
SVG Web Environment for Z Specification

Language

Jing Sun1, Hai Wang2, Sasanka Athauda1, and Tazkiya Sheik1

1 Department of Computer Science,
The University of Auckland, New Zealand

j.sun@cs.auckland.ac.nz

{sath002, fshe009}@ec.auckland.ac.nz
2 Department of Computer Science,

The University of Manchester, United Kingdom
hai.wang@cs.man.ac.uk

Abstract. This paper presents a web environment for the Z formal spec-
ification language using the Scalable Vector Graphics (SVG) technology.
The Z Specification Web Editor (ZSWE) is the first prototype of a web
based graphical editor for the Z specification language. It not only sup-
ports graphical editing and global accessibility for the Z formal specifi-
cations, but also provides model comprehension facilities such as schema
expansion, specification navigation and model querying. This paper out-
lines the requirement, design and implementation of the tool and its
future improvements.

Keywords: Z formal specification language, Web based tool support,
Scalable Vector Graphics.

1 Introduction

Formal methods is defined as mathematically based techniques for the specifi-
cation, development and verification of software and hardware systems [1]. The
well-defined semantics and syntax of formal specification languages make them
suitable for precisely capturing and formally verifying system requirements. Z
is a formal specification language based on set theory and predicate logic [2].
It has been widely used in both industry and academic research for the spec-
ification and verification of software systems. The World Wide Web (WWW)
acts as a promising environment for software specification and design because it
allows sharing design models and providing hyper textual links among the mod-
els. Formal methods like the CafeOBJ system [3] have included an environment
supporting formal specification over the Internet. Schemas using pure Z nota-
tion on the web based on HTML and Java Applet have also been investigated
by Bowen et al. [4] and Ciancarini et al. [5]. Although HTML has been success-
ful in presenting information on the Internet, the lack of content information
and the overburdened use of the display tags have made the efficient retrieval
and exchange of information content more difficult to achieve. In 2001, Sun et
al. proposed an XML/XSL approach in presenting the Z/Object-Z languages

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 480–494, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SVG Web Environment for Z Specification Language 481

on the web [6]. It uses the XSL Transformation language to translate the XML
form of Z/Object-Z models into HTML for automated browser display. In their
approach, XML has been introduced as an interchange format for document-
ing Z specifications. However, the graphical support of the resulting Z model
display was still restricted on using HTML only. In this paper, we present an
approach of using the Scalable Vector Graphics (SVG) to implement a web based
environment for the Z specification language1. SVG is a World Wide Web Con-
sortium (W3C) recommended language for describing two-dimensional graphics
and graphical applications in XML. It can overcome the poor graphical support
in using HTML for displaying Z specifications on the web. The Z Specification
Web Editor (ZSWE) prototype tool presented in the paper uses the standard Z
Markup Language (ZML) format defined by Utting et al. in 2003 [7]. The ZSWE
tool not only supports true graphical editing for the Z formal specifications, but
also provides model comprehension facilities such as schema expansion, specifi-
cation navigation and model querying. There is some related work in providing
editing facility for the Z notation, such as the functions in Z/EVES, ZETA and
CADiZ. From an editing support point of view, most of those tools only provide
limited editing facility of Z specifications. Compared to our approach, they are
lack of additional model comprehension functions such as specification naviga-
tion and model querying. In comparison with other approaches in presenting
Z models on the web, our SVG prototype tool also provides a better graphical
display and editing supports for Z models over the internet.

The remainder of the paper is organized as follows. Section 2 introduces
background information on Z, ZML and SVG. In section 3, we discuss the var-
ious aspects regarding a specification environment for the Z language. Section
4 presents the architecture design of the web based specification prototype tool
- ZSWE. In section 5, we present some implementation issues of the ZSWE.
Section 6 gives an overview of the prototype tool. Section 7 concludes the paper
and discusses future improvements.

2 Background

2.1 The Z Formal Specification Language

Z [2] is a state-based formal language based on ZF set theory and first-order
predicate logic. It is specially suited to model system data and state changes. A
Z specification typically includes a number of state and operation schema defi-
nitions. A state schema encapsulates variable declarations and related invariant
predicates. An operation schema defines the relationship between the ‘before’
and ‘after’ states corresponding to one or more state schemas. Complex schema
definitions can be composed from the simple ones using the schema calculus. Z
has been widely adopted to specify a range of software systems. The following
is a state schema example of a Birthday Book specification taking from [2].

1 This work was supported in part by HyOntUse Project (GR/S44686) funded by the
UK Engineering and Physical Science Research Council.

482 J. Sun et al.

BirthdayBook

known : PNAME

birthday : NAME �→ DATE

known = dom birthday

The above defines a basic structure of a birthday book. The variable known
represents the set of people in the birthday book; and the variable birthday
is a partial function that associates the people’s names with their birth dates.
The state invariant imposes that the known set is set of the people who already
had their birthday recorded. Other operations such as ‘add’ or ‘find’ a birthday
record can be defined accordingly. In this paper, we will be using this Birthday
Book example to illustrate the requirements of a Z specification editor.

2.2 The Z Markup Language

EXtensible Markup Language (XML) is a global standard for representing infor-
mation in a textual format. The Z Markup Language (ZML) is defined to serve
as an XML interchange format for documenting Z specifications by Utting et al.
in [7]. Its syntax was based on the Z ISO International Standard format [8]. It
is recommended by the Community Z Tools Initiative (CZT) group that future
tool development on Z should follow this XML convention. In addition, a li-
brary of Java classes has been developed for the parser support of the ZML files.
The following denotes a partial ZML representation of the variable declaration
‘known : PName’ in the Birthday Book state schema example.

<VarDecl>

<DeclName>

<Word>known</Word>

</DeclName>

<PowerExpr>

<RefExpr Mixfix="false">

<RefName>

<Word>NAME</Word>

</RefName>

</RefExpr>

</PowerExpr>

</VarDecl>

We can see from the above example that ZML has a complex syntax structure
and it is intended for machine (tool) interpretation only.

2.3 Scalable Vector Graphics

Scalable Vector Graphics (SVG) is a language for describing two-dimensional
graphics on the web using a standard XML format [9]. It supports three types
of graphic objects:

SVG Web Environment for Z Specification Language 483

– Vector graphic shape: SVG provides pre-defined graphical shapes and a
path element which can be used to create any arbitrary two-dimensional
shape.

– Text: SVG has several elements that displays text in different layouts.
– Image: SVG supports other types of graphical images to be embedded in

SVG documents.

The data representation of conventional images is quite different to SVG.
Conventional images are broken into small pixels and the description (e.g., color
of the pixel) of each of these pixels has to be stored. Therefore, these images hold
a large file size. On the other hand, SVG provides the type of shape required
to be drawn, the coordinates, and the style of the shape in XML format. This
information can be translated by the SVG plug-in on the web browser as the
shape is displayed. An example of an SVG file that generates a simple rectangle
is shown below:

<svg width="100" height="100">

<rect x="10" y="10" width="50" height="50" style="fill:red"/>

</svg>

As shown in this example, the ‘rect’ tag informs the browser that the shape
is a rectangle with the coordinates and style of the rectangle provided. SVG also
supports the following aspects, which we found useful in developing the ZSWE
prototype tool:

– Animation support: SVG provides animation support on graphical shapes.
Such animation support includes dynamically changing the location, size,
style of a shape.

– Zoom-in and zoom-out: SVG supports zoom in/out features on its graph-
ical shapes. The graphical quality of the shape is maintained during the
zoom-in and zoom-out.

– Unicode support: SVG provides support to display Unicode symbols.
– DOM functionality: Since SVG is in XML format, other programming

languages can use the DOM functions to create the SVG DOM which can
be used to locate and access SVG content information.

3 Aspects of a Z Specification Editor

In this section we describe some of the key issues related to a web based editor for
the Z specification language. We summarize our requirements into five different
aspects, i.e., graphical display, schema expansion, specification navigation, model
querying, and specification validation.

3.1 Graphical Display

A Z specification consists of schema boxes and mathematical expressions. Z is a
language based on set theory and predicate logic, which consists of a rich set of

484 J. Sun et al.

mathematical symbols. The following defines the AddBirthday operation schema
in the Birthday Book example.

AddBirthday

∆BirthdayBook

name? : NAME

date? : DATE

name? �∈ known

birthday ′ = birthday ∪ {name? �→ date?}

The AddBirthday operation allows the users to add new birthday records into
the system based on the pre-condition that the person has not been recorded
before. From the above example, we can see that the first requirement of a
Z specification editor is to support elegant graphical display of Z schema box
drawings and the usage of mathematical symbols such as ‘�∈’,‘∪, ‘�→’ and so on.

3.2 Schema Expansion

In a Z specification, the full definition of a schema can be obtained by expanding
the inclusion section of the schema. For example, the expanded view of the
AddBirthday schema in the previous subsection is as follows.

AddBirthday

known, known ′ : P NAME

birthday , birthday ′ : NAME �→ DATE

name? : NAME

date? : DATE

known = dom birthday

known ′ = dom birthday ′

name? �∈ known

birthday ′ = birthday ∪ {name? �→ date?}

The above gives the full definition of the AddBirthday schema by expanding
the definitions inside the ‘∆BirthdayBook ’ expression. Another form of expan-
sion is the Z schema calculus. In a Z specification, complex operations can be
constructed by using schema calculus operators such as ‘∧’, ‘∨’ and so on. For
example, a ‘robust’ version of the RAddBirthday operations can be specified by
using the conjunction and disjunction operators on the AddBirthday, Success
and AlreadyKnown schemas in the Birthday Book example as follows.

Success

result ! : REPORT

result ! = ok

AlreadyKnown

ΞBirthdayBook

name? : NAME

result ! : REPORT

name? ∈ known

result ! = already known

SVG Web Environment for Z Specification Language 485

RAddBirthday �= (AddBirthday ∧ Success) ∨ AlreadyKnown

The RAddBirthday operation will insert a new record into the birthday book or
report the record has already been stored. The full definition of the RAddBirthday
schema can be obtainedby expanding the definitions in the AddBirthday,Success
and AlreadyKnown schemas as follows.

RAddBirthday

known, known ′ : P NAME

birthday , birthday ′ : NAME �→ DATE

name? : NAME

date? : DATE

result ! : REPORT

known = dom birthday

known ′ = dom birthday ′

(name? �∈ known ∧ birthday ′ = birthday ∪ {name? �→ date?} ∧ result ! = ok)

∨ (name? ∈ known ∧ birthday ′ = birthday ∧ result ! = already known)

Other forms of schema operators include schema composition ‘o9’, implication
‘⇒’, negation ‘¬’ and piping ‘>>’, which have been discussed in many Z books
[2]. The schema expansion is useful for analysis, review and reasoning about Z
specifications. For instance, in the case of calculating the pre-/post-conditions
related to a particular scheme operation, it is necessary to expand (unfold) the
full definition of schema before the calculation. Thus, the second requirement of
the Z specification editor is to support automatic schema expansions to display
a full definition of a schema as needed.

3.3 Specification Navigation

In a large Z model that contains quite a number of schemas, it is sometimes
hard for the users to keep track of all the definitions. In this case, it is desirable
for the users to be able to navigate from one point of definition to another by
referring to a schema name or a variable type. For example, in the following
FindBirthday schema, if the users would like to refer to the original definition
of the BirthdayBook, they should be able to navigate to its point of definition by
referring to the BirthdayBook schema name inside the operation. Similarly, vari-
able types, such as NAME, DATE, etc., should have the navigation facility as well.

FindBirthday

ΞBirthdayBook

name? : NAME

date! : DATE

name? ∈ known

date! = birthday(name?)

486 J. Sun et al.

As mentioned earlier, this kind of navigation feature is very useful when the user
is dealing with a large Z specification that contains quite a number of schema
definitions. It will not only help the user to obtain a good understanding of the
relationships among the schemas, but also provide easy accessibility for all the
definitions in the specification. Thus, the third requirement of a Z specification
editor is to support specification navigation that allows the users to navigate
from one point of the definition to another inside a Z model.

3.4 Model Querying

The idea of querying a Z model comes from the concept of specification compre-
hension, i.e., to obtain a better understanding of what has been modeled in the
specification. In general, specification comprehension is analogous to program
understanding. But the former is more complicated than program understand-
ing because programs are executable, while specifications are not necessarily to
be so [10]. Thus it is desirable for a specification tool to provide means for the
users to enhance the understanding of the static properties of a formal model it
represents. The query of a Z model is to fulfill such a comprehension facility. We
summarized four types of query functions on a Z model as follows.

– Schema query: provides information on the schemas in a Z model, such
as where this schema is used and how it is used, i.e., being included in or
modified in other schemas.

– Variable query: provides information on the variables in a schema, such
as the type of variables (state/input/output), in which schema or operation
the variable is defined or used, etc.

– Operation query: provides information on the operations in a Z model,
such as the variables and predicates that an operation has and so on.

– Reference query: provides cross-reference information on the schemas in
a Z model.

Querying is considered as a usability function. It is not an implicit element
of a Z specification. For example, Z schemas, functions, and its variables and
predicates can be considered as containing implicit elements of the Z model. But
model querying is search functionality for locating these implicit elements and
providing a better understanding of the underlying Z specification. Thus, the
fourth requirement of the Z specification editor is to support model querying
functions that allows the users to explore the static properties inside a Z model.

3.5 Specification Validation

Specification validation denotes the process of determining whether the spec-
ification is correct and a true reflection of the requirements that is meant to
capture. We summarized three levels of validation associated to a particular Z
model.

SVG Web Environment for Z Specification Language 487

– Syntax checking: to check whether a Z expression is written properly ac-
cording the Z language syntax.

– Type checking: to check whether an expression is correct according to the
type checking rules of the Z language. For example, we could define a syn-
tactically correct expression such as ‘x : N1’ where ‘x’ takes values from
the positive nature number set. But if we later assign a value of negative
integer to ‘x’, this is where a type inference error is occurred. Type check-
ing [11] techniques are usually applied for validating these kind of errors in
a specification.

– Semantic checking: to check the logical correctness of a Z specification.
Even if a Z specification is syntactically and type correct, there are still pos-
sibilities that the logical statements in the model might conflict each other
or the dynamic behaviors of the model does not truly reflects the require-
ment. These errors are related to the semantic meanings of the Z model.
Semantic checking usually requires more complicated techniques than that
of syntax and type checking. In general, theorem proving and specification
animation [12] are two approaches that can be used for the semantic checking
process.

We believe that a Z specification editing tool should provide some mecha-
nism to allow the users to validate whether their specifications are correct. Thus,
our last requirement of a Z specification editor is to support specification vali-
dation for checking the correctness of a Z model. In this section, we discussed
some general aspects related to a Z specification editing tool. And our prototype
implementation should closely follow some of these requirements.

4 Architecture Design of the ZSWE

Software architecture is an important level of description for the development
of software systems. It represents the high level structure of a system, which
comprise the definitions of software components involved, the external visible
properties of those components, and the communications among the compo-
nents. When consider the architecture of a web based application, there are
two major type of approaches, i.e., client-side based architecture and server-side
based architecture. Client-side applications are loaded from server and reside in
memory of the client machines. Complicated computations are done on the client
machines without having to request them from the server. Although this lessens
the overburdens on the server, the initial loading and response times of client-side
applications are slow. This is one of the major drawbacks of the approach. On
the other hand, server-side architecture handles all the complex computations on
the server and sends the results back to the client. Therefore, the client machine
is not under heavy load and acts as a simple web browser that posts requests
and display the results. This also provides the use of less bandwidth and gain-
ing faster web responses, as all processing is done on the server and web pages
are dynamically presented. In nowadays, as the web servers become increasingly

488 J. Sun et al.

powerful in terms of the computational capability, more and more web based
softwares choose the server-side architecture to provide an easy accessible and
‘thin client’ application. We decided to implement our ZSWE prototype tool on
the server side for the same reason. Figure 1 shows an overview of the sever-side
component architecture of the tool.

Controller

User

Fig. 1. ZSWE server-side architecture

As shown in the diagram, the client-side consists of the web browser, SVG
plug-in, and the client requests. It is the communication point between the server
and the actual client. The user can create/upload a Z specification to the server,
modify the information in the Z specification, or download an updated Z spec-
ification from the server. Note that the standard ZML syntax mentioned in
section 2.2 is chosen as the input/output interchange format for documenting
the Z specification in our tool. The server-side of the tool consists of components
that handles the corresponding computation of SVG elements. When a ZML file

SVG Web Environment for Z Specification Language 489

is uploaded to the server, the ‘ZMLReader’ component on the server processes
the file and generates the ZML-DOM representation of the specification. This
DOM is then passed to the ‘ZElementContainer’ component which creates the
‘ZElement’ objects according the information presented in the ZML-DOM. The
users can add new Z definitions, or update the existing definitions of a Z model.
This is also performed by sending the updating information to the server, the
‘ZElementUpdater’ component on the server finds the corresponding ‘ZElement’
object from the ‘ZElementContainer’ and performs the update. Once each of
the ‘ZElement’ objects has been created or updated, a SVG representation of
the specification is generated through the ‘SVGGenerator’ component. After the
server creates the graphical representation of the Z model in SVG format, it is
sent back to the client as a SVG file. The SVG plug-in which runs inside the
web browser identifies this file as a SVG document, and translates its tags into
proper graphical elements. Finally, these graphical elements are displayed in the
web browser.

Figure 1 also describes the architecture in a Model View Controller (MVC)
structure. MVC is a common architecture used by the modern software devel-
opers to increase modularity of the code. It divides the code into three mod-
ules: Model, View, and Controllers, which enables data flow between the Model
and View via the Controller. Each of these three modules acts independently
to maintain consistency. MVC architecture is commonly used in server-side de-
velopment because it enables the maintenance of multiple views of the same
system. As highlighted in the above diagram, the class structures is divided
in to major sub-components: Model, View and Controller. The Model contains
the components such as ‘ZMLReader’, ‘ZElementContainer’, ‘ZElement’ and so
on, to read the ZML file, creates its DOM, breaks the ZML-DOM into Z ele-
ments such as schemas, functions, definitions etc. The View can be considered
as all the SVG content related components such as the ‘SVGObject’, and the
server-side PHP script that generates them because these SVG files contain the
graphical interface of the tool. Finally, the data updating components such as
the ‘ZElementUpdater’ and the PHP script that maps the user actions to model
updates can be considered as the Controller elements of the MVC model. And
the updater script that performs the updates of SVG representation and the Z
element object also act as a Controller element.

5 Implementation Issues of the ZSWE

The main techniques involved in the implementation of the ZSWE prototype
tool are Scalable Vector Graphics (SVG), Hypertext Pre-processor (PHP) and
ECMA scripting.

5.1 SVG and ECMA Scripting

Our main issue in the implementation was to combine data information between
SVG and HTML. Since both HTML and SVG support web scripting functions,

490 J. Sun et al.

ECMA scripting is used for the implementation. ECMA scripting is a standard
for describing a web scripting language that can create a rich environment for a
web site. It provides built-in methods and classes to support XML-DOM. A web
browser allows ECMA scripting for client-side computing and also provides for
events such as mouse events, change of focus, image and page loading, selection
and form submission etc. It can be embedded in HTML and PHP to allow for
animation of objects and events. This scripting language is very useful in web
application as it provides the functionalities of object oriented programming that
cannot be achieved by using plain HTML. The following is an example that uses
ECMA scripting to perform dynamic updates on SVG elements by catching the
events triggered by these elements:

<svg width="100" height="100" onload=init(evt)>

<desc>

<script language="text/ecmascript">

<![CDATA[

var svgdoc;

function init(evt){

svgdoc=evt.getTarget().getOwnerDocument();

}

function mousePress(name){

var element=svgdoc.getElementById(name);

element.setAttribute ("height", "40");

}

]]>

</script>

<rect id="rectangle" x="10" y="10" width="40" height="100"

style="fill:red" onmouseclick="mousePress(’rectangle’)"/>

</desc>

</svg>

As show in the above code segment, the ECMA functions are embedded
inside the SVG content. When these SVG content is loaded onto a web browser,
the ‘onload’ event calls the ‘init’ method in the ECMA script. This method
assigns the SVG-DOM root object to a variable. As highlighted above, the SVG
‘rect’ element has an unique ID and a mouse-click event. When the user clicks
on the rectangle, the ‘onmouseclick’ event calls the ‘mousePress’ method in
the ECMA script, and sends the rectangle ID as its input. This method uses the
ID to get the rectangle object from the SVG-DOM. Then it changes the height
attribute of the rectangle object, which dynamically effects on the graphical
display.

5.2 SVG and PHP

When developing web based applications on the server-side, there are special
programming languages to handle the computation mechanism. We chose the
Hypertext Pre-processor (PHP) script language in our implementation. PHP
provides a good set of functions that are used for extracting and modifying

SVG Web Environment for Z Specification Language 491

information from XML documents. PHP version 4 and above includes functions
that can generate XML documents using XML-DOM. Therefore, the SVG code
can be generated by creating the XML nodes that represent the SVG pages. The
following is a segment of PHP code for generating the SVG example shown in
section 2.3.

$root = $doc->create_element("svg");

$root = $doc->append_child($root);

$root->set_attribute ("width", "100");

$root->set_attribute ("height", "100");

$rect = $doc->create_element("rect");

$rect = $root->append_child($rect);

$rect->set_attribute ("x", "10");

$rect->set_attribute ("y", "10");

$rect->set_attribute ("width", "50");

$rect->set_attribute ("height", "50");

$rect->set_attribute ("style", "fill:read");

The code segment displayed above first creates a new SVG canvas and set
its size, then create a SVG rectangle element and appends it to SVG canvas as a
child node. The position, size and the style attributes of the SVG rectangle are
set accordingly. From the above example, we can see that by using PHP we are
able to easily generate and modify SVG representations of Z models and sent
them back to the web browser for displaying.

6 ZSWE in Action

The ZSWE prototype tool consists of three main pages, i.e., the index page, the
SVG display page and the Z schema editing page2.

6.1 SVG Z Model Display

The SVG display page provides the main functionalities of the tool, such as
model display, schema expansion, navigation and querying. Figure 2 illustrates
the SVG display page of the ZSWE tool. The Z specification model is displayed
on the left hand side of the page. Navigation points are provided for each of
the schema names and type declarations to allow quick references among the
definitions. The down arrows represent expansion points inside the specification
to allow the user to view the full definition of a schema. The schema expansion
function was implemented using the SVG animation technique. In addition, a
zoom in/out feature was provided for the display page to allow the user to zoom
in and out on the Z models. On the right hand side of the page are the button
panel and the query panel. The button panel contains buttons for creating new
schema, give type, axiom definition and so on. There are two additional buttons
2 The Z Specification Web Editor (ZSWE) prototype tool is available at
http://www.cs.auckland.ac.nz/~jingsun/ZFSE/pages/index.php

http://www.cs.auckland.ac.nz/~jingsun/ZFSE/pages/index.php

492 J. Sun et al.

Fig. 2. The SVG display page

on bottom of the button panel where one is used to view the ZML document of
the current Z specification, and the other to download the ZML file.

Model querying is an important functionality that has been implemented in
the ZSWE tool. The query panel consists of four types of querying buttons, i.e.,
variable query, schema query, operational query, and reference query. Each of the
query functions provides model comprehension facilities described in section 3.4.
For example, in the case of a schema query, when the user click on the ‘Schema
Query’ button, a list of all the schema names in the Z model are displayed on the
query panel. After one of these listed schema names is selected, the query panel
provides the names of other schemas that has extended or used the selected
schema.

6.2 Z Schema Editing

By clicking on the editing the Z definitions button in Figure 2, a Z schema editing
page can be invoked to allows the user to make changes to the schema defini-
tions. The schema editing page can also be opened by the create new definition
buttons on the SVG display page. Figure 3 shows the functionality provide by
the ZWSE schema editing page. New variables and predication definitions of a
schema are input on the right panel and updated to the SVG display panel on
the left. A mathematics symbol panel is provided to assist the user for inputting
Z mathematical expressions. It uses the SVG Unicode representations for the dis-
playing of the mathematical symbols. Note that our mathematics symbol panel

SVG Web Environment for Z Specification Language 493

Fig. 3. Z schema editing page

adopts some of the symbol layout from the Z/EVES tool. After the modifications
have been made, new updates on the specifications are displayed on the main
SVG display page. The user can download an updated version of the ZML file
of the Z specification. As we mentioned in section 3.5, a Z specification editor
should provide some mechanism for checking the correctness of the Z model. In
our ZSWE prototype tool, we have implemented a syntax checking facility for
validating whether the Z specification is written according to a proper Z syntax.
The syntax checking is based on XML schema validation mechanism. Every time
when a Z specification is uploaded, its XML representation is validated against
the ZML schema definition.

7 Conclusion

In this paper, we presented a web environment for the Z formal specification
language. Different aspects of a Z specification editor were discussed. The design
and implementation of the Z Specification Web Editor (ZSWE) prototype tool
using the SVG technology was presented. Our ZSWE tool not only supports
graphical editing and global accessibility for the Z formal specifications on the
internet, but also provides model comprehension facilities such as schema expan-
sion, specification navigation and model querying. In addition, the ZSWE tool
also provides a basic Z syntax checking facility.

For the future extensions, firstly, our idea of the Z web environment can be
easily adopted to other formal specification languages such as Object-Z [13],
TCOZ [14] and so on. Both Object-Z and TCOZ have XML representations

494 J. Sun et al.

of their langauge syntaxes, thus such extensions should be straightforward. Sec-
ondly, as our ZSWE tool only supports syntax checking facility of the Z language
at the moment, one of the immediate future work could be to add type and some
semantic checking facilities into the prototype environment. Finally, our Z web
environment is currently an anonymous web user application. By providing a
login name and password for each user, online saving of the Z specification mod-
els can be achieved. This would enable different users to work on a same Z
specification model collaboratively and continuously.

References

1. From Wikipedia: (The Free Encyclopedia) Available at: http://en.wikipedia.
org/wiki/Formal methods.

2. Spivey, J.: The Z Notation: A Reference Manual. 2nd edn. International Series in
Computer Science. Prentice-Hall (1992)

3. Futatsugi, K., Nakagawa, A.: An Overview of CAFE Specification Environment.
In Hinchey, M., Liu, S., eds.: the IEEE International Conference on Formal Engi-
neering Methods (ICFEM’97), Hiroshima, Japan, IEEE Computer Society Press
(1997)

4. Bowen, J.P., Chippington, D.: Z on the Web using Java. [15] 66–80
5. Ciancarini, P., Mascolo, C., Vitali, F.: Visualizing Z notation in HTML documents.

[15] 81–95
6. Sun, J., Dong, J.S., Liu, J., Wang, H.: Object-Z Web Environment and Projections

to UML. In: WWW-10: 10th International World Wide Web Conference, ACM
Press (2001) 725–734

7. Utting, M., Toyn, I., Sun, J., Martin, A., Dong, J.S., Daley, N., Currie, D.: ZML:
XML Support for Standard Z. In: 3nd International Conference of Z and B Users
(ZB’03). LNCS, Springer (2003)

8. Developed by members of the Z Standards Panel, Project Editor: Toyn,
I.: Z Notation: Final Committee Draft, CD 13568.2 (1999) Available at:
http://www.cs.york.ac.uk/~ian/zstan/.

9. World Wide Web Consortium (W3C): (Scalable Vector Graphics (SVG)) Available
at: http://www.w3.org/Graphics/SVG/ .

10. Hayes, I., Jones, C.: Specifications are not (necessarily) executable. Software Eng.
Journal 4 (1989) 330–339

11. Dong, J.S., Li, Y.F., Sun, J., Sun, J., Wang, H.: XML-based static type checking
and dynamic visualization for TCOZ. In: 4th International Conference on Formal
Engineering Methods, Springer-Verlag (2002) 311–322

12. Sun, J., Dong, J.S., Liu, J., Wang, H.: A XML/XSL Approach to Visualize
and Animate TCOZ. In: The 8th Asia-Pacific Software Engineering Conference
(APSEC’01), IEEE Press (2001) 453–460

13. Smith, G.: The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers (2000)

14. Mahony, B., Dong, J.S.: Timed Communicating Object Z. IEEE Transactions on
Software Engineering 26 (2000)

15. Bowen, J.P., Fett, A., Hinchey, M.G., eds.: ZUM’98: The Z Formal Specifica-
tion Notation, 11th International Conference of Z Users, Berlin, Germany, 24–26
September 1998. Volume 1493 of Lect. Notes in Comput. Sci., Springer-Verlag
(1998)

http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Formal_methods
http://www.cs.york.ac.uk/~ian/zstan/
http://www.w3.org/Graphics/SVG/

	Introduction
	Background
	The Z Formal Specification Language
	The Z Markup Language
	Scalable Vector Graphics

	Aspects of a Z Specification Editor
	Graphical Display
	Schema Expansion
	Specification Navigation
	Model Querying
	Specification Validation

	Architecture Design of the ZSWE
	Implementation Issues of the ZSWE
	SVG and ECMA Scripting
	SVG and PHP

	ZSWE in Action
	SVG Z Model Display
	Z Schema Editing

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

