
Reasoning on Dynamically Built
Reasoning Space with Ontology Modules

Fabio Porto
EPFL - Ecole Polytechnique Fédérale de Lausanne
School of Computer and Communication Sciences
Database Laboratory, 1015 Lausanne, Switzerland

Fabio.porto@epfl.ch

Abstract.
Several applications require reasoning over autonomously developed ontologies. Initially

conceived to explicit the semantics of a certain domain, these ontologies become a powerful
tool for supporting business interactions, once heterogeneities have been solved and
inconsistencies eliminated. Unfortunately, a stable coherent logical state is hard to maintain in
such an environment, due to normal evolution carried out independently over individual
ontologies. As a result, reasoning over autonomously developed ontologies has to face with
both heterogeneity and inconsistency, in order to assure correct answering. In this paper we
study the problem arising in these settings. We propose an incremental reasoning approach
based on a virtual reasoning space that is filled with relevant ontology entities as query
answering progress. We show how to identify the set of relevant entities with respect to a user
query using a set theory approach and illustrate the solution with a use case exploring the web
service discovery scenario.

1. Introduction

The use of ontologies to formally describe a domain has been adopted
by applications in various areas like bioinformatics[1,12,13], business
[14,15], transportation [16,17] etc.. Such increasing interest on
ontologies to support all kinds of web related and web agnostic
applications do not, however, point to a future global and uniform
ontology [18] but rather to a set of autonomously specified ones. In
spite of considering this characteristic as precluding the use of such
ontologies, many authors have investigated a more general strategy for
reasoning over ontologies that are distributed and autonomously
specified [2,7,19,20,21].

Reasoning over distributed and autonomous developed ontologies
has to face a number of new challenges. First, current reasoners [23]
consider ontology as forming a single logical theory. Unfortunately,
both distribution and autonomy adversely contribute to such a view.
Therefore in order to use current reasoning software the set of
autonomous developed ontologies must be aligned and integrated into a

single consistent ontology. Second, as in the context of database
integration [22], and to allow building a single logical theory, definition
on different ontologies must be aligned by the use of correspondence
expressions. Thirdly, the set of involved ontologies may get to a quite
voluminous amount of data. As a result, a naïve solution of transferring
all ontologies to a location and then proceed with local reasoning does
not scale up. Finally, autonomously defined ontologies may assert
contradictory definitions, which some authors classify as conflicts in
the integration process. Conflicts identification is, in fact, a tool for
fixing correspondence assertions and applying ontology alignment. So,
reasoning under this setting should be capable of identifying such
conflicts and acting appropriately.

 In this paper, we propose a new strategy for building a single
ontology out of autonomously developed ones to answer an ontology
query. We consider an ontology together with a set of correspondences
with other ontologies forming a ontology module. Ontology queries
submitted to modules are answered by reasoning over a dynamically
built reasoning space comprising relevant ontology entities captured
among autonomous developed ontologies. We give some initial ideas
on how to dynamically build a reasoning space and point to further
research issues.
The rest of this paper is structured as follows. Section 2 presents the
concepts of ontology spaces and ontology modules. Next, section 3
develops the strategy of building a reasoning space to answer reasoning
queries over an ontology space. Section 4 uses a scenario of web
services discovery to illustrate the approach. In section 5, we comment
on relevant related work and, finally, section 6 gives our conclusions
and point to some future work.

2. Ontology Space and Modules

Autonomously developed ontologies emerge quite naturally in different
business areas. However as business evolves, interactions among
partners promote the extension of each one’s activities towards a
network of interrelated process and data. If automation is required to
support the business process, the independent developed ontologies
may prove useful in solving semantic misunderstandings by offering a
wider semantic cover for reasoning tasks.

We name a set of autonomously specified ontologies over which an
hypothetical reasoner could evaluate an ontology query an ontology
space (OS). Giving two ontologies taking part in a OS, we say that they
intersect if there is a known correspondence assertion associating
entities in both ontologies.

The set of entities specified in a ontology together with a set of
correspondences expressed with entities in other ontologies define an
ontology module (M). The underlying ontology of a module is named
its base ontology. An ontology entity in a module is either defined in its
base ontology, local entity, or added to it by an equivalence
correspondence with an external entity, specified in a different
ontology. The concept of modules is similar to context in C-OWL [2].

Definition 1: A module is a set Mo = <id, D, L, C, Ob, Os>,
where id corresponds to a Unique Resource Identifier (URI) for
the module, D is the description of the module, either expressed in
natural language or by means of an ontology language; L is the
ontology language used in Mo; C is a set of correspondences
(defined below) associating local entities with entities defined in
external modules; Ob is the base ontology and Os is the set of
external ontologies to which correspondences with local entities
are specified.

The ontology description should aid both humans and machines in
selecting modules. Such descriptions may include domain
characteristics, non-functional properties, and assumptions. The latter
can be used, for instance, in deciding which modules to consider in
answering a query.

Definition 2 below specifies valid correspondences between ontology
entities[2].

Definition 2: An ontology correspondence is a relation in one of
the following forms:

• C ≡ D (for class equivalence)
• C ⊆ D (for subsumption)
• C ⊇ D (for superset)
• R ≡ S (for relationship equivalence)
• v ≡ t (for instance equivalence)

 where (C, R, v) and (D, S, t) are, respectively, local and external
entities with respect to a module. C is of type class, D is a class
expression of the form f(t1,...,tn), where the terms ti are either class
names or class expressions and f is an n-ary class builder operator, R
and S are ontology relationships, and v and t are instances [2].

Correspondences are specified from a module designer point of view.
They contribute to the semantic autonomy of each module by giving
local interpretation to external entities, with no impact on their
semantics in the original ontologies. We further consider that the
ontology correspondences complements the base ontology’s definitions
and can be locally validated indicating eventual conflicts.

We also define a peer P=<Mo,QL> that models a software
component capable of answering ontology queries expressed in QL
language over an ontology module Mo. A peer system is a set PS= ∪
Pi.

3. Reasoning Space

We use the term reasoning space (RS) to denote a virtual ontology
that is dynamically built to answer an ontology query over an ontology
space.

A reasoning space includes the base ontology associated to a module
that receives the query and complementary elements gathered from
external ontologies. Entities of a reasoning space share the same
ontology language and form a single ontology.

Definition 3: A Reasoning space RS is defined as: RS ⊆ {O ∪ C},

where O is an ontology space and C is the set of correspondences
associating elements in O.

Definition 4: We also define a reasoning space mapping function

f(Q,RS,O):RS’ that given: a ontology query Q, a reasoning space RS
and a ontology space O, produces a new reasoning space RS’.

The mapping function f expands RS during query evaluation.

Reasoning on a RS is done incrementally as relevant entities in external
ontologies are identified and added to it. As soon as the query is
decided, the incremental process ceases.

Figure 1 Ontology space

Let us motivate the discussion on reasoning space by aid of a simple

example, as illustrated in Figure 1. The picture presents an ontology
space O, comprised of two ontologies, O1 and O2. Module M1={O1,C1}
includes its base ontology O1 and a set of equivalence type of
correspondences C1, associating entities defined in O2. One may clearly
identify that the complete logical theory is inconsistent as the
subsumption relation between O1:y1 and O1:x1 should also hold in O2 as
a result of C1. Unfortunately, as a result of the evolution of
autonomously managed ontologies, we should expect that
inconsistencies like this one are prone to emerge and should be
considered when reasoning over the ontology space.

In order to complete the example, a ontology query Q, Q= x1 ⊆ x2, is
submitted1 to ontology module M1. Query Q can not be decided using
uniquely entities specified in M1 base ontology O1, therefore the
mapping function f(Q,O1∪C1,O):RS1 is computed to extend the original
reasoning space comprised initially of the union of ontology O1 and the
correspondence set C1. The mapping function f identifies a set of
relevant entities in O2 to be included into the reasoning space of query
Q. Relevant entities are those in O2 associated to entities in C1 that
appear in Q, RE={ y1, x2, x3, y1 ⊆ x2, x2 ⊆ x3, x1 ⊆ x3 }. The reasoning
space RS is augmented with relevant entities in R, RS` = O1 ∪ R, and

1 We consider the existence of a query answering system on top of each module
forming a P2P network

Y1

x1

Y1

x1

x2

x3

=

=

O1

O2

subsumption
correspondence

reasoning over RS’ can proceed. Having all the entities relevant for
query Q, RS’ has sufficient knowledge for deciding the query. As a
matter of fact, RS’ will bring up the existing inconsistency in the
ontology space, providing an opportunity for alignment between
ontologies and correspondences2.

3.1. Ontology Query Model

We consider boolean DL conjunctive queries where users want to
check on satisfiability with respect to a ontology space. These query
types are important for applications like web service discovery, where a
matching process requires to verify subsumption and equivalence
between goals and web service description terms, as well as
satisfiability of instance of concept expression [4].

Our approach is based on set theory, as adopted in [25], in the
context of web service discovery. In this context, a query expresses a
conjunction of disjoint sets of objects.

Definition 4: An ontology query is in reduced clause form RCF [25]

if given Q= q1 ∧ q2 ∧ … ∧ qn , where qi is a clause modeling a set of
objects, then qi ∩ qj = ∅, i ≠j, 1≤ i,j ≤ n.

In our example, the query Q=x1 ⊆ x2 includes a single clause,
restricting the concept x2.

A query in RCF is satisfied if we can prove that each of its disjoint

sets is a subset of some set of objects in RS.

3.2. Finding Relevant Entities on the Ontology Space

As discussed above, the mapping function identifies relevant entities on
the ontology space to be considered in extending the reasoning space.
A strategy for identifying the set of relevant entities is the objective of
this section.

Identifying relevant entities is achieved in two steps. In the first step,
we check for relevant correspondences in the current reasoning space

2 We do not address in this paper solutions to conflicting situations.

and, in the second step, a new query for obtaining relevant entities is
submitted to the respective ontology module.

Definition 5: a relevant correspondence defines a set of objects with

a non empty intersection with a RCF query clause.

As an example, for query Q and correspondences C1={O1: x1≡ O2:

x1, O1: y1≡ O2: y1}, we have that x1 ⊆ x1 and x1 ⊆ y1. Therefore the
relevant correspondence set RC=C1.

Next, we need to query the corresponding ontology modules for

relevant entities. Similarly with Definition 5, the set of relevant entities
in ontology modules, RE, are those concepts and roles whose
corresponding object set intersects with objects in the RC set.

In our initial example, RE= O2 ∩ RC, thus RE= {y1, x2, x3, y1 ⊆ x2,

x2 ⊆ x3, x1 ⊆ x3}.

3.3. Answering Queries over the Reasoning Space

A reasoning space is obtained by successively extending a prior
version. The extension includes the relevant entities obtained in the
process as described in section 3.2 and the correspondences fetched
from the target module.

Once obtained, a traditional reasoner evaluates the query over the
reasoning space. The process finishes when, either the query has been
decided or there is no more possible extension of the reasoning space.

In case an inconsistency is detected a user intervention may be
requested to allow for process continuation.

3.4. Dealing with Global Interpretation

In a ontology space made of autonomous independent ontologies,
reasoning has to consider how to interpret definitions to which explicit
correspondences have not been specified. In the running example,
analyzing the satisfiability of query Q=x1 ⊆ x2, depends on the given
interpretation for both x1 and x2. If a local interpretation is assumed, by

prefixing each ontology entity with a local identification, then
satisfiability is only achieved if explicit correspondences associate
query terms interpretation with ontology entities used for reasoning.
 On the other hand, one may be interested in possible answers for the
reasoning query. In this scenario, entities computed as relevant that
present the same term are considered as having an implicitly
equivalence correspondence. The motivation for such assumption is
that relevant entities are taken from the intersection set of query clause
with relevant correspondences (see section 3.2) in the remote ontology.
This reinforces that both terms share the same semantic context and,
thus, may be equivalent. Producing possible answers may include
providing users with a list of assumed correspondences, so that further
processing may analyze its pertinence.

4. Applying the Reasoning Space Approach into a Use Case

In this section, we illustrate the procedure for reasoning over a
reasoning space as presented in section 3 above. We consider a use
case in which users search for Web services that provide car rental
services.

We take the approach presented in [3] in which Web service
functionality (or capability in WSMO terms [4]) is described by means
of conjunctive formulae [5] indicating the objects involved in the
functionality provided by the Web service and relationship between
these objects. Correspondingly, user queries are grounded conjunctive
queries that express the desired service, which in WSMO is called a
Goal.

Thus, finding a Web service that satisfies the user corresponds to
matching the user goal against descriptions of Web service
functionality. Unfortunately, very often, terminologies used in
describing the goal and the web service functionality may be different.
This is where the ontology space comes into the game. It provides the
means to verify the correspondences between terms used in the goal
and web service functionality definitions.

In this context, let us consider an ontology space OS={O1,O2}, with
its corresponding modules M={M1, M2} that are used by the matching
algorithms to eliminate ambiguities and heterogeneities in between goal
and web service description terminology.

An agent looking for booking a sportscar in the city of Lausanne, as
part of a tourism package, would initiate a Web service discovery
process by submitting a corresponding goal to the system. Let’s assume
that a single Web service has been advertised by offering as one of its
functionalities the rental of a set of car models in Europe.

The agent’s goal g and Web service description ws would be
expressed as below:

 g = carRental and model(sportscars) and place(Lausanne)
 ws = carRental and model(Ferrari) and place(Europe)

Based on this input, the discovery process initiates a matching
function which analyzes the correspondences between predicates
carRental, model and place in g and ws. These, however, cannot be
directly matched because of the semantic heterogeneity between the
goal and the web service description. Ontological support is needed to
overcome the semantic gap. Thus, the matching function submits a
query to module M1 to find out whether Ferrari is a model of sportscar
and Lausanne is a place in Europe, which would lead to a successful
match between the goal g and the web service description ws. The
query to M1 is expressed as:

q: Ferrari ⊆ sportscar and Lausanne ⊆ Europe

The reasoning task is evaluated considering the module

M1=<1,d,l,C1,O1,O2>, exemplified in Tables:T1 and T2.

Table 1. Ontologies O1 and O2

O1 O2
Concept(Car) Concept(vehicle)
Concept(turbo_engine_car) Concept(sportscar)
Concept(Lausanne) Concept(Ferrari)
Concept(EU) Concept(Europe)
Turbo_engine_car ⊆ Car sportscar ⊆ vehicle
Lausanne ⊆ EU Ferrari ⊆ sportscar

Table 2. Ontology Correspondence Definitions c1

c11: O1: turbo_engine_car ⊇ O2:
Ferrari
c12: O1: EU ≡ O2: Europe

Query q is in RCF, presenting clauses t1= Ferrari ⊆ sportscar and t2=

Lausanne ⊆ Europe. The evaluation of q initially considers the
reasoning space RS= O1 ∪ C1. In this context, clause t2 can be decided
by using correspondence c12, the same not being observed with respect
to the clause t1 that remains undecided. The evaluation of q proceeds by
extending the initial reasoning space towards relevant entities defined
in O2, with respect to t1.

The logical expression in t1 specifies the set of objects where Ferrari
is a subset of sportscar. Analyzing the set of relevant correspondences
in C1, c11 is identified as providing the set of objects where Ferrari is a
turbo_engine_car, thus c11 ∩ t1 ≠ ∅ and is chosen to compose the set
of relevant correspondences. The relevant entities of O2 with respect to
c11 is obtained by evaluating RE= {O2 ∩ c11} => {Concept(vehicle),
Concept(sportscar), Concept(Ferrari), Ferrari ⊆ sportscar, sportscar ⊆
vehicle}.

Finally, the reasoning space RS is augmented with RS= RS ∪ RE and
the evaluation of t1 can take place.

An attentive reader may argue that the query rewriting approach [6]
could be used to decide on query q without the burden of formulating a
global RS. This would be the case if we could guarantee consistency
over ontologies in the ontology space. As discussed in section 1,
conflicting definitions among participating ontologies may raise as a
result of autonomous ontology evolution. In this context, if queries are
rewritten and evaluated over single ontologies, such conflicts would be
impossible to detect, bringing eventually to users contradictory
answers, which justifies the proposed approach for reasoning over a
single logical theory that is incrementally extended.

5. Related Work

Ontology modularization is a new research issue that has attracted the
attention of researchers dealing with large and distributed ontologies. In

this section, we summarize some of the works that have been
developed in this context.

The composition approach has been targeted by C-OWL [2], which
aims to support the scale-up of large and distributed ontologies by
specifying an ontology as the result of linking autonomously developed
ontologies. In C-OWL, a set of independent ontologies form a context
OWL space, where each ontology Oi is enriched by components
defined on external ontologies Oj mapped according to Oi
interpretation. A bridging language is specified for defining mappings
(coordination) with some predefined associations like: subsumption (c-
owl:into), equivalence(c-owl:equivalence), containement(c-owl:onto),
disjunction (c-owl:incompatible) and intersection (c-owl:compatible).
A consequence of the C-OWL approach is that by defining their own
mapping rules, a local ontology may get inconsistent but would not
affect the consistency of the remaining ontologies. We adopt the same
principles presented in C-OWL regarding correspondences among
ontologies.

Another interesting approach for reasoning over autonomously
developed ontologies is proposed in the context of the WonderWeb
project [7].The requirements suggested in the work comprise: loose
coupling, self-containment, and integrity. The first point, loose
coupling, corresponds to the idea of autonomously developed
ontologies, regarding language specification and instance
interpretation. The second issue regards autonomous reasoning. In this
sense, a module should offer a complete reasoning context for a certain
application. Finally, integrity is associated to a correct reasoning in the
presence of autonomous modules. Based on these principles, the work
proposes a modularization approach where self-contained modules are
cross connected through materialized views expressed as conjunctive
queries. The connection of modules thereof is obtained by defining an
equivalence relation between a concept in a module (local ontology)
and the result of evaluating a query on an external ontology. The result
produced by evaluating the connection view is materialized into the
local ontology as new axioms, contributing to the definition of a self-
contained module. A procedure for managing updates in an external
ontology definition is also proposed. The authors argue that the
proposed mapping language, expressed as conjunctive queries, is more
expressive than standard methods of directing referencing objects in an
external ontology, such as adopted in OWL import strategy [8].

The problem of semi-automatically defining modules from an initial
single ontology is being studied by Menken, Stuckenschmidt and
Wache [9] within the context of KnowledgeWeb. In their work, a graph
based approach for representing relevant ontology definitions provides
for some algorithmic and heuristic analysis leading to suggestions on
the partition of a ontology into a set of modules. The approach targets
to achieve modularization by identifying clusters of semantically
related concepts. Semantic relatedness is extracted by representing in
the dependency graph concepts as nodes and their relationship with
other concepts and properties as weighted edges. In general, the
approach is structured into the following steps: (1) build a dependency
graph; (2) determine the strength of dependencies; (3) identify modules
and (4) improving partitioning. A tool has been put into place that
integrates and extends different components. It captures ontologies
stored in a Sesame repository and builds the dependency graph. Next,
an external program computes the clusters based on the dependency
graph and some user defined parameters. Further cluster analysis uses a
network analysis tool to compare different partitioning propositions.

 In [21] a proposal for reasoning on distributed ontolgies with
correspondences is presented. The goal is to define a theoretical
solution for the problem of global subsumption and to propose a P2P
implementation that assesses the practical adequacy of the proposal.
Their main result is to prove that sub-sumption between remote
ontology entities can be proved using local sub-sumption relationships
and correspondences between relevant entities on both ontologies. This
leads to global entailment and offers a solution for the problems we
investigate in this paper. The strategy can be seen as based on query
rewriting approach, similar to what is done in database integration, with
distributed reasoning applied using distributed local tableau. Local
inconsistencies are treated as holes[2].

6. Conclusion

Reasoning over distributed and heterogeneous ontologies is not an easy
task. First, there are no currently available distributed reasoners.
Second, keeping correspondences between ontology entities up to date
is hard as ontologies evolve. Third, as ontologies cover more complex
domains their size augments precluding a complete transfer of whole

ontologies to the queried peer. Finally, inconsistencies among
ontologies may offer users contradictory answer that would be hard to
detect once the whole result has been produced.

In this paper, we presented a strategy for reasoning over a set of
autonomously managed ontologies with correspondences defining local
interpretations for foreign defined ontology entities. In our approach, a
reasoning space is built including relevant ontology entities, with
respect to a ontology query, found in foreign ontologies. Relevant
entities are obtained by computing intersections among ontology
entities and query clauses. Entities thus after discovered fill the
reasoning space allowing the use of efficient and available reasoner
tools.

The approach presents solutions to all identified problems but also
brings to light new questions. As a matter of fact, deciding on
inconsistencies on such a autonomous settings is not easy as it has been
discussed with respect to non explicit correspondences. Clearly, a more
precise comparison of our approach with other distributed ontology
reasoning based on query rewriting [21] is of primordial importance to
evaluate the benefits of building a reasoning space. This is in our list of
future work. We also plan to implement our approach in a P2P system
developed in the context of the DIP project. Finally, we also want to
investigate a cost model for expanding the reasoning space. The main
intuition is that there are innumerous equivalent paths to follow in
exploring the ontology space. A cost model based on previous
reasoning tasks and statistics regarding individual ontology entities
should certainly contribute to reduce the query elapsed-time.

References

1 M. Ashburner,C. Ball, J.A. Blake, D. Botstein, H. Butler, J.M.
Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A.
Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C.
Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock,
Gene Ontology: tool for the unification of biology, Nature Genetics,
V(25), 2000.

2 Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano
Serafini and Heiner Stuckenschmidt, C-OWL: Contextualizing

Ontologies, 2nd Intl. Semantic Web Conference, Sanibel Island,
Florida, USA, pp. 164—179, 2003.

3 U. Keller, R. Lara, A. Pollares, I. Toma, M. Kifer and D. Fensel,
”WSMO Web Service Discovery”, D5.1 v 0.1, WSML Working
Draft, November, 2004.

4 H. Lausen, D. Roman, and U. Keller, Web Service Modeling
Ontology – standard (WSMO-standard), v. 1.0, working draft, DERI,
2004. http://www.wsmo.org/2004/d2/v1.0.

5 S. Ceri, G. Gottlob, L.Tanca, Logic Programming and Databases,
Springer-Verlag, 1990.

6 D. Calvanese, G. De Giacomo, M. Lenzerini, and Moshe Y. Vardi,
“View-based Query Processing: On the Relationship between
Rewriting, Answering and Lossleness, ICDT, LNCS 3363, pp. 319-
334, 2005.

7 Heiner Stuckenschmidt, Michel Klein, Modularization of Ontologies,
WonderWeb: Ontology Infrastructure for the semantic Web, Del 21,
V.0.6, May 14,2003 .

8 Sean Bechhofer, Frank van Harmelen, Jim Hendlera, Ian Horrocks
and et all, OWL Web Ontology Language Reference,
Recommendation 10 Feb. 2004, W3C
Recomendation,http://www.w3.org/TR/owl-ref/, last access, April
2005.

9 M. Menken, H. Stuckenschmidt, H. Wache, private communication,
2005.

10 Christelle Vangenot, Christine Parents and Stefano Spaccapietra,
Modeling and manipulating multiple representations of spatial data,
Proceedings of the International Symposium on Spatial Data
Handling (SDH 2002), July 9-12, Ottawa, Canada, 2002.

11Mustafa Jarrar, Ontology Modularization and composition,Workshop
on Ontology Modularization and context, Dec. 14, Brussel,
Belgium,2004.

12 Sidhu, A. S., T. S. Dillon, et al. (2004). Protein Knowledge Base:
Making of Protein Ontology. HUPO 3rd World Congress 2004,
Beijing, China.

13 R. Stevens, C.A. Goble, and S. Bechhofer. Ontology-based
Knowledge Representation for Bioinformatics. Briefings in
Bioinformatics, 1(4):398-416, November 2000.

14 Gruninger, M., Atefi, K., and Fox, M.S., (2000), "Ontologies to
Support Process Integration in Enterprise Engineering",

Computational and Mathematical Organization Theory, Vol. 6, No.
4, pp. 381-394.

15 Fox, M.S., Barbuceanu, M., Gruninger, M., and Lin, J., (1998), "An
Organisation Ontology for Enterprise Modeling", In Simulating
Organizations: Computational Models of Institutions and Groups, M.
Prietula, K. Carley & L. Gasser (Eds), Menlo Park CA: AAAI/MIT
Press, pp. 131-152

16 http://www.daml.org/ontologies/409, last access 24/05/2005.
17 M. Becker and S. Smith, An Ontology for Multi-Modal

Transportation Planning and Scheduling, tech. report CMU-RI-TR-
98-15, Robotics Institute, Carnegie Mellon University, November,
1997.

18 Ian Niles, Adam Pease, Towards a Standard Upper Ontology,
Proceedings of the international conference on Formal Ontology in
Information Systems - Volume 2001, Ogunquit, Maine, USA pp:2-
9, 2001

19 M.Bonifacio, P. Bouquet, G. Mameli and M. Nori, “Kex: a Peer-to-
Peer solution for Distributed knowledge Management”,
AAMAS'2003.

20 C. Ghidini and L. Serafini. Distributed First Order Logics. In
Proceedings of the Frontiers of Combining Systems,pages 121-
139,2000.

21 L.Serafini and A.Tamilin. Distributed reasoning services for
multiple ontologies. Technical Report DIT-04-029, University of
Trento, 2004.

22 Thomas Devogele, C. Parent, S. Spaccapietra, On spatial database
integration, Int. J. Geographical Information Science, v(12), n(4), pp.
335-352, 1998.

23 Volker Haarslev† and Ralf M Oller‡, Racer: An OWL Reasoning
Agent for the Semantic Web, In Proceedings of the International
Workshop on Applications, Products and Services of Web-based
Support Systems, in conjunction with the 2003 IEEE/WIC
International Conference on Web Intelligence,Ê Halifax, Canada,
October 13, pages 91–95, 2003.

24 K. Aberer, A. Datta, M. Hauswirth, R. Schmidt,“Indexing data-
oriented overlay networks“, VLDB, 2005

25 B. Benatallah, M. Hacid Al. Leger, C. Rey and F. Toumani, “On
automating Web Service Description”, VLDB Journal, V(14), pp.
84-96, 2005.

