Skip to main content

Particle Swarm Optimization with Opposite Particles

  • Conference paper
MICAI 2005: Advances in Artificial Intelligence (MICAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3789))

Included in the following conference series:

  • 1547 Accesses

Abstract

The particle swarm optimization algorithm is a kind of intelligent optimization algorithm. This algorithm is prone to be fettered by the local optimization solution when the particle’s velocity is small. This paper presents a novel particle swarm optimization algorithm named particle swarm optimization with opposite particles which is guaranteed to converge to the global optimization solution with probability one. And we also make the global convergence analysis. Finally, three function optimizations are simulated to show that the PSOOP is better and more efficient than the PSO with inertia weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle swarm optimisation. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  2. Jing, K., Jixin, Q., Yizheng, Q.: A Modified Particle Swarm Optimization Algorithm. Journal of Circuits and Systems 5, 87–91 (2003)

    Google Scholar 

  3. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients. IEEE Transactions On Evolutionary Computation, 240–255 (2004)

    Google Scholar 

  4. Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proceedings of Sixth International Symposium Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  5. Shi, Y.H., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Zeng, J.C., Cui, Z.H.: A Guaranteed Global Convergence Particle Swarm Optimizer. Journal of Computer Research and Development 8, 1333–1338 (2004)

    Google Scholar 

  7. Shi, Y.H., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  8. Mendes, R., Kennedy, J., Neves, J.: The Full Informed Particle Swarm: Simpler, Maybe Better. IEEE Transactions On Evolutionary Computation, 204–210 (2004)

    Google Scholar 

  9. Solis, F., Wets, R.: Minimization by random search techniques. Mathematics of Operation Research 6, 19–30 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/15-099Fall2003/594A2FDC-A9B1-4336-AFDC-E2298F3C0DC4/0/ses5_solis_wets.pdf

  11. Clerc, M., Kennedy, J.: The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions On Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, R., Zhang, X. (2005). Particle Swarm Optimization with Opposite Particles. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_64

Download citation

  • DOI: https://doi.org/10.1007/11579427_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29896-0

  • Online ISBN: 978-3-540-31653-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics