Skip to main content

A Scale Invariant Covariance Structure on Jet Space

  • Conference paper
Deep Structure, Singularities, and Computer Vision (DSSCV 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3753))

  • 425 Accesses

Abstract

This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As part of the derivation, we introduce a blurring operator A t that acts on jet space contrary to doing spatial filtering and a scaling operator S s . The stochastic Brownian image model is an example of a class of functions which are scale invariant with respect to the operators A t and S s . This paper also includes empirical results where we estimate the scale invariant jet covariance of natural images and show that it resembles that of Brownian images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mumford, D., Gidas, B.: Stochastic models for generic images. Quarterly of Applied Mathematics 59, 85–111 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Lee, A.B., Mumford, D., Huang, J.: Occlusion models for natural images: A statistical study of a scale-invariant dead leaves model. International Journal of Computer Vision 41, 35–59 (2001)

    Article  MATH  Google Scholar 

  3. Grenander, U., Srivastava, A.: Probability models for clutter in natural images. IEEE Transaction on Pattern Analysis and Machine Intelligence 23, 424–429 (2001)

    Article  Google Scholar 

  4. Pedersen, K.S.: Properties of Brownian image models in scale-space. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 281–296. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Pedersen, K.S., Duits, R., Nielsen, M.: On α kernels, Lévy processes, and natural image statistics. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 468–479. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Geusebroek, J.: The stochastic structure of images. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 327–338. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Optic. Soc. of Am. 4, 2379–2394 (1987)

    Article  Google Scholar 

  8. Ruderman, D.L., Bialek, W.: Statistics of natural images: Scaling in the woods. Physical Review Letters 73, 814–817 (1994)

    Article  Google Scholar 

  9. Florack, L., ter Haar Romeny, B.M., Viergever, M., Koenderink, J.: The gaussian scale-space paradigm and the multiscale local jet. International Journal of Computer Vision 18, 61–75 (1996)

    Article  Google Scholar 

  10. van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. In: Proc. R. Soc. Lond. Series B, vol. 265, pp. 359–366 (1998)

    Google Scholar 

  11. Huang, J., Mumford, D.: Statistics of natural images and models. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Markussen, B., Pedersen, K.S., Loog, M. (2005). A Scale Invariant Covariance Structure on Jet Space. In: Fogh Olsen, O., Florack, L., Kuijper, A. (eds) Deep Structure, Singularities, and Computer Vision. DSSCV 2005. Lecture Notes in Computer Science, vol 3753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577812_2

Download citation

  • DOI: https://doi.org/10.1007/11577812_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29836-6

  • Online ISBN: 978-3-540-32097-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics