Skip to main content

On the Use of Randomized Low-Discrepancy Sequences in Sampling-Based Motion Planning

  • Conference paper
MICAI 2005: Advances in Artificial Intelligence (MICAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3789))

Included in the following conference series:

Abstract

This paper shows the performance of randomized low-discre-pancy sequences compared with others low-discrepancy sequences. We used two motion planning algorithms to test this performance: the expansive planner proposed in [1], [2] and SBL [3] . Previous research already showed that the use of deterministic sampling outperformed PRM approaches [4], [5], [6]. Experimental results show performance advantages when we use randomized Halton and Sobol sequences over Mersenne-Twister and the linear congruential generators used in random sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. of Computational Geometry and Applications 9, 495–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Hsu, D.: Randomized single-query motion planning in expansive spaces, PhD thesis, Stanford University (2000)

    Google Scholar 

  3. Sánchez, G., Latombe, J.C.: On delaying colllision checking in PRM planning: Application to multi-robot coordination. The International Journal of Robotics Research 21(1), 5–26 (2002)

    Article  Google Scholar 

  4. Branicky, M., Lavalle, S.M., Olson, K., Yang, L.: Quasi-randomized path planning. In: IEEE Int. Conf. on Robotics and Automation, pp. 1481–1487 (2001)

    Google Scholar 

  5. Lavalle, S.M., Branicky, M., Lindemann, S.M.: On the relationship between classical grid search and probabilistic roadmaps. The International Journal of Robotics Research 23(7-8), 673–692 (2004)

    Article  Google Scholar 

  6. Sánchez, A., Zapata, R., Lanzoni, C.: On the use of low-discrepancy sequences in non-holonomic motion planning. In: IEEE Int. Conf. on Robotics and Automation, pp. 3764–3769 (2003)

    Google Scholar 

  7. Kavraki, L., Švestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–579 (1996)

    Article  Google Scholar 

  8. Amato, N.M., Burchan, B.O., Dale, L.K., Jones, C., Vallejo, D.: OBPRM: An obstacle-based PRM for 3D workspaces. In: Proc. of the Workshop on Algorithmic Foundations of Robotics, pp. 155–168 (1998)

    Google Scholar 

  9. Boor, V., Overmars, M., Van der Steppen, F.: The gaussian sampling strategy for probabilistic roadmap planners. In: IEEE Int. Conf. on Robotics and Automation, pp. 1018–1023 (1999)

    Google Scholar 

  10. Bohlin, R., Kavraki, L.: Path planning using lazy PRM. In: IEEE Int. Conf. on Robotics and Automation (2000)

    Google Scholar 

  11. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1992)

    Google Scholar 

  12. Sánchez, A.: Contribution à la planification de mouvement en robotique: Approches probabilistes et approches déterministes, PhD thesis, Université Montpellier II (2003)

    Google Scholar 

  13. Morokoff, W.J., Caflisch, R.E.: Quasi-Monte Carlo integration. Journal of Computational Physics 122, 218–230 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang, X., Hickernell, F.J.: Randomized Halton sequences. Mathematical and Computer Modelling 32(7-8), 887–899 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  16. Kavraki, L., Latombe, J.C., Motwani, R., Raghavan, P.: Randomized query processing in robot motion planning. Journal of Computer and System Sciences 57(1), 50–60 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lindemann, S., LaValle, S.M.: Current issues in sampling-based motion planning. In: Dario, P., Chatila, R. (eds.) Proc. Eighth International Symposium on Robotics Research. Springer, Berlin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez, A., Osorio, M.A. (2005). On the Use of Randomized Low-Discrepancy Sequences in Sampling-Based Motion Planning. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_100

Download citation

  • DOI: https://doi.org/10.1007/11579427_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29896-0

  • Online ISBN: 978-3-540-31653-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics