chains
	Syntax of EPCs
	Syntax of Extended EPCs

	Semantics of eEPCs
	Verification of eEPCs Using CPN Tools
	Transformation of eEPCs into TCPNs
	Verification

	Related and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

