Abstract
This paper shows the performance of randomized low-discre-pancy sequences compared with others low-discrepancy sequences. We used two motion planning algorithms to test this performance: the expansive planner proposed in [1], [2] and SBL [3] . Previous research already showed that the use of deterministic sampling outperformed PRM approaches [4], [5], [6]. Experimental results show performance advantages when we use randomized Halton and Sobol sequences over Mersenne-Twister and the linear congruential generators used in random sampling.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. of Computational Geometry and Applications 9, 495–512 (1999)
Hsu, D.: Randomized single-query motion planning in expansive spaces, PhD thesis, Stanford University (2000)
Sánchez, G., Latombe, J.C.: On delaying colllision checking in PRM planning: Application to multi-robot coordination. The International Journal of Robotics Research 21(1), 5–26 (2002)
Branicky, M., Lavalle, S.M., Olson, K., Yang, L.: Quasi-randomized path planning. In: IEEE Int. Conf. on Robotics and Automation, pp. 1481–1487 (2001)
Lavalle, S.M., Branicky, M., Lindemann, S.M.: On the relationship between classical grid search and probabilistic roadmaps. The International Journal of Robotics Research 23(7-8), 673–692 (2004)
Sánchez, A., Zapata, R., Lanzoni, C.: On the use of low-discrepancy sequences in non-holonomic motion planning. In: IEEE Int. Conf. on Robotics and Automation, pp. 3764–3769 (2003)
Kavraki, L., Švestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–579 (1996)
Amato, N.M., Burchan, B.O., Dale, L.K., Jones, C., Vallejo, D.: OBPRM: An obstacle-based PRM for 3D workspaces. In: Proc. of the Workshop on Algorithmic Foundations of Robotics, pp. 155–168 (1998)
Boor, V., Overmars, M., Van der Steppen, F.: The gaussian sampling strategy for probabilistic roadmap planners. In: IEEE Int. Conf. on Robotics and Automation, pp. 1018–1023 (1999)
Bohlin, R., Kavraki, L.: Path planning using lazy PRM. In: IEEE Int. Conf. on Robotics and Automation (2000)
Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1992)
Sánchez, A.: Contribution à la planification de mouvement en robotique: Approches probabilistes et approches déterministes, PhD thesis, Université Montpellier II (2003)
Morokoff, W.J., Caflisch, R.E.: Quasi-Monte Carlo integration. Journal of Computational Physics 122, 218–230 (1995)
Wang, X., Hickernell, F.J.: Randomized Halton sequences. Mathematical and Computer Modelling 32(7-8), 887–899 (2000)
Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1), 3–30 (1998)
Kavraki, L., Latombe, J.C., Motwani, R., Raghavan, P.: Randomized query processing in robot motion planning. Journal of Computer and System Sciences 57(1), 50–60 (1998)
Lindemann, S., LaValle, S.M.: Current issues in sampling-based motion planning. In: Dario, P., Chatila, R. (eds.) Proc. Eighth International Symposium on Robotics Research. Springer, Berlin (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sánchez, A., Osorio, M.A. (2005). On the Use of Randomized Low-Discrepancy Sequences in Sampling-Based Motion Planning. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_100
Download citation
DOI: https://doi.org/10.1007/11579427_100
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29896-0
Online ISBN: 978-3-540-31653-4
eBook Packages: Computer ScienceComputer Science (R0)