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Abstract

Protocol narrations are a widely-used informal means to describe, in an idealistic
manner, the functioning of cryptographic protocols as a single intended sequence
of cryptographic message exchanges among the protocol’s participants. Protocol
narrations have also been informally ”turned into” a number of formal protocol
descriptions, e.g., using the spi-calculus. In this paper, we propose a direct formal
operational semantics for protocol narrations that fixes a particular and, as we ar-
gue, well-motivated interpretation on how the involved protocol participants are
supposed to execute. Based on this semantics, we explain and formally justify a
natural and precise translation of narrations into spi-calculus. An optimised trans-
lation has been implemented in OCaml, and we report on case studies that we have
carried out using the tool.
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0 Introduction

The setting. In the cryptographic protocol literature, protocols are usu-
ally expressed as narrations (see for example [CJ97,MvOV96]). A protocol
narration is a simple sequence of message exchanges between the different
participating principals and can be interpreted as the intended trace of the
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A ; S : (A . {(B . kAB)}kAS
)

S ; B : {(A . (B . kAB))}kBS

A ; B : {m}kAB

Table 1
Wide-Mouthed Frog protocol

ideal execution of the protocol. The protocol in Table 1 is a typical example
of this style. Two principals A and B are both connected to the server S with
whom they share the secret keys kAS and kBS, respectively. The protocol tells
the story where A wants to establish a secret connection (a shared key kAB)
with B via the common server S: first, A should contact S, then S forwards
the key kAB to B. Finally, A uses this key to exchange secret data with B.

While much of the literature is concerned with stating and proving a secu-
rity property of protocols like this one, we are more interested in the bare
operational content of the description technique of narrations.

Our own motivation for the interest in a formal semantics for narrations is
that we had implemented a “straightforward” translator [Gen03] from protocol
narrations into the spi-calculus, itself a pi-calculus extended with encryption
primitives [AG99]. We then wanted to formally prove our translator correct but
faced the problem that there was no formal intended semantics to compare to.
This lacking semantics is what we provide within this paper. Indeed, it turns
out that the attempt to properly formalise narrations brings one already much
closer to spi-like executable descriptions, but there are a number of insightful
observations along the way, on which we report here as well.

The challenge. Despite being rather intuitive, the description technique of
protocol narrations contains lots of implicit concepts. Looking for a formal
semantics, these need to be rendered explicit. For example, Abadi [Aba00]
pointed out that “informal protocol narrations” need to be complemented with
explanations of some either implicitly assumed facts or additional information
to remove ambiguities. He raised four tasks that need to be pursued:

(1) One should make explicit what is known (public, private) before a pro-
tocol run, and what is to be generated freshly during a protocol run.

(2) One should make explicit which checks the individual principals are ex-
pected to carry out on the reception of messages.

(3) Principals act concurrently, in contrast to the apparently sequential ide-
alised execution of a run according to a narration.

(4) Concurrency occurs also at the level of different protocol sessions, which
may happen to be executed simultaneously while sharing principals across.
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(Interestingly, Abadi used these requirements to motivate the use of the spi-
calculus as a description technique for “formal protocol narrations”.)

The first item above should be clear: data is missing otherwise. To this aim,
narrations usually come with a bit of explanation in natural language on
the spirit of the protocol and on the assumptions made. Essentially, these
assumptions consist of expliciting the pieces of data known in advance by the
agents 2 and those that are to be freshly generated during the course of a
protocol run.

The second item above results from the too high level of abstraction of message
exchanges, noted as A;B : M . There are a number of problems connected
to the fact that message M is usually transmitted from A to B by passing
through an asynchronous insecure network where a potential intruder can in-
terfere [DY83]. Thus, once B receives a message, it may be just the expected
one according to the protocol, but it may also be an intended message received
at the wrong moment and, worse, it may be an unintended message forged by
some malicious attacker. So, B needs to perform some informative checks. But
precisely which ones? For example, when B receives M it must first check in
how far, at this very moment, it “understands”M (with respect to possible en-
cryptions). Then, if B acquires new knowledge by this analysis, it must ensure
that this new knowledge is consistent with its previously acquired knowledge.
Some careful analysis is due, requiring a suitable representation of knowledge.

The third item above looks innocent at first, but once the non-atomic passage
of messages through the network is properly taken into account, some sur-
prising effects arise due to parts of later message exchanges (referring to the
order of exchanges in a narration) possibly occurring before earlier message
exchanges have completed or even started.

The fourth item above is again intuitively straightforward, but the description
technique of narrations completely ignores the problem.

Our approach. In this paper, we present solutions to the first three items,
leaving the fourth for future work (see Section 8). Concerning the first item,
we simply add a declaration part to narrations (§1). Here, we are no different
from competing approaches (see the paragraph on Related work). On item
two, we propose (in §2) to compile exchanges of the form A;B : M into
three separate syntactic parts, corresponding to:

(i) A asynchronously sends M towards B,
(ii) B receives some message (intended to be M), and

2 We use the terms principal and agent interchangeably.
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(iii) finally B checks that the message it just received indeed has the expected
properties (associated with M , from the point of view of B).

With respect to the required checks, our approach is to automatically generate
the maximum of checks derivable from the static information of protocol nar-
rations. We call the resulting refined notion of narrations executable, because it
will allow us to formalise an operational semantics of narrations, which would
not be possible with an atomic, or synchronous, interpretation of message
exchanges.

Concerning the third item, we profit from the above decomposition of message
transmission and introduce a natural structural equivalence relation on exe-
cutable narrations that may bring any of the (con-)currently enabled actions
to top-level. On this basis, we provide a labelled transition semantics (§4).

Finally, we rewrite executable narrations within the spi-calculus, which is
then only a minor, albeit insightful, remaining step (§5). We then establish a
straightforward formal operational correspondence between the two semantics.

Tool support. We have implemented the previous developments in OCaml
(see §6). Due to the overly big size of the generated formulae, we studied
possible simplification strategies. To this end, we have implemented naive
ideas such as removing duplicated atoms, or removing atoms like [E :M ]
when E is a message or when it appears as a sub-expression of the remaining
formula. We also perform some rewriting inside formulae, which according to
our experience gives good results in practise.

Impact. Our paper targets at two different audiences.

To the cryptographic protocol audience, we offer a high-level bridge to the low-
level (process calculus motivated) semantics of protocol narrations. However, it
is our primary intention to accomplish this undertaking such that a reader does
not need to be proficient in spi-calculus or its relatives. Thus, we propose—
for an only slightly refined narration syntax—a formal semantics in which we
cast in high-level narration terms the behaviour of a corresponding low-level
spi-calculus semantics. Analysis techniques can now be built on top of this
direct semantics.

To the process calculus audience, mainly as a by-product, we offer a gentle sys-
tematic way to comprehend and formally justify spi-calculus representations
corresponding to protocol narrations. In particular, the uniform generation of
“checks-on-reception” was lacking in earlier translations.

Related work and future work are deferred to the concluding section (§8).
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1 Extending protocol narrations

Like in the competing approaches on the representation of protocol narrations,
we extend narrations with a header that declares the initial knowledge of each
agent, the names generated by them and also the names that are assumed
to be initially only known by the system (this last point permits to simulate
for example a first pass where shared keys have been distributed among some
agents).

Hence, an extended protocol narration is composed of two parts: a sequence of
declarations followed by the narration itself. The agents are picked among a
countably infinite set A of agent names ranged over by A,B,C, . . . , S, . . . and
the messages are built upon a countably infinite set N of names ranged over
by a, b, c, . . . , k, l,m, n, . . .. For sake of simplicity, we assume that A∩N = ∅.

We implicitly assume that all agents involved in the protocol know each other;
this can be generalised by explicit declarations. The syntax of messages and
protocol narrations is given in Table 2.

M,N ::= a A {M}N (M .N) pub(M) priv(M) H(M) (messages M )

T ::= A;B : M (exchanges)

L ::= ε T ; L (narrations)

D ::= A knows M A generates n private k (declarations)

P ::= D ; P L (protocol

narrations D)

Table 2
Protocol narrations

Any message can be used as a shared key except if it is of the form pub(M)
or priv(M) where then it is used as an asymmetric key. The inverse key M−1

of a message M is defined as below:

M−1 def
=


pub(M ′) if M = priv(M ′)

priv(M ′) if M = pub(M ′)

M otherwise

Here, we adopt the point of view that—under the assumption that some par-
ticipant already “knows” two messages M ′ and M—this participants has the
power to “verify” whether M ′ is in fact (equal to) the inverse M−1 of M . Evi-
dently, participants are not capable to “compute” the private key (pub(M))−1.
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The meaning of private k is that k is a name which is initially only available
for the agents involved in the protocol. Typically, it is useful to simulate that
an agent A and a server S initially share a secret key kAS. The meaning of
A knows M is simply that, initially, agent A knows the message M . Finally
the meaning of A generates n is that A will generate a fresh name n (typically
a nonce). For the sake of clarity, we enforce fresh generated names to be
declared explicitly. Table 3 shows the Wide-Mouthed Frog protocol using our
framework.

private kAS ; A knows kAS ; S knows kAS ;

private kBS ; B knows kBS ; S knows kBS ;

A generates kAB ; A knows m

A;S : (A . {(B . kAB)}kAS
) ;

S;B : {(A . (B . kAB))}kBS

A;B : {m}kAB
; ε

Table 3
Wide-Mouthed Frog protocol, with formal declarations

It often happens in cryptographic protocols that a secret is shared by several
participants. For this reason, we propose to introduce as a macro the construct

A1, . . . , An share k

which is intended to mean that the agents A1, . . . , An share the secret name
k. This macro is simply expanded into:

private k ; A1 knows k ; . . . ; An knows k

To ease the writing of formal declarations, one can also imagine to introduce
the shortcutA1, . . . , An knows M to meanA1 knows M ; . . . ; An knows M .

2 Compiling protocol narrations

Target syntax. As motivated in the Introduction, executable narrations
(set X , as defined in Table 4) are to be more explicit about the behaviour of
individual agents. Instead of atomic exchanges of the form A;B : M as used
in the standard narrations of Table 2, we observe four more fine-grained basic
actions (nonterminal I in Table 4): emission A:B!E of a message expression E
(evaluating to M , see below), reception B:?x of a message and binding it to
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E,F ::= a A {E}F (E .F ) pub(E) priv(E) H(E) (expressions E)

x DF (E) π1(E) π2(E)

φ, ψ ::= tt [E=F ] [E :M ] inv(E,F ) φ∧φ (formulae F )

I ::= νk A:B!E A:?x A:φ (simple action)

X ::= ε I ; X (executable narrations X )

Table 4
Syntax of executable narrations

a variable x (see below), check B:φ for the validity of formula φ from the
point of view of principal B, and scoping νk, which is reminiscent of the spi-
calculus and represents the creation and scope of private names. Scoping is
decoupled from principals, allowing us to use a single construct for names that
are private and generated according to the declarations of §1.

In interacting systems, when an agent receives a message, it binds it to a fresh
variable for reference in subsequent processing. For this purpose, we introduce
a well-founded totally ordered countably infinite set x, y, z, . . . of variables V
that we assume to be disjoint from A ∪N . An agent can operate in different
ways on a message: (1) as with the previous standard narrations, it can con-
catenate two messages, encrypt one message with another (the key), compute
the hash code of a message or take the public/private part of a message; (2) it
can project a message onto its parts using π1(E) or π2(E) (if E “represents”
a pair of two messages) or decrypt it using DF (E) (if it knows the inverse
key “represented by” F that was used to encrypt the message “represented
by” E). Since an agent does not only handle messages but also variables, we
introduce the notion of message expressions (E), including the above further
operations. The process of finding out whether some expression indeed “rep-
resents” some particular message, is formalised using the evaluation function
in Table 5. The definitions are straightforward and offer no surprises.

Formulae φ on received messages are described by (conjunctions of) three
kinds of checks: equality tests [E=F ] on expressions denote the comparison
of two bit-streams of E and F ; well-formedness tests [E :M ] denote the ver-
ification of whether the projections and decryptions contained in E are likely
to succeed; inversion tests inv(E,F ) denote the verification that E and F
evaluate to inverse messages. The evaluation function of Table 5 is straight-
forwardly extended to formulae; note that, according to it, [E :M ] is just
a macro for [E=E ]. Similarly, inv(E,F ) can be encoded (for example) as
[DF ({(E .F )}E) :M ] (see also Section 6).

Table 4 lists the syntax of expressions, formulae and executable narrations. In
the following, we will omit the trailing ; ε of a non-empty executable narration.
Moreover, we overload the operator ; to also concatenate narrations.
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Definition of J·K : E → {⊥} ∪M

JEK def= E if E ∈ N ∪A

J(E .F )K def= (M .N) if JEK = M ∈M and JF K = N ∈M

Jπ1(E)K def= M if JEK = (M .N) ∈M

Jπ2(E)K def= N if JEK = (M .N) ∈M

J{E}F K def= {M}N if JEK = M ∈M and JF K = N ∈M

JDF (E)K def= M if JEK = {M}N ∈M and JF K = N−1 ∈M

JH(E)K def= H(M) if JEK = M ∈M

Jpub(E)K def= pub(M) if JEK = M ∈M

Jpriv(E)K def= priv(M) if JEK = M ∈M

JEK def= ⊥ in all other cases

Definition of J·K : F → {true, false}

JttK def= true

Jφ∧ψK def= JφK and JψK

J[E=F ]K def= true if JEK = JF K = M ∈M

J[E :M ]K def= true if JEK = M ∈M

Jinv(E,F )K def= true if JEK = JF K−1 = M ∈M

JφK def= false in all other cases
Table 5
Evaluation of expressions (can fail, in particular if v(E) 6= ∅) and formulae

Definition 1
Let M ∈M, E ∈ E, φ ∈ F, x ∈ V. We let n(M), n(E), and n(φ) denote the
set of names occurring in M , E, and φ, respectively. Similarly, we let v(E)
and v(φ) denote the set of variables occurring in E and φ. E{M/x} and φ{M/x}
denote the substitution of M for x in E and φ, respectively.

Knowledge representation. As motivated in the Introduction, the central
point of the actual behaviour of protocols is to find out which checks are to
be performed. We further motivated that such checks need to be based on
(1) the narration code, which statically spells out the intended message to
be received, and (2) the current knowledge at the moment of reception, which
imposes constraints on how much the recipient can dynamically learn from the
received message and on what other information the newly acquired knowledge
must be consistent with.

Instead of accumulating only the dynamically acquired messages (stored in
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variables x) we propose to tightly connect the (according to the narration)
statically intended messages M with the dynamically received actual mes-
sages x. For this, we simply use pairs (M,x). Since consistency checks will
then (have to) operate on such pairs, we need to generalise this representation
of principal knowledge to finite subsets of M ×E . The underlying idea is that
a pair (M,E) means that the expression E is supposed to be equal (or: has
to evaluate) to M .

The following definition introduces knowledge sets, and also some traditionally
employed operations on them: synthesis reflects the closure of knowledge sets
using message constructors; analysis reflects the exhaustive recursive decom-
position of knowledge pairs as enabled by the currently available knowledge.

Definition 2 (Knowledge)
Knowledge sets K ∈ K are finite subsets of M×E.

The set of names occurring in K is denoted by n(K).

The synthesis S(K) of K is the smallest subset of M × E containing K and
satisfying the syn-rules in Table 6.

The analysis A(K) of K is
⋃

n∈NAn(K) where the sets Ai(K) are the smallest
sets satisfying the ana-rules in Table 7.

Our definition of analysis refines the usual approach reminiscent of Paulson
[Pau98]. Instead of directly defining a “flat” analysis set, we had to define
a finitely stratified hierarchy (An(K))n∈N. (See Appendix A for a detailed
comparison of the two approaches.) Essentially, the index n of an analysis
set An(K) approximates the number of proper deconstruction steps that were
needed in order to derive its knowledge items (see the rules ana-ini, ana-fst,
ana-snd, and ana-dec). In contrast to the standard approach, corresponding
to An(K) ⊆ An+1(K), here only certain items—not all of them—may be be
propagated from analysis level n to n+1 without proper deconstruction step.

syn-pair
(M,E) ∈ S(K) (N,F ) ∈ S(K)

((M .N), (E .F )) ∈ S(K)

syn-enc
(M,E) ∈ S(K) (N,F ) ∈ S(K)

({M}N , {E}F ) ∈ S(K)
syn-hash

(M,E) ∈ S(K)
(H(M),H(E)) ∈ S(K)

syn-priv
(M,E) ∈ S(K)

(priv(M), priv(E)) ∈ S(K)
syn-pub

(M,E) ∈ S(K)
(pub(M), pub(E)) ∈ S(K)

Table 6
Synthesis
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ana-ini
(M,E) ∈ K

(M,E) ∈ A0(K)

ana-fst
((M .N), E) ∈ An(K)
(M,π1(E)) ∈ An+1(K)

ana-snd
((M .N), E) ∈ An(K)
(N,π2(E)) ∈ An+1(K)

ana-dec
({M}N , E) ∈ An(K) (N−1, F ) ∈ S(An(K))

(M,DF (E)) ∈ An+1(K)

ana-dec-rec
({M}N , E) ∈ An(K) (N−1, F ) 6∈ S(An(K))

({M}N , E) ∈ An+1(K)

ana-nam-rec
(M,E) ∈ An(K) M ∈ N ∪A

(M,E) ∈ An+1(K)

ana-pub
(pub(M), E) ∈ An(K)

(pub(M), E) ∈ An+1(K)
ana-priv

(priv(M), E) ∈ An(K)
(priv(M), E) ∈ An+1(K)

ana-hash
(H(M), E) ∈ An(K)

(H(M), E) ∈ An+1(K)

Table 7
Analysis

As the following example shows, with the notion of knowledge of this paper the
simple rule An(K) ⊆ An+1(K) would allow us to possibly analyse the same
message several times, in different ways, which would indeed be harmful. As-
sume that we remove the rules ana-dec-rec and ana-nam-rec as well as
the indices of analysis sets in Table 7 (which amounts to admitting An(K) ⊆
An+1(K)). If we now analyse the knowledge setK = {(k, k), ({k}k, x)} accord-
ing to this “standard” approach then we would first get the pair (k,Dk(x)),
then the pair (k,DDk(x)(x)), then (k,DDDk(x)(x)(x)), etc. The resulting analysis

set A(K) would be of infinite size, and thus not even be a knowledge set 3 ,
thus prohibiting a finite representation of the knowledge of participants.

Instead, we control the propagation from analysis level n to n+1 by the rules
ana-nam-rec and ana-dec-rec. Knowledge items (M,E) can only be prop-
agated to the next level of the analysis if M is not analysable (i.e., decon-
structible) with the knowledge of the same level: either M is a pure name
(possibly an agent name) or M can not be decrypted with knowledge from
the same analysis level. Note that when computing the sequence (An(K))n∈N,
the rules ana-fst, ana-snd and ana-dec strictly decrease the size of the

3 In contrast, the “standard” analysis of the corresponding (i.e., projected onto the
static component) knowledge set K1 = {k, {k}k} yields A(K1) = {k, {k}k}.
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messages, so they can only be applied a finite number of times. Thus, it is
obvious that the sequence (An(K))n∈N converges and thus A(K) is finite.

Example 1
Consider K0 = {(A,A), (B,B), (S, S), (kAS, kAS), (kBS, kBS)}.

Let K = K0 ∪ {((A . {(B . kAB)}kAS
), x0)}.

We have A(K) = K ∪



( A , π1(x0) )

( {(B . kAB)}kAS
, π2(x0) )

( (B . kAB) , DkAS
(π2(x0)) )

( B , π1(DkAS
(π2(x0))) )

( kAB , π2(DkAS
(π2(x0))) )



Generating checks. The above knowledge representation allows us to gen-
erate the checks required on message reception in a justified manner. Recall
that these checks must verify (1) in how far the expectations of the recipient
on the received message (as expressed statically in the narration) are matched
according to the recipient’s current knowledge, and (2) in how far the gained
knowledge is consistent with previously acquired knowledge.

Thus, obviously necessary checks are due to the type of messages: if an ex-
pression shall correspond to a pair then it better allows for projections; if an
expression shall correspond to an encrypted message, then it better allows for
decryption with the appropriate key—but only if it is known by the receiver.

Less obviously required checks result from the following observation: a message
(identifier) M may occur more than once in a protocol narration. Thus, it may
happen that, in some knowledge set, M is related to two different expressions
E1 and E2, via (M,E1) and (M,E2). As M was precisely used in protocol
narrations to indicate the very same message, such a knowledge set can only
be considered consistent if E1 and E2 indeed evaluate to the same message. In
the context of asymmetric keys, it can also happen that, in some knowledge
set, we find a combination of (M1, E1) and (M2, E2) where M1 = M2

−1. In
this case, also the corresponding E1 = E2

−1 should be satisfied.

Let us assume, as it is customary, that agents dispose of some meaningful ini-
tial knowledge (usually of the form (M,M) with M representing some initially
known key or participant name). Then, the consistency check for repeated
occurrences of data implicitly may take care of testing, e.g., whether some
received datum was sent by the expected agent.

To formalise these requirements, we generate consistency formulae.
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Definition 3 (Consistency formula)
Let K be a knowledge set. Its consistency formula Φ(K) is defined as follows:

Φ(K)
def
=

∧
(M,E)∈K [E :M ]

∧ ∧
(M,Ei)∈K ∧ (M,Ej)∈S(K)∧Ei 6=Ej

[Ei =Ej ]

∧ ∧
(M,Ei)∈K ∧ (M−1,Ej)∈S(K) inv(Ei, Ej)

The first conjunction clause checks that all expressions can be evaluated. The
second conjunction clause checks that if there are several ways to build a
particular message M , then all the corresponding expressions evaluate to the
same entity. (Note that the omission of the subclause Ei 6= Ej would make the
first clause redundant; we just kept it for clarity of the respective concepts.)
The third conjunction clause checks that if it was possible to generate a mes-
sage M and its inverse M−1, then the corresponding expressions must also
be mutually inverse. Note that this clause represents the principle of a rather
paranoid lack of confidence by a protocol principal in its peers in that it in-
cludes all imaginable malicious situations. On the downside, it may sometimes
create lots of tests that may not be informative or intuitive in all contexts (see
Example 2). More refined, and less paranoid, principles to generate tests are of
course possible and can be considered as variations of the above third clause.

When generating the above consistency formula, we compare pairs taken from
K with pairs taken from S(K). The following example shows why it does
not suffice to compare just the pairs in K. On the other hand, we should
not compare any possible combination of pairs taken from S(K), because this
would yield an infinite formula.

Example 2
If K = {(m,x), (H(m), y)}, we have that

Φ(K) = [x :M ]∧ [y :M ]∧ [H(x)=y ]∧ inv(x, x)∧ inv(y, y)∧ inv(H(x), y)

Observe that, if the consistency formula did not consider pairs taken from
S(K), then the test [H(x)=y ] would not be present.

Reducing knowledge sets. Knowledge sets can often be simplified without
loss of information by reducing complex elements to their parts. In our case,
we can further simplify due to the occurrence of duplicated elements; there is
no loss of information once the consistency formula of Definition 3 remembers
the duplication.

Definition 4 (Irreducibles)
Let K be a knowledge set.
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The set of irreducibles I(K) is defined by

I(K)
def
= irr(A(K))

where

irr(K) = {(M,E) ∈ K |M ∈ N ∪A}

∪ {({M}N , E) ∈ K | ¬(∃F1, F2 : (M,F1) ∈ S(K)∧ (N,F2) ∈ S(K))}

∪ {((M .N), E) ∈ K | ¬(∃F1, F2 : (M,F1) ∈ S(K)∧ (N,F2) ∈ S(K))}

∪ {(H(M), E) ∈ K | ¬(∃F : (M,F ) ∈ S(K))}

∪ {(priv(M), E) ∈ K | ¬(∃F : (M,F ) ∈ S(K))}

∪ {(pub(M), E) ∈ K | ¬(∃F : (M,F ) ∈ S(K))} .

Let ∼ denote the equivalence relation on M×E induced by

(M,E) ∼ (N,F ) ⇐⇒ M = N

We let rep(K) denote the result of deterministically selecting 4 one represen-
tative element for each equivalence class induced by ∼ on K.

Example 3
We continue Example 1. We have:

I(K) = K0 ∪ {(A, π1(x0)), (B, π1(DkAS
(π2(x0)))), (kAB, π2(DkAS

(π2(x0))))}
rep(I(K)) = K0 ∪ {(kAB, π2(DkAS

(π2(x0))))}

Here, we assume that the function rep(·) selected (A,A) instead of (A, π1(x0)),
and (B,B) instead of (B, π1(DkAS

(π2(x0)))). Moreover, we have that

({(A . (B . kAB))}kBS
, {(A . (B . π2(DkAS

(π2(x0)))))}kBS
) ∈ S(rep(I(K)))

The following lemma states a number of simple sanity properties.

Lemma 1
Let K be a knowledge set. We have:

(1) S(irr(K)) ⊆ S(K)
(2) S(rep(K)) ⊆ S(K)
(3) ∀(M,E) ∈ S(K) : ∃F : (M,F ) ∈ S(irr(K))

4 Choose an arbitrary well-founded total order on expressions and select the small-
est expression according to this order.
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(4) ∀(M,E) ∈ S(K) : ∃F : (M,F ) ∈ S(rep(K))
(5) ∀(M,E), (N,F ) ∈ S(rep(irr(K))) : M = N ⇒ E = F

Proof 1
(1) Because irr(K) ⊆ K and S(·) is monotonic.
(2) Because rep(K) ⊆ K and S(·) is monotonic.
(3) By induction on the structure of M .
(4) By induction on the derivation of (M,E) ∈ S(K).
(5) By induction on the structure of M .

The following proposition studies the relation between evaluation consistency
formulae of a knowledge set K and some operations on the latter.

Proposition 1
Let K be a closed knowledge set (where no variables appear) and φ = Φ(K).
If JφK = true then

(1) ∀(M,E) ∈ S(K) : ∀(M,F ) ∈ S(irr(K)) : J[E=F ]K = true
(2) ∀(M,E) ∈ S(K) : ∀(M,F ) ∈ S(rep(K)) : J[E=F ]K = true
(3) JΦ(irr(K))K = true
(4) JΦ(rep(K))K = true

Proof 2
(1) By induction on the structure of M .
(2) By induction on the derivations (M,E) ∈ S(K) and (M,F ) ∈ S(K).
(3) Obvious, because irr(K) ⊆ K.
(4) Obvious, because rep(K) ⊆ K.

The compilation. We now have set up all the required ingredients to com-
pile an extended protocol narration into an executable protocol narration.
Technically, while traversing the syntax of a given narration, the translation
function keeps a record of global information on the used variables and hid-
den names, as well as local (i.e., participant-dependent) information on their
knowledge on generated names.

Definition 5 (Compilation)
The translation X J·K(υ,$,κ,ν) : D→ X is defined inductively in Table 8, where
υ ⊂ V (current set of used variables), $ ⊂ N (current set of private names),
κ : A → K (partial mapping from agents to their current knowledge), and
ν : A → N (partial mapping from agents to their current set of generated
names).

Let P ∈ D be a protocol narration. Let AP denote the set of agent names
appearing in P . Then, X JP K(∅,∅,κP ,∅) denotes the compilation of P , where the
initial knowledge κP is defined by κP (A) := {(B,B) | B ∈ AP} for all A ∈ AP .
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X JεK(υ,$,κ,ν) def= ε

X JA knows M ; P K(υ,$,κ,ν) def= X JP K(υ,$,κ′,ν) if n(M) ∩
⋃

A∈A

ν(A) = ∅

where K ′
A

def= κ(A) ∪ {(M,M)}

and κ′
def= κ [A← rep(I(K ′

A))]

X Jprivate k ; P K(υ,$,κ,ν) def= νk ; X JP K(υ,$∪{k},κ,ν)

if k 6∈ $ ∪
⋃

A∈A

(n(κ(A)) ∪ ν(A))

X JA generates n ; P K(υ,$,κ,ν) def= νn ; X JP K(υ,$,κ′,ν′)

if n 6∈ $ ∪
⋃

A∈A

(n(κ(A)) ∪ ν(A))

where K ′
A

def= κ(A) ∪ {(n, n)}

and κ′
def= κ [A← rep(I(K ′

A))]

and ν ′
def= ν [A← ν(A) ∪ {n}]

X JA;B : M ; P K(υ,$,κ,ν) def= A:B!E ; B:?x ; B:φ ; X JP K(υ∪{x},$,κ′,ν)

if A 6= B and (M,E) ∈ S(κ(A))

where x
def= min(V \ υ)

and K ′
B

def= κ(B) ∪ {(M,x)}

and κ′
def= κ [B ← rep(I(K ′

B))]

and φ
def= Φ(A(K ′

B))

Table 8
Definition of X J·K·

P is called well-formed iff its compilation is defined.

For simplicity, the compilation assumes that all agents initially know each
other, as expressed in the initial knowledge set κP . Checks-on-reception are
deduced from the individual knowledge set of a receiver. To avoid to perform
the same checks again and again, the compilation keeps the knowledge sets of
κ in reduced form, i.e., κ(A) = rep(I(κ(A))). To update f ∈{κ, υ}, we note
f [x←y] with f [x←y] (x) = y and f [x←y] (z) = f(z) for z 6= x.

The compilation of private k and A generates n checks in both cases that
the local (or generated) name is fresh, but differs with respect to the addition
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of the fresh name to the knowledge sets of agents: whereas A generates n
increases the knowledge of A, the name k of private k is not added to any
knowledge; this task is deferred to explicit A knows k clauses for the in-
tended A.

The compilation of A;B : M checks that M can be synthesised by A, picks
a new variable x and adds the pair (M,x) to the knowledge of B. 5 The
consistency formula Φ(A(K ′

B)) of the analysis of this updated knowledge K ′
B

defines the checks φ to be performed by B at runtime. Note that this must be
done on the non-reduced version. In fact, it is precisely the consistency check
that allows us then to continue with the knowledge in reduced form.

Finally, note that our concept of well-formedness of a protocol narration cor-
responds to the notions of executability in [CVB05]).

Example 4
Let WMF be the Wide-Mouthed Frog protocol presented Table 3.

We have κWMF : A → K

A 7→ {(A,A), (B,B), (S, S)}

B 7→ {(A,A), (B,B), (S, S)}

S 7→ {(A,A), (B,B), (S, S)}

WMF is well-formed and its compilation is

X JWMFK(∅,∅,κWMF,∅) =

νkAS ; νkBS ; νkAB ;

A:S!(A . {(B . kAB)}kAS
) ; S:?x0 ; S:φ0 ;

S:B!{(A . (B . π2(DkAS
(π2(x0)))))}kBS

; B:?x1 ; B:φ1 ;

A:B!{m}kAB
; B:?x2 ; B:φ2

where φ0, φ1 and φ2 are given below.

5 Usually, narrations are defined such that the sender A is supposed to statically
know the precise name B of the intended receiver. In a dynamic scenario, the com-
pilation would need to check that B is synthesizable by A.
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φ0 ≈ [A=π1(x0) ]∧ [B=π1(DkAS
(π2(x0))) ]

∧ inv(π2(DkAS
(π2(x0))), π2(DkAS

(π2(x0))))

φ1 ≈ [A=π1(DkBS
(x1)) ]∧ [B=π1(π2(DkBS

(x1))) ]

∧ inv(π2(π2(DkBS
(x1))), π2(π2(DkBS

(x1))))

φ2 ≈ inv(Dπ2(π2(DkBS
(x1)))(x2),Dπ2(π2(DkBS

(x1)))(x2))

We refer the reader to Section 6.2 where this protocol is studied with our tool.

3 A detailed example: the ASW protocol

3.1 The protocol

The ASW protocol is an optimistic fair-exchange protocol for contract signing,
proposed by Asokan, Shoup and Waidner in [ASW98]. Figure 1 shows the
slightly simplified version of the Exchange Subprotocol of ASW (that we will
simply refer afterwards as the ASW protocol) that Caleiro, Viganò and Basin
have used in [CVB06] to illustrate that a direct interpretation of protocol
narrations would be too naive. A direct interpretation simply lists all the
external actions each participant should commit, but does not explicit the
internal checks and does not verify that these external actions are actually
feasible. This protocol also shows that it is not sufficient to check received
messages just once, immediately after their reception, because the receiving
participant might only later on gain further knowledge that would enable it
to analyse the structure of the just-received message more deeply.

A knows m ; A knows kA ; A knows pub(kB)

B knows m ; B knows kB ; B knows pub(kA) ;

A generates n1 ;

B generates n2 ;

A;B : {((pub(kA) . pub(kB)) . (m.H(n1)))}priv(kA)

B;A : {({((pub(kA) . pub(kB)) . (m.H(n1)))}priv(kA) .H(n2))}priv(kB)

A;B : n1

B;A : n2

Fig. 1. The Exchange Subprotocol of the ASW protocol (simplified)
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The goal of the ASW protocol is to establish a valid contract between the
two participants A and B. The protocol proceeds in two rounds.

First, the two participants send their respective so-called public commitments
H(n1) or H(n2) with the contract text m they have agreed upon; n1 and n2 be-
ing nonces generated by the two participants and called their respective secret
commitments to the contract. For this first round, the respective messages are
digitally signed with the participants’ private keys. As usual, the signature
can be verified by using the corresponding public key.

Then, in the second round, the participants exchange their respective secret
commitments so that they can check the public commitment they have re-
ceived in round one by hashing this value.

At the end of this exchange, both participants have a valid contract of the
form indicated in Figure 2.

{((pub(kA) . pub(kB)) . (m.H(n1)))}priv(kA)

{({((pub(kA) . pub(kB)) . (m.H(n1)))}priv(kA) .H(n2))}priv(kB)

n1

n2

Fig. 2. Contract form at the end of the exchange

In this protocol, the participants should in some sense backtrack their analysis
once they have received the message of the second round. Indeed, when B first
receives H(n1), it cannot check that this corresponds to the hashing of the
nonce n1 since n1 is not yet part of B’s knowledge. However, once B receives
n1 in the second round, it is able to check that the hashing of n1 is effectively
equal to the message that it has supposed to be H(n1) in the first round; this
check should occur before B sends its own public commitment to A.

3.2 Compilation of the ASW protocol

We now study this protocol in our setting. We first define some shortcuts:

M1
def
= {((pub(kA) . pub(kB)) . (m.H(n1)))}priv(kA)

M2
def
= {({((pub(kA) . pub(kB)) . (m.H(n1)))}priv(kA) .H(n2))}priv(kB)
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Computing the initial knowledge The initial knowledge set of partici-
pants A and B is, by definition,

κA
0

def
= {(A,A), (B,B)}

κB
0

def
= {(A,A), (B,B)}

Compilation of the declarations When compiling the declarations, the
compilation process checks that n1 and n2 are distinct names not used in
the other pieces of information declared to be known at the beginning of the
protocol. After computation, we obtain the following knowledge sets

kA
1

def
= {(A,A), (B,B), (m,m), (n1, n1), (kA, kA), (pub(kB), pub(kB))}

kB
1

def
= {(A,A), (B,B), (m,m), (n2, n2), (kB, kB), (pub(kA), pub(kA))}

The line 1 of Figure 3 corresponds to the compilation of the declarations.

First message When compiling the first message exchange, the compilation
process

(1) checks that A can synthesise message M1 by looking for an expression E1

such that (M1, E1) ∈ S(kA
1 ). Here, the unique candidate is expression

E1
def
= {((pub(kA) . pub(kB)) . (m.H(n1)))}priv(kA).

(2) takes a new variable x1 to be bound to the message that participant B
will receive; according to the statically defined information contained in
the narration, this message is expected to be M1.

(3) computes the consistency formula φ1 of the analysis of the knowledge set
resulting from the addition of (M1, x1) to kB

1 , and computes a reduced
form of kB

1 ∪ {(M1, x1)}.

νn1 ; νn2 ; (1)

A:B!E1 ; B:?x1 ; B:φ1 ; (2)

B:A!E2 ; A:?x2 ; A:φ2 ; (3)

A:B!E3 ; B:?x3 ; B:φ3 ; (4)

B:A!E4 ; A:?x4 ; A:φ4 (5)

Fig. 3. Executable narration compiled from ASW protocol
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Here we have

A(kB
1 ∪ {(M1, x1)})
= kB

1

∪ {(M1, x1)}
∪

{
(((pub(kA) . pub(kB)) . (m.H(n1))),Dpub(kA)(x1))

}
∪

{
((pub(kA) . pub(kB)), π1(Dpub(kA)(x1)))

}
∪

{
((m.H(n1)), π2(Dpub(kA)(x1)))

}
∪

{
(pub(kA), π1(π1(Dpub(kA)(x1))))

}
∪

{
(pub(kB), π2(π1(Dpub(kA)(x1))))

}
∪

{
(m,π1(π2(Dpub(kA)(x1))))

}
∪

{
(H(n1), π2(π2(Dpub(kA)(x1))))

}
After some simplifications (see 6.1), the consistency formula appears

to be equivalent to

φ1
def
= inv(x1, x1)

∧ inv(π2(π2(Dpub(kA)(x1))), π2(π2(Dpub(kA)(x1))))

∧ [pub(kB)=π2(π1(Dpub(kA)(x1))) ]

∧ [pub(kA)=π1(π1(Dpub(kA)(x1))) ]

∧ [m=π1(π2(Dpub(kA)(x1))) ]

And a possible candidate for rep(I(kB
1 ∪ (M1, x1))) is

kB
2

def
= kB

1

∪ {(M1, x1)}
∪

{
(H(n1), π2(π2(Dpub(kA)(x1))))

}
Note that (M1, x1) is not removed because B has no way to digitally

sign a message with the private key of A.
(4) generates line 2 of Figure 3.

Second message The compilation of the second message exchange is similar
to the first message but with role of A and B swapped. So the compilation
process

(1) checks that B can synthesise the message M2 by looking for an expression
E2 such that (M2, E2) ∈ S(kB

2 ).

The candidate is expression E2
def
= {(x1 .H(n2))}priv(kB).
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(2) takes a new variable x2 to be bound to the message that participant A
will receive; according to the statically defined information contained in
the narration, this message is expected to be M2.

(3) computes the consistency formula φ2 of the analysis of the knowledge set
resulting of the addition of (M2, x2) to kA

1 and computes a reduced form
of kA

1 ∪ {(M2, x2)}.
Here we have

A(kA
1 ∪ {(M2, x2)})
= kA

1

∪ {(M2, x2)}
∪

{
((M1 .H(n2)),Dpub(kB)(x2))

}
∪

{
(M1, π1(Dpub(kB)(x2)))

}
∪

{
(H(n2), π2(Dpub(kB)(x2)))

}
∪

{
(((pub(kA) . pub(kB)) . (m.H(n1))),Dpub(kA)(π1(Dpub(kB)(x2))))

}
∪

{
((pub(kA) . pub(kB)), π1(Dpub(kA)(π1(Dpub(kB)(x2)))))

}
∪

{
((m.H(n1)), π2(Dpub(kA)(π1(Dpub(kB)(x2)))))

}
∪

{
(pub(kA), π1(π1(Dpub(kA)(π1(Dpub(kB)(x2))))))

}
∪

{
(pub(kB), π2(π1(Dpub(kA)(π1(Dpub(kB)(x2))))))

}
∪

{
(m,π1(π2(Dpub(kA)(π1(Dpub(kB)(x2))))))

}
∪

{
(H(n1), π2(π2(Dpub(kA)(π1(Dpub(kB)(x2))))))

}
After some simplifications, the consistency formula appears to be equiv-

alent to

φ2
def
= inv(x2, x2)

∧ inv(π2(Dpub(kB)(x2)), π2(Dpub(kB)(x2)))

∧ [π1(Dpub(kB)(x2))=M1 ]

And a possible candidate for rep(I(kA
1 ∪ (M2, x2))) is

kA
2

def
= kA

1

∪ {(M2, x2)}
∪

{
(H(n2), π2(Dpub(kB)(x2)))

}
(4) generates line 3 of Figure 3.

Third message For the third message, the compilation process
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(1) checks that n1 is synthesisable by A. The expression n1 is a candidate to
build the message n1 (the pair (n1, n1) has been added to the knowledge
set of A during the compilation of the declarations).

(2) takes a new variable x3 to be bound to the message that participant B
will receive; according to the statically defined information contained in
the narration, this message is expected to be n1.

(3) computes the consistency formula φ3 of the analysis of the knowledge set
resulting of the addition of (n1, x3) to kB

2 and computes a reduced form
of kB

2 ∪ {(n1, x3)}
Here we have

A(kB
2 ∪ {(n1, x3)}) = kB

2

∪ {(n1, x3)}

After some simplifications (taking into account that at this point of
the executable narration, the formula φ1 should have been satisfied), the
consistency formula appears to be equivalent to

φ3
def
= inv(x3, x3)

∧ [H(x3)=π2(π2(Dpub(kA)(x1))) ]

And a possible candidate for rep(I(kB
2 ∪ (n1, x3))) is

kB
3

def
= (kB

2 \
{
(H(n1), π2(π2(Dpub(kA)(x1))))

}
)

∪ {(n1, x3)}

Note that the pair (H(n1), π2(π2(Dpub(kA)(x1)))) has been removed from
the knowledge set of B because now B knows n1 and thus can synthesise
himself H(n1).

(4) generates line 4 of Figure 3.

Fourth message Finally, for the fourth message, the compilation process

(1) checks that n2 is synthesisable by B. The expression n2 is a candidate to
build the message n2.

(2) takes a new variable x4 to be bound to the message that participant a
will receive; according to the statically defined information contained in
the narration, this message is expected to be n2.

(3) computes the consistency formula φ4 of the analysis of the knowledge set
resulting of the addition of (n2, x4) to kA

2 and computes a reduced form
of kA

2 ∪ {(n2, x4)}
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Here we have

A(kA
2 ∪ {(n2, x4)}) = kA

2

∪ {(n2, x4)}

After some simplifications (taking into account that at this point of
the executable narration, the formula φ2 should have been satisfied), the
consistency formula appears to be equivalent to

φ4
def
= inv(x4, x4)

∧ [H(x4)=π2(Dpub(kB)(x2)) ]

And a possible candidate for rep(I(kA
2 ∪ (n2, x4))) is

kA
3

def
= (kA

2 \
{
(H(n2), π2(Dpub(kB)(x2)))

}
∪ {(n2, x4)}

Note that the pair (H(n2), π2(Dpub(kB)(x2))) has been removed from the
knowledge set of A because now A knows n2 and thus is able to synthesise
himself H(n2).

(4) generates line 5 of Figure 3.

3.3 The ASW protocol and the pattern-matching spi-calculus

If we just look at participant B, the spi-calculus term we can derive from the
executable narration of Figure 3 is (see also Section 5)

(νn2)B(x1).

inv(x1, x1)∧ inv(π2(π2(Dpub(kA)(x1))), π2(π2(Dpub(kA)(x1))))

∧ [pub(kA)=π1(π1(Dpub(kA)(x1))) ]

∧ [pub(kB)=π2(π1(Dpub(kA)(x1))) ]

∧ [m=π1(π2(Dpub(kA)(x1))) ]

A〈{(x1 .H(n2))}priv(kB)〉.
B(x3).

inv(x3, x3)

∧ [H(x3)=π2(π2(Dpub(kA)(x1))) ]

A〈n2〉.0

But it is not clear to us how such a process can be expressed in the pattern-
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matching spi-calculus in the spirit of what is defined in [HJ06], even if we
ignore the third clause of the consistency formula (Definition 3) and thus
adopt a less paranoid approach.

Indeed, in this case, the spi-calculus process would be

(νn2)B(x1).

[pub(kA)=π1(π1(Dpub(kA)(x1))) ]

∧ [pub(kB)=π2(π1(Dpub(kA)(x1))) ]

∧ [m=π1(π2(Dpub(kA)(x1))) ]

A〈{(x1 .H(n2))}priv(kB)〉.
B(x3).

[H(x3)=π2(π2(Dpub(kA)(x1))) ]

A〈n2〉.0

A possible term in the pattern-matching spi-calculus would be

new n2; inp B
{
x • {((pub(kA) . pub(kB)) . (m.H(x)))}priv(kA)

}
;

out A {({((pub(kA) . pub(kB)) . (m.H(x1)))}priv(kA) .H(n2))}priv(kB);

inp B {•x};
out An2;0

But unfortunately, the first pattern is not implementable in the sense of [HJ06].
Indeed, being able to write {x • · · ·H(x) · · ·} in a pattern position would in-
tuitively mean that it is possible to inverse the supposed one-way function
H(·) : M →M and thus get a value x from its hashing H(x).

4 Executing protocol narrations

In this section, we propose an operational semantics for narrations. It proceeds
in a traditional syntax-directed manner by analysing the current top-level
construct in order to see what to execute next. Since narrations contain some
implicit concurrency among principals, we introduce a structural reordering
relation to shuffle concurrently enabled actions to the top level. The actual
execution of steps further needs to take care of the evaluation of messages to
be sent, and also to prevent from name clashes that are possible due to the
presence of binders.

Binders and α-conversion. Our language of executable narrations con-
tains two sorts of binders: one for names and one for variables.
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ε{M/x}@A
def= ε

(A′:B!E ; X){M/x}@A
def=

{
A′:B!E ; X{M/x}@A if A′ 6= A

A:B!E{M/x} ; X{M/x}@A otherwise

(A′:?y ; X){M/x}@A
def=


A′:?y ; X{M/x}@A if A′ 6= A

A:?y ; X{M/x}@A if A = A′ and y 6= x

A:?x ; X otherwise

(A′:φ ; X){M/x}@A
def=

{
A′:φ ; X{M/x}@A if A′ 6= A

A:φ{M/x} ; X{M/x}@A otherwise

(νn ; X){M/x}@A
def= νn ; X{M/x}@A

Table 9
Substitution

The first binder is introduced by the construction νn. If X = νn ; X ′, then n
is bound in X (i.e. the free occurrences of n in X ′ refers to this binder). As the
identity of n is not important, we identify X with νn′ ; X ′{n′/n} where n′ is a
name that is not free in X and X ′{n′/n} is X ′ where all the free occurrences
of n has been replaced with n′. X and νn′ ; X ′{n′/n} are called α-equivalent.
In the following, we identify α-equivalent executable narrations. Now, for an
executable narration X, we can define the usual bound names bn(X), free
names fn(X) of X and, moreover, if n, n′ ∈ N , X{n′/n}, the substitution of
n′ for n in X.

The second binder is the one introduced by the construction A:?x. If X =
A:?x ; X ′, then x is bound in the actions of X ′ concerning A: indeed, if
further in the executable narration, B refers to x, the x is not the same as
the one used by A. Since variables will typically be substituted with messages,
we do not need α-conversion on variables but we need to define a new kind
of local substitution: if X is an executable narration, x ∈ V , M ∈ M with
n(M)∩ bn(X) = ∅ (which can be assured by choosing a suitable α-equivalent
version of X), and A ∈ A, we define in Table 9 the substitution X{M/x}@A of
M for x in X on A.

Reordering. Protocol narrations are sequences of actions. However, the se-
quential character is not always causally motivated. Instead, the order of two
consecutive actions carried out by different principals can always be swapped,
because —after our split of message exchanges in the compilation process of
Section 2—they are independent. The same holds for the consecutive occur-
rence of an action and a scope, unless the scope’s name occurs in the action.
Formally, we manifest the swapping of independent actions in a structural
congruence relation.

Definition 6
The reordering ∼= ⊆ X×X is the least equivalence relation satisfying the rules
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∼=-S-S
A 6= C

A:B!E ; C:D!F ∼= C:D!F ; A:B!E
∼=-S-C

A 6= C

A:B!E ; C:φ ∼= C:φ ; A:B!E

∼=-S-R
A 6= C

A:B!E ; C:?x ∼= C:?x ; A:B!E
∼=-R-C

A 6= C

A:?x ; C:φ ∼= C:φ ; A:?x

∼=-R-R
A 6= C

A:?x ; C:?y ∼= C:?y ; A:?x
∼=-C-C

A 6= C

A:φ ; C:ψ ∼= C:ψ ; A:φ

∼=-S-N
n 6∈ n(E)

A:B!E ; νn ∼= νn ; A:B!E
∼=-C-N

n 6∈ n(φ)
A:φ ; νn ∼= νn ; A:φ

∼=-R-N
A:?x ; νn ∼= νn ; A:?x

∼=-N-N
νn ; νm ∼= νm ; νn

Table 10
Reordering

given in Table 10, and closed under contexts of the form X ; [·] ;X ′.

We define ∼=α to be the union of ∼= and α-equivalence.

Given a particular message exchange A;B : M , it may possibly seem surpris-
ing at first that the reordering relation allows the respective reception action
B:?x to occur before its associated emission action A:B!M . Clearly, the re-
ceived message cannot be the intended one. Such a behaviour must be dealt
with carefully, e.g., by rejecting unintended messages, but its existence cannot
be avoided; it is a matter of fact in concurrent systems that exchange messages
asynchronously.

Labelled transitions. We define a straightforward labelled semantics of
executable narrations, in style influenced by semantics for the spi-calculus, in
Table 11.

Our semantics relates two executable narrations with a transition
A:β−−→ where

A ∈ A and β is either an input action ?M where M ∈M or a bound output
action (νñ)B!M where ñ is a (possibly empty) list of pairwise distinct names
n1 · · ·nk (that are bound in the remainder), B ∈ A and M ∈M . If k = 0 (i.e.
ñ is empty), we will simply write B!M . Note that there is no internal action
in our formal semantics of narrations. We might also have introduced a rule
like

Com
X

A:(νñ) B!M−−−−−−→ X ′ X ′ B:?M−−−→ X ′′

X
τ−→ νñ ; X ′′
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Send
JEK = M ∈M

A:B!E ; X A:B!M−−−−→ X
Receive

A:?x ; X A:?M−−−→ X{M/x}@A

M ∈M

Check
X

A:β−−→ X ′

A:φ ; X
A:β−−→ X ′

JφK = true

Open
X

A:(νñ) B!M−−−−−−−→ X ′

νz ; X
A:(νzñ) B!M−−−−−−−−→ X ′

z ∈ n(M) \ {ñ}

Rearrange
X ∼=α X

′ X ′ A:β−−→ X ′′

X
A:β−−→ X ′′

Table 11
Labelled semantics of executable narrations

but we tend to insist on the fact that every communication necessarily passes
through the network, while such a rule Com would allow to avoid this.

5 Rewriting protocol narrations . . . into spi-calculus

The spi-calculus is a process calculus that was designed in order to study
cryptographic protocols. In this section, we show that executable narrations
closely correspond to terms in a quite restricted fragment of the spi-calculus.

Syntax We use a finite spi-calculus without choice, generated as P by:

P ::= 0 E(x).P E〈F 〉.P P |Q (νn)P φP

We use the same syntactic categories (names, agent names) as for narrations.

In process E(x).P , the variable x is bound in P and in the process (νn)P ,
the name n is bound in P . For a process P , we denote its set of free names
fn(P ), bound names bn(P ), free variables fv(P ) and bound variables bv(P ).

Semantics Table 12 shows a labelled semantics for the spi-calculus. It relies
on the definition of structural congruence ≡ defined as the least congruence
satisfying:
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Input
JEK = A ∈ A M ∈M

E(x).P A M−−−→ P{M/x}
Output

JEK = A ∈ A JF K = M ∈M

E〈F 〉.P A M−−−→ P

Open
P

(νñ) A M−−−−−→ P ′

(νz)P
(νzñ) A M−−−−−−→ P ′

z ∈ n(M) \ ñ Res
P

µ−→ P ′

(νn)P
µ−→ (νn)P ′

n 6∈ fn(µ)

Guard
P

µ−→ P ′

φP
µ−→ P ′

JφK = true Par
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

Struct
P ≡ P ′ P ′ µ−→ P ′′

P
µ−→ P ′′

Table 12
Labelled semantics of spi-calculus

• ∀P,Q,R : (P |Q) |R ≡ P | (Q |R)
• ∀P,Q : P |Q ≡ Q |P
• ∀P : P | 0 ≡ P
• ∀P,Q, n : (νn)P |Q ≡ (νn) (P |Q) if n 6∈ fn(Q)
• ∀P,Q : P ≡ Q if P and Q are α-equivalent

Communication can only occur on agent names. Moreover, since it is syntac-
tically not possible to hide an agent name from outside, we do not consider
internal communications. Transitions are thus of two kinds: either an input
action AM or a bound output action (νñ)AM where in both cases A ∈ A
and M ∈M , ñ being a (possibly empty) list of pairwise distinct names that
are binding occurrences in M .

Executable narrations in spi-calculus As the reader might have noticed,
the executable narrations as of §2 and the spi-calculus above are similar. Thus,
we may now provide a straightforward translation of executable narrations
into the spi-calculus and easily show that the semantics is preserved. The
main idea is that the implicit concurrency structure of narrations as encoded
with explicit agent names is projected out (X�A of Definition 7) and explicitly
represented using the parallel composition operator of the spi-calculus. Any
intended sequential occurrence of actions, namely those actions that are as-
sociated to the same agent, is preserved by using the prefix operator of the
spi-calculus. The private names are then simply put as a top-level restricted
around the parallel composition.

Definition 7 (Translation)
Let X ∈ X be an executable narration.
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A(ε) def= ∅

A(A:B!E ; X) def= {A} ∪ A(X)

A(A:?x ; X) def= {A} ∪ A(X)

A(A:φ ; X) def= {A} ∪ A(X)

A(νn ; X) def= A(X)

R(ε) def= ∅

R(A:B!E ; X) def= R(X)

R(A:?x ; X) def= R(X)

R(A:φ ; X) def= R(X)

R(νn ; X) def= {n} ∪R(X)

ε�A
def= 0

(A′:B!E ; X)�A
def=

{
B〈E〉.X�A if A′ = A

X�A otherwise

(A′:?x ; X)�A
def=

{
A(x).X�A if A′ = A

X�A otherwise

(A′:φ ; X)�A
def=

{
φX�A if A′ = A

X�A otherwise

(νn ; X)�A
def= X�A

Table 13
Definition of A(·), R(·), and ·�·

(1) A(X) (Table 13) defines the set of agents acting in X.
(2) R(X) (Table 13) defines the set of fresh restricted names of X.
(3) X�A (Table 13) defines the spi projection of X on A ∈ A.
(4) The translation T JXK of X into spi-calculus is defined by:

T JXK def
= (νn) n∈R(X)

∏
A∈A(X)

X�A

where (νn) n∈I and
∏

n∈I denote n-ary restriction and composition.

(5) T JA:?MK def
= AM and T JA:(νñ)B!MK def

= (νñ)BM map transition la-
bels.

The following theorem concludes that the operational semantics of executable
narrations and their spi-calculus translations precisely coincide up to ≡.

Theorem 1
Let X ∈ X be an executable narration.

(1) If X
A:β−−→ X ′ then T JXK T JA:βK−−−−→ P ′ with P ′ ≡ T JX ′K.

(2) If T JXK µ−→ P ′ then there exists A ∈ A, X ′ and β

such that X
A:β−−→ X ′, P ′ ≡ T JX ′K and µ = T JA:βK.
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6 Spyer

spyer is a tool, developed in OCaml, that implements the previous formal
developments. A source distribution of spyer can be found online [Bri06]; an
early version was developed by Gensoul [Gen03].

spyer takes as an input file an extended protocol narration (using also the
syntactic sugar described at the end of Section 1) and outputs an executable
protocol narration and/or a network of spi-calculus processes. The latter can
then be used as input for our bisimulation checker sbc that implements the
symbolic bisimulation described in [BBN04]. Before commenting some exam-
ples adapted from [CJ97], we explain how consistency formulae, which can
quickly become huge, may be simplified.

6.1 Simplifying formula.

The various sub-formulae generated by the consistency formula of Definition 3
contain lots of redundant information.

Example 5
For example, if K = {(A,A), (B,B), ((A .B), x), (A, π1(x)), (B, π2(x))}, then

Φ(K) = [A :M ]∧ [B :M ]∧ [x :M ]

∧ [π1(x) :M ]∧ [π2(x) :M ]

∧ [A=π1(x) ]∧ [B=π2(x) ]

∧ [x=(A .B) ]∧ [x=(π1(x) . B) ]

∧ [x=(π1(x) . π2(x)) ]∧ [x=(A . π2(x)) ]

∧ inv(A,A)∧ inv(A, π1(x))

∧ inv(B,B)∧ inv(B, π2(x))

∧ inv(x, x)∧ inv(x, (A .B))∧ inv(x, (A . π2(x)))

∧ inv(x, (π1(x) . π2(x)))∧ inv(x, (π1(x) . B))

Actually, we should also add the symmetric tests since they are syntactically
different and the Definition 3 ignores the symmetry of [ ·= · ] and inv(·, ·).

To avoid this combinatorial explosion, we devise some mostly straightforward
rules to simplify formulae. Before stating them, we define formula equivalence.
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Definition 8 (Formula Equivalence)
Two formulae φ and ψ are equivalent—written φ ≈ ψ—if and only if for all
(closing) substitutions σ : V→M, we have JφσK = JψσK.

Since substitution correspond to message reception, two formulae are thus
equivalent if they evaluate in the same way in every execution.

In the following enumeration of equivalence laws, with φ1 ∧ φ2 ≈ φ2 ∧ φ1 and
(φ1∧φ2)∧φ3 ≈ φ1∧ (φ2∧φ3), we consider formulae up to commutativity and
associativity of the conjunction operator.

The first set of laws states the symmetry and transitivity of the equality test.

• [E=F ]∧φ ≈ [F =E ]∧φ
• [E=F ]∧ [F =G ]∧φ ≈ [E=F ]∧ [E=G ]∧φ

The second set of laws simplifies well-formedness tests or inversion tests.

• If φ = [E :M ]∧φ′ and E is an expression without deconstructors (i.e., that
does not contain any occurrence of π1(·), π2(·) or D·(·)), then φ ≈ φ′.
• If φ = [E :M ]∧φ′ and E appears as a subexpression of an expression

appearing in φ′, then φ ≈ φ′.
• If φ = [π1(E) :M ]∧φ′ and π1(E) or π2(E) appear as a subexpression of an

expression appearing in φ′, then φ ≈ φ′.
• If φ = [π2(E) :M ]∧φ′ and π1(E) or π2(E) appear as a subexpression of an

expression appearing in φ′, then φ ≈ φ′.
• inv(M,M−1)∧φ ≈ φ

The third set of laws rewrites well-formedness tests or inversion tests in terms
of equality tests.

• inv(E,F )∧φ ≈ [DF ({G}E) :M ]∧φ for all G that do not contain decon-
structors or if it contains some, they are inside an exact occurrence of E
or F . For example, G = F or G = E are valid choices for G.
• [E :M ]∧φ ≈ [E=E ]∧φ.

The following law states a substitutivity property of equality:

• [E=F ]∧φ ≈ [E=F ]∧φ′, for all φ′ which is φ where some occurrences of
E has been replaced by F or conversely.

Finally, the last set of laws rewrites equality tests such that the resulting
expressions contain fewer constructors.

• [ (E1 . E2)=(F1 . F2) ]∧φ ≈ [E1 =F1 ]∧ [E2 =F2 ]∧φ
• [{E1}E2 ={F1}F2 ]∧φ ≈ [E1 =F1 ]∧ [E2 =F2 ]∧φ
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• [H(E)=H(F ) ]∧φ ≈ [E=F ]∧φ
• [pub(E)=pub(F ) ]∧φ ≈ [E=F ]∧φ
• [priv(E)=priv(F ) ]∧φ ≈ [E=F ]∧φ
• [ (E1 . E2)=F ]∧φ ≈ [E1 =π1(F ) ]∧ [E2 =π2(F ) ]∧φ

Example 6
With the above laws, the formula of Example 5 is provably equivalent to:

ψ = [A=π1(x) ]∧ [B=π2(x) ]

These ideas are implemented in spyer. Moreover, it exploits the fact that
the consistency formula is only used when adding a pair (M,x) to an already
reduced knowledge set K. So, to avoid that the same checks are performed
several times, it keeps in a formula only the atoms involving the variable x.

6.2 The Wide-Mouthed Frog Protocol

First, we give the input file corresponding to the Wide-Mouthed Frog protocol
that we have studied earlier in this article.

(* Wide Mouthed Frog protocol *)

(* initial knowledge *)

A,B,S know A B S

A,S share kAS

B,S share kBS

A generates kAB

A know m

(* protocol narration *)

A -> S: <A,enc(<B,kAB>,kAS)>

S -> B: enc(<A,B,kAB>,kBS)

A -> B: enc(m,kAB)

We then invoke spyer with the above file to obtain the following executable
narration:

new kAS

new kBS

A: new kAB

A: S!<A,enc(<B,kAB>,kAS)>

S: ?0

S: inv(snd(dec(snd(0),kAS)),snd(dec(snd(0),kAS)))

[B = fst(dec(snd(0),kAS))]
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[A = fst(0)]

S: B!enc(<A,<B,snd(dec(snd(0),kAS))>>,kBS)

B: ?1

B: inv(snd(snd(dec(1,kBS))),

snd(snd(dec(1,kBS))))

[B = fst(snd(dec(1,kBS)))]

[A = fst(dec(1,kBS))]

A: B!enc(m,kAB)

B: ?2

B: inv(dec(2,snd(snd(dec(1,kBS)))),

dec(2,snd(snd(dec(1,kBS)))))

Finally, this gives the following spi-calculus system:

agent A(agent_A, agent_B, agent_S, kAS, m) =

(^kAB)

’agent_S<<agent_A, enc(<agent_B, kAB>, kAS)>>.

’agent_B<enc(m, kAB)>.0)

agent B(agent_A, agent_B, kBS) =

agent_B(x_1).

{[agent_B = fst(snd(dec(x_1, kBS)))]

/\ [agent_A = fst(dec(x_1, kBS))]

/\ wff(dec(enc(kBS, snd(snd(dec(x_1, kBS)))),

snd(snd(dec(x_1, kBS)))))}

agent_B(x_2).

{wff(dec(enc(kBS,

dec(x_2, snd(snd(dec(x_1, kBS))))),

dec(x_2, snd(snd(dec(x_1, kBS))))))}0

agent S(agent_A, agent_B, agent_S, kAS, kBS) =

agent_S(x_0).

{[agent_B = fst(dec(snd(x_0), kAS))]

/\ [agent_A = fst(x_0)]

/\ wff(dec(enc(kAS, snd(dec(snd(x_0), kAS))),

snd(dec(snd(x_0), kAS))))}

’agent_B<enc(<agent_A, <agent_B,

snd(dec(snd(x_0), kAS))>>,

kBS)>.0

agent System(agent_A, agent_B, agent_S, m) =

(^kAS, kBS)

(A(agent_A, agent_B, agent_S, kAS, m)

| B(agent_A, agent_B, kBS)

| S(agent_A, agent_B, agent_S, kAS, kBS))

33



6.3 The Otway-Rees protocol

In the Otway-Rees protocol, lots of redundant information is shared by partic-
ipants. For example, the message m appears in every single message exchange.
The extended narration corresponding to the Otway-Rees protocol is:

(* Otway Rees protocol *)

(* initial knowledge *)

A,B,S know A B S

A,S share kAS

B,S share kBS

A know m

A generates nA

B generates nB

S generates kAB

(* protocol narration *)

A -> B : <m,A,B,enc(<nA,m,A,B>,kAS)>

B -> S : <m,A,B,enc(<nA,m,A,B>,kAS),enc(<nB,m,A,B>,kBS)>

S -> B : <m,enc(<nA,kAB>,kAS),enc(<nB,kAB>,kBS)>

B -> A : <m,enc(<nA,kAB>,kAS)>

The executable narration computed by spyer is then:

new kAS

new kBS

A: new nA

B: new nB

S: new kAB

A: B!<m,<A,<B,enc(<nA,<m,<A,B>>>,kAS)>>>

B: ?0

B: inv(snd(snd(snd(0))),snd(snd(snd(0))))

inv(fst(0),fst(0))

[B = fst(snd(snd(0)))]

[A = fst(snd(0))]

B: S!<fst(0),<A,<B,<snd(snd(snd(0))),

enc(<nB,<fst(0),<A,B>>>,kBS)>>>>

S: ?1

S: inv(fst(dec(snd(snd(snd(snd(1)))),kBS)),

fst(dec(snd(snd(snd(snd(1)))),kBS)))

inv(fst(dec(fst(snd(snd(snd(1)))),kAS)),

fst(dec(fst(snd(snd(snd(1)))),kAS)))

inv(fst(1),fst(1))
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[fst(1) = fst(snd(dec(snd(snd(snd(snd(1)))),kBS)))]

[fst(1) = fst(snd(dec(fst(snd(snd(snd(1)))),kAS)))]

[<A,B> = snd(snd(dec(snd(snd(snd(snd(1)))),kBS)))]

[<A,B> = snd(snd(dec(fst(snd(snd(snd(1)))),kAS))))]

[B = fst(snd(snd(1)))]

[A = fst(snd(1))]

S: B!<fst(1),

<enc(<fst(dec(fst(snd(snd(snd(1)))),kAS)),kAB>,kAS),

enc(<fst(dec(snd(snd(snd(snd(1)))),kBS)),kAB>,kBS)>>

B: ?2

B: inv(snd(dec(snd(snd(2)),kBS)),snd(dec(snd(snd(2)),kBS)))

inv(fst(snd(2)),fst(snd(2)))

[fst(2) = fst(0)]

[nB = fst(dec(snd(snd(2)),kBS))]

B: A!<fst(2),fst(snd(2))>

A: ?3

A: inv(snd(dec(snd(3),kAS)),snd(dec(snd(3),kAS)))

[nA = fst(dec(snd(3),kAS))]

[m = fst(3)]

Actually, if the computation of the consistency formulae was following literally
what we devised in Section 2, the generated formulae of S would contain more
than 300,000 (!) equality tests.

7 Related work

We roughly and somewhat artificially divide the list of competing approaches
into two classes. One class tries to tightly associate some formal semantics with
(variants of) narrations themselves. Another class provides less tight associa-
tions, usually involving a different target formalism: here, we may distinguish
approaches that informally reformulate narrations within a different formal-
ism from those that offer mostly automated translations from narrations into
target formalisms, but do not clearly justify the underlying translation prin-
ciples (if exposed at all). Let us, for the purpose of structuring this section,
use the terms “tight” and “lax” semantics to separate the two classes.

Sumii et. al. [STY04] propose a formal semantics of narrations by translation
into spi-calculus. The paper is written in Japanese, so it remains unclear to us
how “tight” the approach really is, how they treat the problem of checks-on-
reception, and also whether there is any formal or informal justification of the
translation principles. In any case, our own intention was to provide a formal
semantics that does not require the use of an underlying (and possibly too)
general process calculus, so our approach is still substantially different.
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Tight semantics

The work of Caleiro, Viganó and Basin [CVB05,CVB06] is quite similar in
spirit and aim with our work. They defined a trace-based denotational se-
mantics and gave a corresponding operational semantics with a variant of
pattern-matching spi-calculus as target language. Some underlying ideas are
quite similar to ours but we find our formalism of knowledge sets is more
light-weight (although equally powerful) than their theory of view/opacity.
The view that a principal has of a message M corresponds to how far it un-
derstands the message M with its current knowledge. A message is said to be
opaque for a participant if the latter is not able to analyse at all the form of the
message (this corresponds to a view equal to a special symbol γM). To relate
to these definitions, one might say that our approach consists in considering
that initially a received message M is opaque and is thus bound to a fresh
variable xM . Then, the analysis of the receiver’s knowledge set resulting from
the addition of (M,xM) to its current knowledge set corresponds to comput-
ing the view that the receiver then has of this particular message. In addition,
the receiver also updates the “view” that it has of other previously received
message. Then, we can directly use the result of the analysis to say which
checks have to occur after the reception of M . In contrast, Caleiro, Viganó
and Basin had to introduce and refer to further concepts like the facial pat-
tern, the constructive form and the inner facial pattern (and relate them with
the concept of view) before being able to give an operational semantics. The
main simplification in our setting arises from the joint treatment of messages
and associated “views” as knowledge elements of the form (M,E).

Another way to give semantics to protocol narrations could exploit the widely-
developed machinery of strand spaces [THG99b], proposed by Thayer Fábrega,
Herzog and Guttman. This formalism has proved to be a successful frame-
work for reasoning on and verifying security properties of cryptographic pro-
tocols [GT02]. Strand spaces are graphs that represent the intended protocol
behavior of narrations by an explicit use of arrow-notations: one type of arrow
captures the sequential dependencies within individual participants, giving
rise to strands ; another type of arrow captures the flow of messages between
strands. In contrast to mere narrations, strand spaces are not limited to repre-
sent just the intended behavior, but also the behavior of malicious attackers,
represented as so-called penetrator strands. Since strand spaces come with a
formal semantics, in terms of so-called bundles, this immediately also provides
some semantics for narrations. A bundle can be understood as a causality-
closed subgraph of a given strand space. As such, it represents the possible
result of a valid executions of the strand space. However, there is no notion of
dynamic execution that could be understood as a form of operational seman-
tics. Thus, there is also no study of dynamic checks-on-reception, which is the
main technical contribution of the current paper.
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On the other hand, strand spaces have also been studied by Crazzolara and
Winskel in comparison to other models of concurrency [CW01,CW02], no-
tably including event structures Petri nets and the algebraic process language
SPL; the latter is a simplified (since channel-free) spi-calculus that is enhanced
with some form of pattern-matching (cf. also [HJ06] for pattern-matching in
a more standard spi-calculus, and our comments below). Since these models
of concurrency—in particular the language SPL—are equipped with forms of
operational semantics, one might think that their relation to strand spaces
could provide an operational semantics of the latter “for free”. This, however,
is not the case. In [CW01], for any given SPL-process P in some particularly
restricted form called !-par process, Crazzolara and Winskel show how to for-
mally and closely relate the net behavior Net(P ) to the strand space behavior
Tr(P ). In contrast, they do not offer any way to translate strand spaces back
into SPL-terms, which would be required to inherit the desired operational
semantics. In [CW02], the authors further refine the relation between SPL
and strand spaces by extending the latter with a notion of conflict to allow for
better composition properties. Still, they offer no way to translate arbitrary
strand spaces to SPL processes.

Lax semantics

The work of Bodei et. al. [BBD+03] is also similar to ours, although still
quite different. Like us, they present a refinement of protocol narrations, but
the respective checks-on-reception appear only informally. Like us, they split
message exchanges into three parts, albeit different to ours. A formal semantics
is then only provided after “rewriting”, again informally, refined narrations
into terms of their channel-free process calculus LySa. In the above paper (the
only that we are aware of), the system underlying their “systematic expansion”
is not unambiguously explained, while our expansion is fully automatic, based
on simple intuitive principles and generates a maximum number of checks
according to these principles. Finally, their approach aims at static analysis
techniques, while we ultimately target at dynamic analysis, e.g., as in the form
of bisimulation checks [BBN04] in the full spi-calculus.

In other related approaches, narrations are reformulated or translated using
Casper [Low98], HLPSL2IF [BMV03], CAPSL [Mil], CASRUL [JRV00], or
(s)pi-calculus [AG99,Bla03]. They have in common that they do not easily
help to understand how the gap between the rather informal narrations and
the target formalism is bridged. A compiler can itself be interpreted as giving
semantics to narrations, but usually the translation process is not well ex-
plained or otherwise justified, in particular regarding the treatment of checks-
on-reception. Moreover, our interest was to try to formalise the semantics at
the level of narrations rather than by translation into some reasonably unre-
lated target formalism.
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A subtle, but interesting difference between our work and Casper [Low98] is
their modified message syntax using a construction M % v, meaning that the
recipient of M should not try to decrypt M. We think this construct was added
because of Casper’s rather strict policy to require, unless the % is used, to
be able to fully decrypt all messages (and possibly provide a warning in case
this fails). Our (arguably more flexible) policy is instead to require agents to
always just try to decrypt messages as far as their current knowledge permits,
so we implicitly let agents accept messages even if they cannot (yet) fully
decrypt them.

As we previously observed (cf. §3.3), the pattern-matching spi-calculus of
[HJ06] is not expressive enough to capture the checks-on-reception we require.
To overcome its limitations (in the part of our work that deals with rewriting
into spi-calculus), we could have used a variant similar in spirit to the one
of [CVB06]. However, we found it more orthogonal and extensible to express
those checks by means of dedicated formulae. Moreover, this version of spi-
calculus that was also to be used by our tool spyer was driven by the wish to
generate spi-calculus code that is compatible with our symbolic bisimulation
checker based on [BBN04]. Finally, note that the aim of [HJ06] was to offer a
type system to study safety property of processes, but in no way to give an
automated way to turn protocol narrations into spi-calculus processes.

8 Conclusions

Contributions. In summary, we stepwise enhance protocol narrations in
order to build up enough structure such that a well-motivated formalisation
of their operational semantics becomes possible. The main technical contri-
bution is the proposal of the automatic generation of “checks-on-reception”,
together with a suitable representation of the principals’ knowledge on which
the generation depends.

If one wants to reformulate informal protocol narrations within a calculus like
the spi-calculus, then we propose the following method:

(1) Extend the narration, as shown in §1, by a declaration part making precise
the origin of and initial knowledge about the involved data (names). This
step requires human interaction, because ambiguities need to be resolved.

(2) Compile the resulting narration, as shown in §2, into an executable nar-
ration. This step can now be done automatically.

(3) Extract the implicit concurrency, as shown just above. Again, automati-
cally.

It is worthwhile pointing out that our approach does not bother the protocol
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designer to come up with suitable or sufficient checks-on-reception, because
they are generated automatically. Our approach does not even require the
designer to actually look at these generated checks at all.

Future work. Here, we do not tackle the fourth task listed by Abadi [Aba00]
on how to get to a formalisation of concurrent sessions on the basis of protocol
narrations. The main problem is that principals may play different roles in
concurrent sessions such that the lookup of their respective keys needs to be
dealt with dynamically. The usual convenient confusion of the two concepts
of principal and role is no longer appropriate, so we propose to non-trivially
extend the narration notation rather than providing a suboptimal semantics
to an inappropriate notation. Note that this confusion also rules out the näıve
modelling of concurrent sessions by the bare unbounded replication within
spi-calculus. Some inspiration from the work of Cremers and Mauw [CM05]
and the work done in the context of mixed strand spaces [THG99a,GT00] may
help us here.

Furthermore, it should be possible to develop reasoning techniques for protocol
narrations via an environment-sensitive extension of our semantics that could
be used to define and study meaningful behavioural equivalences.
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A A note about synthesis, flat analysis, closure set and stratified
analysis

In this appendix, we compare our “stratified” approach to compute analyses
to the usual “flat” approach. We do so by means of projection, focusing on
the message components of our knowledge sets. This comparison is mainly
intended to help readers who are familiar with Paulson’s inductive approach
(see [Pau98]) to better understand our formalism. In particular, we show that
the stratified analysis of a message set yields a complete knowledge seed.

Definition 9
If S ⊆M, we define

(1) The synthesis synth(S) of S is the smallest set satisfying
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syn-inc
M ∈ S

M ∈ synth(S)
syn-pair

M ∈ synth(S) N ∈ synth(S)

(M .N) ∈ synth(S)

syn-enc
M ∈ synth(S) N ∈ synth(S)

{M}N ∈ synth(S)

syn-pub
M ∈ synth(S)

pub(M) ∈ synth(S)
syn-priv

M ∈ synth(S)

priv(M) ∈ synth(S)

syn-hash
M ∈ synth(S)

H(M) ∈ synth(S)

(2) the flat analysis analyz(S) of S is the smallest set satisfying

ana-inc
M ∈ S

M ∈ analyz(S)
ana-fst

(M .N) ∈ analyz(S)

M ∈ analyz(S)

ana-snd
(M .N) ∈ analyz(S)

N ∈ analyz(S)

ana-dec
{M}N ∈ analyz(S) N−1 ∈ synth(S)

M ∈ analyz(S)

(3) the closure set close(S) of S is the smallest superset of S closed under
both the flat analysis and the synthesis.

(4) the stratified analysis A(S) of S is
+∞⋃
i=0
Ai(S) where

• A0(S) = S
• Ai+1(S) = analyz(Ai(S))

Definition 10
Let S ⊆M.

• S is closed under synthesis if and only if synth(S) ⊆ S
• S is closed under flat analysis if and only if analyz(S) ⊆ S

It is well known that synth(analyz(S)) ( close(S).

For example, if S =
{
(k . {m}priv((k . k)))

}
then m 6∈ synth(analyz(S)) whereas

m ∈ close(S).

The remainder of this section is devoted to show that synth(A(S)) = close(S).
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synth(A(S)) ⊆ close(S) To show this inclusion, we need the following lemma:

Lemma 2
Let S, T ⊆M and assume that S ⊆ T . Then

• synth(S) ⊆ synth(T )
• analyz(S) ⊆ analyz(T )

Proof 3
See [Bri04].

Proof 4 (of the first inclusion)
We first show that for all i ∈ N, Ai(S) ⊆ close(S).

Indeed, for i = 0, we have A0(S) = S which is a subset of close(S) by
definition.

Then, if we assume by induction that Ai(S) ⊆ close(S), then by Lemma 2,
we have analyz(Ai(S)) ⊆ analyz(close(S)), i.e. Ai+1(S) ⊆ analyz(close(S)).
But since analyz(close(S)) ⊆ close(S), we have thus Ai+1(S) ⊆ close(S).

Hence, we have A(S) ⊆ close(S).

Thus, still by Lemma 2, we have synth(A(S)) ⊆ synth(close(S)) and since
synth(close(S)) ⊆ close(S), we conclude that synth(A(S)) ⊆ close(S).

close(S) ⊆ synth(A(S)) To show this inclusion, we need the following lem-
mae:

Lemma 3
Let S ⊆M. Then synth(synth(S)) = synth(S).

Proof 5
See [Bri04].

Lemma 4
Let S ⊆M. Then A(S) is closed under flat analysis, i.e.

analyz(A(S)) ⊆ A(S)

Proof 6
See [Bri04].

Lemma 5
Let S ⊆M. Then if S is closed under flat analysis then so is synth(S), i.e.

analyz(S) ⊆ S =⇒ analyz(synth(S)) ⊆ synth(S)
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Proof 7
See [Bri04].

Proof 8 (of the second inclusion)
We can now show that synth(A(S)) is a superset of S closed both under flat
analysis and synthesis.

First, we have S = A0(S) ⊆ A(S), so S ⊆ synth(A(S)) and thus synth(A(S))
is a superset of S.

By Lemma 4, we have analyz(A(S)) ⊆ A(S). So by Lemma 5, we have
analyz(synth(A(S))) ⊆ synth(A(S)). Hence synth(A(S)) is closed under
flat analysis.

By Lemma 3, we have synth(synth(A(S))) = synth(A(S)) so, in particu-
lar, synth(synth(A(S))) ⊆ synth(A(S)). Hence synth(A(S)) is closed under
synthesis.

Since close(S) is the smallestsuperset of S which is closed both under synthesis
and flat analysis, we have close(S) ⊆ synth(A(S)).

Conclusion We have finally shown that synth(A(S)) = close(S).
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