Skip to main content

Maximum Likely Scale Estimation

  • Conference paper
Deep Structure, Singularities, and Computer Vision (DSSCV 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3753))

  • 405 Accesses

Abstract

A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or having different derivative orders.

Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior of the measurements is completely characterized by all moments up to second order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pedersen, K.S.: Properties of brownian image models in scale-space. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 281–296. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Markussen, B., Pedersen, K.S., Loog, M.: A scale invariant covariance structure on jet space. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 12–23. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30, 79–116 (1998)

    Article  Google Scholar 

  4. Pedersen, K.S., Nielsen, M.: The Hausdorff dimension and scale-space normalisation of natural images. Journal of Visual Communication and Image Representation 11, 266–277 (2000)

    Article  Google Scholar 

  5. Majer, P.: A Statistical Approach to Feature Detection and Scale Selection in Images. PhD thesis, University of Göttingen (2000)

    Google Scholar 

  6. Bouman, C.A., Sauer, K.: Maximum likelihood scale estimation for a class of Markov random fields. In: Proceedings of ICASSP 1994. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 537–540. IEEE, Los Alamitos (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loog, M., Pedersen, K.S., Markussen, B. (2005). Maximum Likely Scale Estimation. In: Fogh Olsen, O., Florack, L., Kuijper, A. (eds) Deep Structure, Singularities, and Computer Vision. DSSCV 2005. Lecture Notes in Computer Science, vol 3753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577812_13

Download citation

  • DOI: https://doi.org/10.1007/11577812_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29836-6

  • Online ISBN: 978-3-540-32097-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics