Abstract
The geometry of “empty” scale space is investigated. By virtue of the proposed geometric axioms the generating PDE, the linear isotropic heat equation, can be presented in covariant, or geometrical form. The postulate of a metric for scale space cannot be upheld, as it is incompatible with the generating equation. Two familiar instances of scale spaces consistent with the geometric axioms are considered by way of example, viz. classical, homogeneous scale space, and foveal scale space.
This work is part of the DSSCV project supported by the IST Program of the European Union (IST-2001-35443). The Netherlands Organisation for Scientific Research (NWO) is gratefully acknowledged for financial support.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)
Colton, D.: Partial Differential Equations. Random House, New York (1988)
Koenderink, J.J.: A hitherto unnoticed singularity of scale-space. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 1222–1224 (1989)
Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. Journal of Differential Equations 115, 368–401 (1995)
Florack, L., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12, 65–79 (2000)
Kuijper, A., Florack, L.M.J., Viergever, M.A.: Scale space hierarchy. Journal of Mathematical Imaging and Vision 18, 169–189 (2003)
Kuijper, A., Florack, L.M.J.: The hierarchical structure of images. IEEE Transactions on Image Processing 12, 1067–1079 (2003)
Kuijper, A., Florack, L.M.J.: The relevance of non-generic events in scale space models. International Journal of Computer Vision 57, 67–84 (2004)
Eberly, D.: A differential geometric approach to anisotropic diffusion. [24], 371–392
Eberly, D.: Ridges in Image and Data Analysis. Computational Imaging and Vision Series, vol. 7. Kluwer Academic Publishers, Dordrecht (1996)
Wijk, J.J., Nuij, W.A.A.: Smooth and efficient zooming and panning. In: Munzner, T., North, S. (eds.) Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2003), pp. 15–22. IEEE Computer Society Press, Los Alamitos (2003) Best paper award
Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)
Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité generalisée (première partie). Ann. École Norm. Sup. 40, 325–412 (1923)
Spivak, M.: Differential Geometry, vol. 1–5. Publish or Perish, Berkeley (1975)
Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)
Friedman, M.: Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science. Princeton University Press, Princeton (1983)
Glymour, C.: The epistemology of geometry. In: Boyd, R., Gasper, P., Trout, J.D. (eds.) The Philosophy of Science, pp. 485–500. MIT Press, Cambridge (1991)
Kimmel, R., Sochen, N.A.: Geometric-variational approach for color image enhancement and segmentation. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 294–305. Springer, Heidelberg (1999)
Kimmel, R., Sochen, N.A., Malladi, R.: From high energy physics to low level vision. In: ter Haar Romeny, B.M., Florack, L.M.J., Viergever, M.A. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 236–247. Springer, Heidelberg (1997)
Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: Application to connectivity mapping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021-3024 , pp. 127–140. Springer, Heidelberg (2004)
Sochen, N.A.: Stochastic processes in vision: From Langevin to Beltrami. In: Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, July 9-12, pp. 288–293. IEEE Computer Society Press, Los Alamitos (2001)
Weickert, J.A.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner, Stuttgart (1998)
Weickert, J.A.: Coherence-enhancing diffusion filtering. International Journal of Computer Vision 31, 111–127 (1999)
Haar Romeny, B.M.t.: Geometry-Driven Diffusion in Computer Vision. Computational Imaging and Vision Series, vol. 1. Kluwer Academic Publishers, Dordrecht (1994)
Florack, L.M.J.: A geometric model for cortical magnification. In: Bülthoff, H.H., Poggio, T.A., Lee, S.-W. (eds.) BMCV 2000. LNCS, vol. 1811, pp. 574–583. Springer, Heidelberg (2000)
Benedetti, R., Petronio, C.: Lectures on Hyperbolic Geometry. Springer, Berlin (1987)
Fenchel, W.: Elementary Geometry in Hyperbolic Space. Studies in Mathematics, vol. 11. Walter de Gruyter, Berlin (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Florack, L. (2005). Deep Structure from a Geometric Point of View. In: Fogh Olsen, O., Florack, L., Kuijper, A. (eds) Deep Structure, Singularities, and Computer Vision. DSSCV 2005. Lecture Notes in Computer Science, vol 3753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577812_12
Download citation
DOI: https://doi.org/10.1007/11577812_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29836-6
Online ISBN: 978-3-540-32097-5
eBook Packages: Computer ScienceComputer Science (R0)