Abstract
We first describe two stochastic algorithms which build trees in high dimensional Euclidean spaces with some adaptation to the geometry of a chosen target subset. The second one produces search trees and is used to approximately identify in real time the pose of a polyhedron from its external contour. A search tree is first grown in a space of shapes of plane curves which are a set of precomputed polygonal outlines of the polyhedron. The tree is then used to find in real time a best match to the outline of the polyhedron in the current pose. Analyzing the deformation of the curves along the tree thus built, shows progressive differentiation from a simple convex root shape to the various possible external contours, and the tree organizes the complex set of shapes into a more comprehensible object.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L., Friedman, J.H., Ohlsen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth, Belmont (1984)
Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984)
Kergosien, Y.L.: Adaptive ramification and abortive concepts. In: Neural networks from models to applications (NEURO 1988), I.D.S.E.T., Paris, pp. 439–449 (1988)
Kergosien, Y.L.: Generic sign systems in Medical Imaging. IEEE Comput. Graph. Appl. 11(5), 46–65 (1991)
Kergosien, Y.: Adaptive branching in Epigenesis and Evolution. C. R. Biologies 326, 477–485 (2003)
Kohonen, T.: Self-organizing maps. Springer, Berlin (1997)
Krzanowski, W.J.: Principles of multivariate analysis. Oxford Univ. Press, Oxford (1988)
Lavallée, S., Szeliski, R., Brunie, L.: Anatomy-based registration of three-dimensional medical images, range images, X-ray projections, and threer- dimensional models using octree splines. In: Taylor, R.H., Lavallée, S., Burdea, G., Mosges, R. (eds.) Computer Integrated Surgery, pp. 115–143. MIT Press, Cambridge (1996)
Lockton, R., Fitzgibbon, A.W.: Real-time gesture recognition using deterministic boosting. In: Proceedings of the British Machine Vision Conference (2002)
Nayar, S.K., Nene, S.A., Murase, H.: Real-time 100 object recognition system. In: IEEE International Conference on Robotics and Automation, vol. 3(4), pp. 2321–2325 (1996)
Nölker, C., Ritter, H.: Parametrized SOMs for Hand Posture Reconstruction. In: Amari, S.I., Giles, C.L., Gori, M., Piuri, V. (eds.) Proceedings IJCNN (2000)
Thom, R.: Stabilité structurelle et morphogénèse: essai d’une théorie générale des modèles, Benjamin, Reading (1972)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kergosien, Y.L. (2005). Adaptive Trees and Pose Identification from External Contours of Polyhedra. In: Fogh Olsen, O., Florack, L., Kuijper, A. (eds) Deep Structure, Singularities, and Computer Vision. DSSCV 2005. Lecture Notes in Computer Science, vol 3753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577812_14
Download citation
DOI: https://doi.org/10.1007/11577812_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29836-6
Online ISBN: 978-3-540-32097-5
eBook Packages: Computer ScienceComputer Science (R0)