Skip to main content

A Comparison of the Deep Structure of α-Scale Spaces

  • Conference paper
Deep Structure, Singularities, and Computer Vision (DSSCV 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3753))

Abstract

We compare the topology and deep structure of alternative scale space representations, so called α-scale spaces, 1/2 ≤ α ≤ 1, which are subject to a first order pseudo partial differential equation on the upper half plane {(x,s) ∈ ℝd ×ℝ|s > 0}. In particular, the cases α = 1 and α = 1/2, which correspond to respectively Poisson scale space and Gaussian scale space, are considered. Poisson scale space is equivalent to harmonic extension to the upper half plane, inducing potential physics, whereas Gaussian scale space is generated by the diffusion equation on the upper half plane, inducing heat physics. Despite the continuous connection (by parameter 1/2 ≤ α ≤ 1) between these scale spaces and the similarity between their convolution convolution kernels, we show both theoretically and experimentally that there is a strong difference between the topology in the deep structure of these scale spaces.

The Netherlands Organization for Scientific Research is gratefully acknowledged for financial support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. Journal of Mathematical Imaging and Vision 20, 267–298 (2004)

    Article  MathSciNet  Google Scholar 

  2. Kanters, F., Florack, L., Duits, R.: α-scale space kernels in practice. In: Geppener, Gurevich, N.Z.e.a. (eds.) 7th International Conference on Pattern Recognition and Image Analysis, New Information Technologies. St.Petersburg (2004); Extended version is to appear in special issue of the International Journal for Pattern Recognition and Image Analysis MAIK NAUKA/Interperiodica 15(2), 260–263. Publishing Moscow (2005)

    Google Scholar 

  3. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. John Wiley and sons, Inc., New York (1966)

    MATH  Google Scholar 

  4. Felsberg, M.: Low-Level Image Processing with the Structure Multivector. PhD thesis, Institute of Computer Science and Applied Mathematics Christian-Albrechts-University of Kiel (2002)

    Google Scholar 

  5. Duits, R., Felsberg, M., Florack, L.: α scale spaces on a bounded domain. In: Proceedings Scale Space Conference, Isle of Skye, UK, pp. 494–510 (2003)

    Google Scholar 

  6. Felsberg, M., Duits, R., Florack, L.: The monogenic scale space on a bounded domain and its applications. In: Proceedings Scale Space Conference, Isle of Skye, UK, pp. 209–224 (2003)

    Google Scholar 

  7. Loog, M., Duistermaat, J.J., Florack, L.M.J.: On the behavior of spatial critical points under Gaussian blurring. a folklore theorem and scale-space constraints. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 183–192. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Kuijper, A., Florack, L.M.J.: Hierarchical pre-segmentation without prior knowledge. In: Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, July 9-12, 2001, pp. 487–493. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  9. Florack, L., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12, 65–79 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. Journal of Differential Equations 115, 368–401 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. van der Meer, J.C.: A note on local morse theory in state-scale space and gaussian deformations. In preparations Technical CASA-report, Department of Mathematics, University of Technology Eindhoven (2005), http://www.win.tue.nl/casa/research/casareports/2005.html

  12. Poston, T., Stewart, I.N.: Catastrophe Theory and its Applications. Pitman, London (1978)

    Google Scholar 

  13. Hummel, R. (ed.): Proc. IEEE Comp. Soc. Conf. Computer Vision and Pattern Recognition, Miami Beach. IEEE, Los Alamitos (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duits, R., Kanters, F., Florack, L., ter Haar Romeny, B. (2005). A Comparison of the Deep Structure of α-Scale Spaces. In: Fogh Olsen, O., Florack, L., Kuijper, A. (eds) Deep Structure, Singularities, and Computer Vision. DSSCV 2005. Lecture Notes in Computer Science, vol 3753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577812_21

Download citation

  • DOI: https://doi.org/10.1007/11577812_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29836-6

  • Online ISBN: 978-3-540-32097-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics