Skip to main content

Computing 3D Symmetry Sets; A Case Study

  • Conference paper
Deep Structure, Singularities, and Computer Vision (DSSCV 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3753))

  • 411 Accesses

Abstract

In this paper we discuss the implementation of methods to derive 3D Symmetry Sets, given a parameterized shape, as well as an unorganized point cloud. It presents a geometric method to derive the Symmetry Set, that is an extension of the one given in [6]. Although the mathematics is a simple extension of the 2D case, the visualization, numerical computations and their stability are much more complicated. An example is given by means of an ellipsoid. In this example the Symmetry Set can be computed exactly and results can be compared to the ground truth.

This work is part of the DSSCV project supported by the IST Programme of the European Union (IST-2001-35443). WWW home page: http://www.itu.dk/Internet/sw1953.asp

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruce, J.W., Giblin, P.J., Gibson, C.: Symmetry sets. Proceedings of the Royal Society of Edinburgh 101(A), 163–186 (1985)

    Google Scholar 

  2. Giblin, P.J., Kimia, B.B.: Transitions of the 3D medial axis under a one-parameter family of deformations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 718–734. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Giblin, P.J., Kimia, B.B.: A formal classification of the 3D medial axis points and their local geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 238–251 (2004)

    Article  Google Scholar 

  4. Hisada, M., Belyaev, A.G., Kunii, T.L.: Towards a singularity-based shape language: ridges, ravines, and skeletons for polygonal surfaces. Soft Computing 7(1), 45–52 (2002)

    Article  MATH  Google Scholar 

  5. Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)

    Google Scholar 

  6. Kuijper, A., Olsen, O.F., Giblin, P.J., Bille, P., Nielsen, M.: From a 2D shape to a string structure using the symmetry set. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 313–325. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Leymarie, F.: 3D Shape Representation via Shock Flows. PhD thesis, Division of Enginering. Brown University, Providence, RI, 02912 (2003)

    Google Scholar 

  8. Leymarie, F., Kimia, B.B.: The shock scaffold for representing 3D shapes. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 216–228. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Leymarie, F., Kimia, B.B.: Computation of the shock scaffold for unorganized point clouds in 3D. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 1, pp. 821–827 (2003)

    Google Scholar 

  10. Porteous, I.: Geometric Differentiation - for the intelligence of curves and surfaces, p. 301. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuijper, A., Olsen, O.F. (2005). Computing 3D Symmetry Sets; A Case Study. In: Fogh Olsen, O., Florack, L., Kuijper, A. (eds) Deep Structure, Singularities, and Computer Vision. DSSCV 2005. Lecture Notes in Computer Science, vol 3753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577812_17

Download citation

  • DOI: https://doi.org/10.1007/11577812_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29836-6

  • Online ISBN: 978-3-540-32097-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics