Abstract
Reliability is a well-known concern in the field of personalization technologies. We propose the extension of an ontology-based retrieval system with semantic-based personalization techniques, upon which automatic mechanisms are devised that dynamically gauge the degree of personalization, so as to benefit from adaptivity but yet reduce the risk of obtrusiveness and loss of user control. On the basis of a common domain ontology KB, the personalization framework represents, captures and exploits user preferences to bias search results towards personal user interests. Upon this, the intensity of personalization is automatically increased or decreased according to an assessment of the imprecision contained in user requests and system responses before personalization is applied.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anyanwu, K., et al.: SemRank: Ranking Complex Relationship Search Results on the Semantic Web. In: 14th Intl. World Wide Web Conference (WWW 2005), Chiba, Japan (2005)
Bloehdorn, S., Petridis, K., Saathoff, C., et al.: Semantic Annotation of Images and Videos for Multimedia. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 592–607. Springer, Heidelberg (2005)
Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for the Web. In: Proc. of the 10th Intl. World Wide Web Conference (WWW10), Hong Kong (2001)
Gauch, S., Chaffee, J., Pretschner, A.: Ontology-based personalized search and browsing. Web Intelligence and Agent Systems, vol. 1(3-4), pp. 219–234. IOS Press, Amsterdam (2003)
Guha, R.V., McCool, R., Miller, E.: Semantic search. In: Proc. of the 12th Intl. World Wide Web Conference (WWW 2003), Budapest, Hungary, pp. 700–709 (2003)
Jansen, B.J., Spink, A.: An Analysis of Web Documents Retrieved and Viewed. In: Proc. of the 4th International Conference on Internet Computing, Las Vegas, Nevada, pp. 65–69 (2003)
Micarelli, A., Sciarrone, F.: Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System. User Modelling and User-Adapted Interaction, vol. 14(2-3), pp. 159–200. Springer Science, Heidelberg (2004)
Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation, Indexing, and Retrieval. Journal of Web Sematics 2(1), 47–49 (2004)
Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)
Stojanovic, N., Studer, R., Stojanovic, L.: An Approach for the Ranking of Query Results in the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 500–516. Springer, Heidelberg (2003)
Vallet, D., Fernández, M., Castells, P.: An Ontology-Based Information Retrieval Model. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 455–470. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castells, P., Fernández, M., Vallet, D., Mylonas, P., Avrithis, Y. (2005). Self-tuning Personalized Information Retrieval in an Ontology-Based Framework. In: Meersman, R., Tari, Z., Herrero, P. (eds) On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops. OTM 2005. Lecture Notes in Computer Science, vol 3762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11575863_119
Download citation
DOI: https://doi.org/10.1007/11575863_119
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29739-0
Online ISBN: 978-3-540-32132-3
eBook Packages: Computer ScienceComputer Science (R0)