Abstract
Object recognition under occlusions is an important problem in computer vision, not yet completely solved. In this note we describe a simple but effective technique for the recognition objects under occlusions. The proposal uses the most distinctive parts of the objects for their further detection. During training, the proposal, first detects the distinctive parts of each object. For each of these parts an invariant description in terms of invariants features is next computed. With these invariant descriptions a specially designed set of associative memories (AMs) is trained. During object detection, the proposal, first looks for the important parts of the objects by means of the already trained AM. The proposal is tested with a bank of images of real objects and compared with other similar reported techniques.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8, 179–187 (1962)
Persson, E., Fu, S.: Shape discrimination using Fourier descriptor. IEEE Transactions on SMC 7(3), 170–179 (1977)
Tsang, P., Yuen, P., Lam, F.: Classification of partially occluded objects using 3-point matching and distance transformation. Pattern recognition 27(1), 27–40 (1994)
Hand, M., Yang, D.: The use of maximum curvature points for the recognition of partially occluded objects. Pattern recognition 23(1-2), 21–33 (1990)
Pajpal, N., Chaudhury, S., Banerjee, S.: Recognition of partially occluded objects using neural network based indexing. Pattern recognition 32(10), 1737–1749 (1999)
Tsang, P., Yuen, P., Lam, F.: Recognition of occluded objects. Pattern recognition 25(10), 1107–1117 (1992)
Salari, E., Balaji, S.: Recognition of partially occluded objects using B-spline representation. Pattern recognition 24(7), 653–660 (1991)
Jiulun, F., Winxin, X.: Minimum error thresholding: A note. Pattern Recognition Letters 18(8), 705–709 (1997)
Gonzalez, R.C., Woods, R.E.: Digital Image processing, 2nd edn. Prentice hall, Inc., Englewood Cliffs (2002)
Jain, R., et al.: Machine Vision. McGraw-Hill, New York (1995)
Sossa, H., Barrón, R., Vázquez, R.A.: Transforming fundamental set of patterns to a canonical form to improve pattern recall. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 687–696. Springer, Heidelberg (2004)
Sossa, H., Barrón, R., Vázquez, R.A.: Real-valued pattern classification based on extended associative memory. In: Proceedings of Fifth Mexican Conference on Computer Science (ENC 2004), pp. 213–219. IEEE Computer Society, Los Alamitos (2004)
Vázquez, R.A., Sossa, H., Barrón, R.: Reconocimiento de objetos traslapados usando memorias asociativas. In: CICINDI 2004, Mexico City, September 7-11 (2004)
Vázquez, R.A., Sossa, H., Barrón, R.: Reconocimiento de objetos traslapados basado en la detección de partes importantes y memorias asociativas. In: CNCIIC-ANIEI 2004, Nayarit, Mexico, October 20-22 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vázquez, R.A., Sossa, H., Barrón, R. (2005). Invariant Descriptions and Associative Processing Applied to Object Recognition Under Occlusions. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_32
Download citation
DOI: https://doi.org/10.1007/11579427_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29896-0
Online ISBN: 978-3-540-31653-4
eBook Packages: Computer ScienceComputer Science (R0)