Abstract
The Symmetry Set (\(\mathcal{SS}\)) and its representation in parameter space, the pre-Symmetry Set, can be used to describe a shape with a linear data structure containing strings. As shape descriptor one specific string can be chosen. This string represents not only the major axis of the shape, but it also contains information of the complete shape. The string is augmented with information about the special points along the (pre-) Symmetry Set that it resembles. Changes in this simple line structure are directly related to so-called transitions (topological changes) of the \(\mathcal{SS}\) and the Pre- \(\mathcal{SS}\). It also carries information about the skeleton, or Medial Axis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, H.: Biological shape and visual science (part i). Journal of Theoretical Biology 38, 205–287 (1973)
Bruce, J.W., Giblin, P.J.: Growth, motion and 1-parameter families of symmetry sets. In: Proceedings of the Royal Society of Edinburgh, vol. 104(A), pp. 179–204 (1986)
Bruce, J.W., Giblin, P.J., Gibson, C.: Symmetry sets. Proceedings of the Royal Society of Edinburgh 101(A), 163–186 (1985)
Giblin, P.J., Kimia, B.B.: On the intrinsic reconstruction of shape from its symmetries. IEEE Tr. on Pat. Anal. and Mach. Int. 25(7), 895–911 (2003)
Giblin, P.J., Kimia, B.B.: On the local form and transitions of symmetry sets, medial axes, and shocks. International Journal of Computer Vision 54(1/2), 143–156 (2003)
Kimia, B.B.: On the role of medial geometry in human vision. Journal of Physiology - Paris 97(2-3), 155–190 (2003)
Kuijper, A.: On data structures from symmetry sets of 2D shapes. Technical Report TR-2004-47, IT University of Copenhagen (2004)
Kuijper, A., Olsen, O.F.: Transitions of the pre-symmetry set. In: Proceedings of the 17th ICPR 2004, vol. III, pp. 190–193 (2004)
Kuijper, A., Olsen, O.F., Giblin, P.J., Bille, P., Nielsen, M.: From a 2D shape to a string structure using the symmetry set. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 313–325. Springer, Heidelberg (2004)
Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using association graphs. IEEE Tr. on Pat. Anal. and Mach. Int. 21(11), 1105–1120 (1999)
Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: Proceedings of the 8th ICCV 2001, pp. 755–762 (2001)
Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 30, 1–22 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuijper, A., Olsen, O.F. (2005). Essential Loops and Their Relevance for Skeletons and Symmetry Sets. In: Fogh Olsen, O., Florack, L., Kuijper, A. (eds) Deep Structure, Singularities, and Computer Vision. DSSCV 2005. Lecture Notes in Computer Science, vol 3753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577812_3
Download citation
DOI: https://doi.org/10.1007/11577812_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29836-6
Online ISBN: 978-3-540-32097-5
eBook Packages: Computer ScienceComputer Science (R0)