Abstract
This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As part of the derivation, we introduce a blurring operator A t that acts on jet space contrary to doing spatial filtering and a scaling operator S s . The stochastic Brownian image model is an example of a class of functions which are scale invariant with respect to the operators A t and S s . This paper also includes empirical results where we estimate the scale invariant jet covariance of natural images and show that it resembles that of Brownian images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mumford, D., Gidas, B.: Stochastic models for generic images. Quarterly of Applied Mathematics 59, 85–111 (2001)
Lee, A.B., Mumford, D., Huang, J.: Occlusion models for natural images: A statistical study of a scale-invariant dead leaves model. International Journal of Computer Vision 41, 35–59 (2001)
Grenander, U., Srivastava, A.: Probability models for clutter in natural images. IEEE Transaction on Pattern Analysis and Machine Intelligence 23, 424–429 (2001)
Pedersen, K.S.: Properties of Brownian image models in scale-space. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 281–296. Springer, Heidelberg (2003)
Pedersen, K.S., Duits, R., Nielsen, M.: On α kernels, Lévy processes, and natural image statistics. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 468–479. Springer, Heidelberg (2005)
Geusebroek, J.: The stochastic structure of images. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 327–338. Springer, Heidelberg (2005)
Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Optic. Soc. of Am. 4, 2379–2394 (1987)
Ruderman, D.L., Bialek, W.: Statistics of natural images: Scaling in the woods. Physical Review Letters 73, 814–817 (1994)
Florack, L., ter Haar Romeny, B.M., Viergever, M., Koenderink, J.: The gaussian scale-space paradigm and the multiscale local jet. International Journal of Computer Vision 18, 61–75 (1996)
van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. In: Proc. R. Soc. Lond. Series B, vol. 265, pp. 359–366 (1998)
Huang, J., Mumford, D.: Statistics of natural images and models. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Markussen, B., Pedersen, K.S., Loog, M. (2005). A Scale Invariant Covariance Structure on Jet Space. In: Fogh Olsen, O., Florack, L., Kuijper, A. (eds) Deep Structure, Singularities, and Computer Vision. DSSCV 2005. Lecture Notes in Computer Science, vol 3753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577812_2
Download citation
DOI: https://doi.org/10.1007/11577812_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29836-6
Online ISBN: 978-3-540-32097-5
eBook Packages: Computer ScienceComputer Science (R0)