Skip to main content

Evolutionary Dynamic Optimization of a Continuously Variable Transmission for Mechanical Efficiency Maximization

  • Conference paper
MICAI 2005: Advances in Artificial Intelligence (MICAI 2005)

Abstract

This paper presents a dynamic optimization approach based on the differential evolution (DE) strategy which is applied to the concurrent optimal design of a continuously variable transmission (CVT). The structure-control integration approach is used to state the concurrent optimal design as a dynamic optimization problem which is solved using the Constraint Handling Differential Evolution (CHDE) algorithm. The DE strategy is compared with the sequential approach. The results presented here demonstrate that the DE strategy is less expensive than the sequential approach from the computational implementation point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Norton, R.: Machine Design. An integrated approach. Prentice Hall Inc., Upper Saddle River (1996)

    Google Scholar 

  2. van Brussel, H., Sas, P., Nemeth, I.F.P.D., van den Braembussche, P.: Towards a Mechatronic Compiler. IEEE/ASME Transactions on Mechatronics 6, 90–104 (2001)

    Article  Google Scholar 

  3. Li, Q., Zhang, W.J., Chen, L.: Design for Control–A concurrent Engineering Approach for Mechatronic Systems Design. IEEE/ASME Transactions on Mechatronics 6, 161–168 (2001)

    Article  Google Scholar 

  4. Deb, K., Jain, S.: Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms KanGal Report No. 2002001

    Google Scholar 

  5. Shiakolas, P.S., Koladiya, D., Kebrle, J.: On the Optimum Synthesis of Six-Bar Linkages using Differential Evolution and the Geometric Centroid of Precision Positions Technique. Mechanism and Machine Theory 40, 319–335 (2005)

    Article  MATH  Google Scholar 

  6. Shafai, E., Simons, M., Neff, U., Geering, H.: Model of a Continuously variable transmission. In: First IFAC Workshop on Advances in Automotive Control, pp. 575–593 (1995)

    Google Scholar 

  7. De Silva, C., Schultz, M., Dolejsi, E.: Kinematic analysis and design of a continuously variable transmission. Mech. Mach. Theory 29, 149–167 (1994)

    Article  Google Scholar 

  8. Alvarez Gallegos, J., Cruz Villar, C.A., Portilla Flores, E.A.: Parametric optimal design of a pinion-rack based continuously variable transmission. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 899–904 (2005)

    Google Scholar 

  9. Spotts, M.: Mechanical design Analysis. Prentice Hall Inc., Englewood Cliffs (1964)

    Google Scholar 

  10. Papalambros, P., Wilde, D.: Principles of optimal design. Modelling and computation. Cambridge University Press. The Edinburg Building, Cambridge (2000)

    Book  Google Scholar 

  11. Mezura-Montes, E., Coello Coello, C.A., Tun-Morales, I.: Simple Feasibility Rules and Differential Evolution for Constrained Optimization. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sosa, H. (eds.) MICAI 2004. LNCS, vol. 2972, pp. 707–716. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alvarez-Gallegos, J., Villar, C.A.C., Flores, E.A.P. (2005). Evolutionary Dynamic Optimization of a Continuously Variable Transmission for Mechanical Efficiency Maximization. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_111

Download citation

  • DOI: https://doi.org/10.1007/11579427_111

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29896-0

  • Online ISBN: 978-3-540-31653-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics