Skip to main content

A General Name Binding Mechanism

  • Conference paper
Trustworthy Global Computing (TGC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3705))

Included in the following conference series:

Abstract

We study fusion and binding mechanisms in name passing process calculi. To this purpose, we introduce the U-Calculus, a process calculus with no I/O polarities and a unique form of binding. The latter can be used both to control the scope of fusions and to handle new name generation. This is achieved by means of a simple form of typing: each bound name x is annotated with a set of exceptions, that is names that cannot be fused to x. The new calculus is proven to be more expressive than pi-calculus and Fusion calculus separately. In U-Calculus, the syntactic nesting of name binders has a semantic meaning, which cannot be overcome by the ordering of name extrusions at runtime. Thanks to this mixture of static and dynamic ordering of names, U-Calculus admits a form of labelled bisimulation which is a congruence. This property yields a substantial improvement with respect to previous proposals by the same authors aimed at unifying the above two languages. The additional expressiveness of U-Calculus is also explored by providing a uniform encoding of mixed guarded choice into the choice-free sub-calculus.

Research partially supported by IST FET Global projects PROFUNDIS IST-2001-33100 and MIKADO IST-2001-32222.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11580850_20 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boreale, M., Buscemi, M., Montanari, U.: D-Fusion: a Distinctive Fusion Calculus. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 296–310. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Gardner, P., Laneve, C., Wischik, L.: The fusion machine (extended abstract). In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 418. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Meredith, L.G., Bjorg, S., Richter, D.: Highwire Language Specification Version 1.0. (Unpublished manuscript)

    Google Scholar 

  4. Microsoft Corp. Biztalk Server, http://www.microsoft.com/biztalk

  5. Milner, R.: The Polyadic pi-Calculus: a Tutorial. Technical Report, Computer Science Dept., University of Edinburgh (1991)

    Google Scholar 

  6. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (parts I and II). Information and Computation 100(1), 1–77 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nestmann, U., Pierce, B.C.: Decoding choice encodings. Information and Computation 163(1), 1–59 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous pi-calculus. In: Conf. Rec. of POPL 1997 (1997)

    Google Scholar 

  9. Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous pi-calculus. Mathematical Structures in Computer Science 13(5), 685–719 (2003)

    Article  MathSciNet  Google Scholar 

  10. Parrow, J., Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes. In: Proc. of LICS 1998. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  11. Pistore, M., Sangiorgi, D.: A Partition Refinement Algorithm for the Pi-Calculus. Information and Computation 164(2), 264–321 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis, Department of Computer Science, University of Edinburgh (1992)

    Google Scholar 

  13. Sangiorgi, D.: A Theory of Bisimulation for the pi-Calculus. Acta Informatica 33(1), 69–97 (1996)

    Article  MathSciNet  Google Scholar 

  14. Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes. PhD thesis, Department of Computer Systems, Uppsala University (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boreale, M., Buscemi, M.G., Montanari, U. (2005). A General Name Binding Mechanism. In: De Nicola, R., Sangiorgi, D. (eds) Trustworthy Global Computing. TGC 2005. Lecture Notes in Computer Science, vol 3705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11580850_5

Download citation

  • DOI: https://doi.org/10.1007/11580850_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30007-6

  • Online ISBN: 978-3-540-31483-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics