
A general name binding mechanism

Michele Boreale1, Maria Grazia Buscemi2, and Ugo Montanari2

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy.
2 Dipartimento di Informatica, Università di Pisa, Italy.
boreale@dsi.unifi.it {buscemi,ugo}@di.unipi.it

Abstract. We study fusion and binding mechanisms in name passing
process calculi. To this purpose, we introduce the U-Calculus, a process
calculus with no I/O polarities and a unique form of binding. The latter
can be used both to control the scope of fusions and to handle new name
generation. This is achieved by means of a simple form of typing: each
bound name x is annotated with a set of exceptions, that is names that
cannot be fused to x. The new calculus is proven to be more expressive
than pi-calculus and Fusion calculus separately. In U-Calculus, the syn-
tactic nesting of name binders has a semantic meaning, which cannot be
overcome by the ordering of name extrusions at runtime. Thanks to this
mixture of static and dynamic ordering of names, U-Calculus admits a
form of labelled bisimulation which is a congruence. This property yields
a substantial improvement with respect to previous proposals by the
same authors aimed at unifying the above two languages. The additional
expressiveness of U-Calculus is also explored by providing a uniform en-
coding of mixed guarded choice into the choice-free sub-calculus.

1 Introduction

Name binding is a key issue in many languages for the design of distributed
and mobile systems based on message-passing. This is certainly the case for
foundational calculi like pi-calculus [5, 6] and Fusion [10], but the relevance of
name binding extends also to languages like Biztalk [4] and Highwire [3], oriented
towards web services. Fusion extends the pi-calculus by introducing fusions,
i.e. name equivalences that, when applied onto a term, have the effect of a
(possibly non-injective) name substitution. Fusions conveniently formalise, e.g.,
forwarders for objects that migrate among locations [2], or forms of pattern
matching between pairs of messages [3].

While Fusion is presented in [10] as a generalisation of the pi-calculus, the
authors prove in the paper [1] that no satisfactory semantic embedding exists of
pi-calculus into Fusion. In particular, Fusion ignores the issue of name unicity. In
pi-calculus, names declared through the restriction operator are unique, in the
sense that they cannot be identified with any other name. In Fusion, the binder
(x) can be used to control the scope of fusions, but not to forbid them: names
are like logical variables, i.e., unification always succeeds. In [1], we introduce
D-Fusion, a calculus with two binders, ν and λ, which extend the binders of

2

pi-calculus and Fusion. We show that D-Fusion is strictly more expressive than
both pi-calculus and Fusion. In particular, we prove that both Fusion and pi-
calculus can be uniformly mapped into D-Fusion, and exhibit an encoding of
mixed guarded choice into the choice-free fragment of D-Fusion.

In D-Fusion, however, constraints on name fusions are totally determined by
the extrusion ordering of names at runtime: the fact that a λ-name x will be
fusable to a ν-name y depends on whether x will be extruded after y or before
y. In other words, fusions cannot be constrained statically. As we explain below,
this causes bisimilarity defined on the labelled transition system not to be a
congruence. As a consequence, in D-Fusion one is forced to work with barbed
congruence, which lacks adequate proof techniques.

In this paper we introduce the U-Calculus, a process calculus with no I/O
polarities and a unique form of binding. In U-Calculus, the syntactic nesting of
name binders has a semantic meaning, which cannot be overcome by the ordering
of name extrusions at runtime. Thanks to this mixture of static and dynamic
ordering of names, U-Calculus labelled bisimulation is a congruence.

To understand why a static ordering of names is useful, we can reason as
follows. Assume that an agent has a free name x and a ν-bound name y. Names
x and y cannot be fused in any reasonable semantics. For example, in open pi-
calculus [13], one has (νy) [x = y]P ∼ 0. This can be expressed by the following
expansion law, which holds true because communication between the two prefixes
is forbidden (here we use polarities for the sake of readability; a〈x〉 is Fusion’s
free input, a〈y〉 is output, and ∼ is labelled bisimilarity):

P
4
= (νy)(a〈x〉|a〈y〉) ∼ (νy)(a〈x〉.a〈y〉+ a〈y〉.a〈x〉) 4

= Q.

Now, suppose P and Q above are plugged into a context (λx)[·]. If (λx)P ν-
extrudes y before λ-extruding x, fusion of x and y will be allowed. This must
be the case, at least, if one keeps the traditional scope-extrusion law, which is
common to Pi, Fusion and D-Fusion. In fact, scope extrusion allows the binders
(λx) and (νy) in (λx)P to be freely swapped. This swapping makes the syntactic
ordering of binders immaterial. So (λx)P is equivalent to a(x)|(νy)a〈y〉, where
the bound input a(x) is just the same as (λx)a〈x〉. In other words:

(λx)P ∼ (λx)Q + τ 6∼ (λx)Q.

Thus, in D-Fusion, plugging an agent into a λ-context may trigger additional
communication capabilities, making two agents in the λ-context not bisimilar,
when the two original agents were so. Note that this is true even if we require
that ∼ be closed under all substitutions, in sharp contrast with both open pi-
calculus [13] and Fusion. In these calculi, the problem does not arise simply
because free input and restriction do not coexist.

A static ordering of name binders solves the problem. In U-Calculus, the
syntactic nesting (λx)(νy) forbids the fusion of the two names in any case. Op-
erationally, when the extrusion of y takes place under (λx), name x is decorated
with an exception y, yielding (λx : y). This indicates that the fusion between x

3

and y will never be allowed, and so it holds that (λx)P ∼ (λx)Q. Semantically,
this fact has consequences on the scope extrusion laws. In particular, we have
the following new swapping law:

(λx)(νy)R ∼ (νy)(λx : y)R.

Incidentally, a simple generalisation of the exception types allows to oper-
ationally unify the mechanism of λ- and ν-binding. In fact, a ν-binder is just
a λ-binder where all names free at the moment of extrusion are considered as
exceptions. This is indicated by a new type ω, as in (λx : ω). With this notation,
ν and λ enjoy a uniform treatment. As a consequence, the U-Calculus achieves
minimal syntax and operational rules.

The expressive power of the U-Calculus is essentially the same as D-Fusion’s:
also for the U-Calculus we can provide uniform mappings of both pi-calculus and
Fusion, and a uniform encoding of mixed guarded choice into the choice-free sub-
calculus. While the main result of this paper is a notion of labelled bisimulation
congruence, in our assesment of the expressive power we shall also rely on barbed
bisimilarity [12], when this is technically convenient.

The rest of the paper is organised as follows. In Section 2 we introduce
the U-Calculus, its operational semantics and a notion of open bisimulation.
In Section 3 we show that U-Calculus is strictly more expressive than both pi-
calculus and Fusion. We further explore this expressiveness gap in Section 4, by
encoding mixed guarded choice into the choice-free calculus. Section 5 contains
a few concluding remarks.

2 The U-Calculus

Syntax We consider a countable set of namesN ranged over by a, b, . . . , u, v, ..., z.
We write x̃ for a finite tuple (x1, . . . , xn) of names. The set U of U-Calculus pro-
cesses, ranged over by P,Q, . . ., is defined by the syntax:

P ::= 0
∣∣ a ṽ.P

∣∣ P |P
∣∣ P + P

∣∣ [x = y]P
∣∣ !P

∣∣ (λx : T) P.

Types T are defined as:
T ::= N |ω,

where N ⊆fin N and ω is a constant. The intended meaning of (λx : T) is that x
cannot be fused with any name in T . In particular, ω stands for ‘any name’ free
at the moment of extrusion, thus (λx : ω) P corresponds to declaring x fresh.
We will often abbreviate (λx : ω) as (νx) and (λx : ∅) as (λx) . By (λx̃ : T̃) we
will denote (λx1 : T1) · · · (λxn : Tn) , where it is assumed that xi ∈ Tj implies
i < j, for i, j = 1, · · · , n. We will also adopt the convention that (λx : T)P |Q
stands for ((λx : T)P) |Q.

The occurrences of x in (λx : T)P are bound, thus notions of free names and
bound names of a process P arise as expected and are denoted by fn(P) and
bn(P), respectively. The notion of alpha-equivalence also arises as expected. In

4

the rest of the paper we will identify alpha-equivalent processes. A context C[·]
is a process with a hole that can be filled with any process P , thus yielding a
process C[P].

Note that we consider one kind of prefix, thus ignoring polarities. However, a
sub-calculus with polarities can be easily retrieved, as we will show later in this
section.

Notation

– T + T ′ def= N ∪ N ′ if T = N and T ′ = N ′, T + T ′ def= ω if T = ω or T ′ = ω.
We abbreviate T + {y} as T + y.

– T − y
def= N \ {y} if T = N , T − y

def= ω if T = ω.
– T u N

def= N ′ ∩ N if T = N ′, T u N
def= N if T = ω.

– Predicate y E T is defined as follows:

y E T ⇔ T = ω or (T = N and y ∈ N)

The above notations are extended to tuples T̃ as expected. For instance, T̃uN
def=

T1 uN, · · · , Tn uN , if T̃ = T1, · · · , Tn. For x̃ = (x1, · · · , xn), T̃ = (T1, · · · , Tn),
and Ñ = (N1, · · · , Nn), by x̃ : T̃ u Ñ we denote x1 : T1 uN1, · · · , xn : Tn uNn.

Operational Semantics For R a binary relation over N , let R? denote the reflex-
ive, symmetric and transitive closure of R with respect to N . We use σ, σ′ to
range over substitutions, i.e. finite partial functions from N onto N . The domain
of σ is denoted by dom(σ). We denote by tσ the result of applying σ onto a term
t. Given a tuple of names x̃, we define σ|x̃ as σ ∩ (x̃×N).

Below, we define fusions, that is, name equivalences. These arise as the result
of equating two tuples of names in a synchronisation.

Definition 1 (fusions). We let φ, χ, . . . range over fusions, that is total equiv-
alence relations on N with only finitely many non-singleton equivalence classes.
We let:

– n(φ) denote {x : xφ y for some y 6= x};
– τ denote the identity fusion (thus, n(τ) = ∅);
– φ−z denote (φ− ({z} × N ∪N × {z}))?;
– {x̃ = ỹ} denote {(x1, y1), . . . , (xn, yn)}?, where x̃ = x1, . . . xn and

ỹ = y1, . . . yn;
– φ[x] denote the equivalence class of x in φ.

The next definition introduces substitutive effects of fusions.

Definition 2. Let σ be a substitution. Then:

– σ is a substitutive effect of a fusion φ iff ∀x, y : xφ y ⇔ xσ = y σ and
∀x, y : σ(x) = y ⇒ xφ y.

– σ respects (λx̃ : T̃) for x̃ = (x1, · · · , xn) iff ∀xi ∈ dom(σ), σ(xi) 6E Ti σ and
σ(xi) = xj implies j < i.

5

– 〈(λx̃ : T̃) , (λỹ : Ũ) , φ〉 σ, iff:
(a) σ is a substitutive effect of φ;
(b) σ respects (λx̃ : T̃) and (λỹ : Ũ) ;
(c) let z̃ = n(φ) \ x̃ỹ, then z̃ σ ∩ x̃ỹ = ∅.

In the above definition, think of φ as the fusion determined by a communi-
cation, and of (λx̃ : T̃) and (λỹ : Ũ) as the bound names of the communicating
actions, with their exceptions. Condition (a) means that σ sends all members
of the equivalence class to one representative of the class. Condition (b) ensures
that σ respects the exceptions declared by the λ-binders, and their nesting (no
λ-name xi is sent by σ to an outer λ-name xj , thus in (λx̃ : T̃) the order of
all components xi : Ti is important). Condition (c) avoids capture of free names
(i.e. mapping a free to a λ-name).

Example 1. Let φ = {xyu = zzw}. A substitutive effect of φ is σ = [y/x, y/z, u/w].
The substitution σ respects (λy, x : ω , ∅) , but σ does not respect (λx, y : ∅ , ω) .
Moreover, 〈(λy, x : ω , ∅) , (λz, w : k, ∅) , φ〉 σ.

We introduce below a concept of distinction, akin to [13]. The purpose of dis-
tinctions is to keep track of those name fusions that have to be forbidden.

Definition 3 (distinctions). A distinction D is a tuple x1 : T1, x2 : T2, . . . ,

xn : Tn, written x̃ : T̃ , up to permutations and up to the law:

x̃ : T̃ , w : T1, w : T2 = x̃ : T̃ , w : T1 + T2.

Let D = x̃ : T̃ and D′ = x̃′ : T̃ ′ be two distinctions. Then:

– D,D′ def= x̃x̃′ : T̃ T̃ ′;
– D \ z

def= (xi : Ti − z)i: xi 6=z;

– D σ
def= x̃σ : T̃ σ.

We write xD y iff x 6= y and x : T ∈ D and y E T , for some T . Given a
substitution σ and a distinction D, we say that σ respects D, written σ ` D, if
xD y implies xσ 6= y σ.

Note that x : ω means that x cannot be identified with any other name (x is
a constant).

Definition 4 (labelled transition system). The transition relation P
µ−→ Q,

for µ a label of the form (λỹ : T̃) aṽ (action) or of the form D,φ (effect) is
defined by the SOS rules in Table 1.

Some comments on the rules of Table 1 are in order. Actions occurring within
the scope of a λ are governed by rules Pass and Open. Roughly, a name z that
is declared with exceptions T ′ may get extruded (rule Open) or not (rule Pass)
by an action occurring under the scope of its declaration (λz : T ′) , depending
on whether z occurs in the object part of the action. In both cases, z must be

6

removed from the current set of exceptions T̃ . No distinction is lost, because
those extruded names having z as an exception are added to T ′ (condition (1)).
E.g.:

(λz : a) (λx : z) ax.P
(λx) ax−−−−−→ (λz : {a, x}) P.

Effects are similar to those found in Fusion, but here they also carry a set of
exceptions represented by a distinction x̃ : T̃ . Effects are created as a result of
a communication that unifies two tuples of names (rule Com), and propagated
across parallel components, until a λ is encountered. The rule Passf has a meaning
similar to Pass. The rule Openf acts on a name z in the fusion: a substitutive effect
[w/z] is applied both to the transition label and to the target process, and z is
removed from the fusion (the result is φ−z). The side condition φ[z] u T ′′ = ∅
forbids fusion of z with any name in its set of exceptions (T ′ + {Tj | z = xj}),
or having z as an exception ({xi | z E Ti}); in particular, the rule does not fire if
T ′ = ω, i.e. if z is declared to be new. Note that applying [w/z] onto (x̃z : T̃ T ′)
implicitly lets w inherit z’s exceptions. For example:

(λz : y) (νc) (cza.P |cww.0)
w:y, {a=w}−−−−−−−→ P [w/z]

while
(λz : a) (νc) (cza.P |cww.0) 6−→ .

Here, z cannot be fused to w or to a, because a is in z’s exceptions (φ[z]u T ′′ =
{a}). A similar explanation can be given for rule Com, but here the substitutive
effect σ involves in general several names, and must be explicitly restricted to
the lambda names x̃ỹ. The condition 〈(λx̃ : T̃) , (λỹ : Ũ) , φ〉 σ ensures that σ
is a substitutive effect of φ, respects the exceptions of the communicating actions
((λx̃ : T̃) ab̃ and (λỹ : Ũ) ac̃) and avoids capture of free names (i.e. mapping a
free to a λ-name).

Example 2.

1. The construct (λx) ax behaves as a(x) in pi-calculus:

(λx) ax.P | ay.0 τ−→ P [y/x] and (λx) ax.P | (νy) ay.0 τ−→ (νy) P [y/x]

but ax.P | (λy : x) ay.0 6 τ−→ and ax.P | (νy) ay.0 6 τ−→

2. The two examples below show applications of rules (Openf) and (Com), respec-
tively:

(λx : y) (axx.P | awz.0)
w:y,{w=z}−−−−−−−→ P [w/x].

(νy) axyz.P | (λx′ : z) (λy′) ax′y′z′.Q
x:z,{z=z′}−−−−−−−→ (νy) (P |Q)[x/x′][y/y′]

3. Nesting of binders is important, even on names in the same action:

(νy) (λx) axy.0 | (λu) auu
τ−→ while (λx) (νy) axy.0 | (λu) auu 6 τ−→

7

(Act) ab̃.P
ab̃−→ P (Match)

P
µ−→ Q

[a = a]P
µ−→ Q

(Sum)
P

µ−→ Q

P + R
µ−→ Q

(Pass)
P

(λx̃:T̃) ab̃−−−−−−→ Q

(λz : T ′) P
(λx̃:T̃−z) ab̃−−−−−−−→ (λz : T ′′) Q

z /∈ b̃ ∪ {a} and (1)

(Open)
P

(λx̃:T̃) ab̃−−−−−−→ Q

(λz : T ′) P
(λzx̃:T ′′(T̃−z)) ab̃−−−−−−−−−−−→ Q

z ∈ b̃− {a} and (1)

(Passf)
P

x̃:T̃ ,φ−−−→ Q

(λz : T ′) P
(x̃:T̃)\z,φ−−−−−−→ (λz : T ′′) Q

z /∈ n(φ) and (1)

(Openf)
P

x̃:T̃ ,φ−−−→ Q

(λz : T ′) P
(x̃z:T̃T ′)[w/z],φ−z−−−−−−−−−−−−→ Q[w/z]

w φ z, w 6= z, φ[z] u T ′′ = ∅ and (1)

(Com)
P1

(λx̃:T̃) ab̃−−−−−−→ Q1 P2
(λỹ:Ũ) ac̃−−−−−−→ Q2

P1|P2

w̃:Ṽ ,φ−x̃ỹ−−−−−−→ (λz̃ : Z̃) (Q1|Q2)σ|x̃ỹ

(2)

(Par)
P

µ−→ Q

P |R µ−→ Q|R
(Rep)

P |!P µ−→ Q

!P
µ−→ Q

(1) : Let x̃ = x1, · · · , xn, and T̃ = T1, · · · , Tn in

T ′′ = T ′ + Σ{xi | z E Ti}+ {Tj | z = xj}.

(2) : φ = {b̃ = c̃}; 〈(λx̃ : T̃) , (λỹ : Ũ) , φ〉 σ. For ũ = n(φ) \ x̃ỹ:

(x̃ỹũ : T̃ Ũ ∅̃)σ|x̃ỹ = w̃ : Ṽ , z̃ : Z̃ with z̃ ⊆ x̃ỹ, and w̃ ∩ x̃ỹ = ∅.

Symmetric rules for (Sum) and (Par) are not shown. Usual conventions about

freshness of bound names apply.

Table 1. Actions and effects transitions in U-Calculus.

8

Encoding I/O polarities We can encode polarities as follows:

a〈ṽ〉.P 4
= (νx) (λy) aṽxy.P a〈ṽ〉.P 4

= (νx) (λy) aṽyx.P

for some chosen fresh x and y. The position of name x forbids fusions between
actions with the same polarity and, hence, communication. For instance, the
process a〈ṽ〉.P |a〈ũ〉.Q has no τ -transition, since the latter would force the fusion
of two globally distinct names, which is forbidden by the operational rules. We
denote by Up, polarised U-Calculus, the subset of U in which every prefix can
be interpreted as an input or output, in the above sense.

Open Bisimulation Like in the case of Fusion, a ‘natural’ semantics of
U-Calculus is required to be closed under substitutions. However, one should
be careful in respecting exceptions raised by λ-extrusions. The following defini-
tion of open bisimulation relies on the notion of distinctions (Def. 3). By {RD}D

we denote a set of process relations {RD |D is a distinction}.

Definition 5 (open bisimulation). A set R = {RD}D of process relations in-
dexed by distinctions is an indexed simulation if for each D, whenever P RD Q:

– if P
(λỹ:T̃) az̃−−−−−−→ P ′ then Q

(λỹ:T̃) az̃−−−−−−→ Q′ and P ′ RD′ Q′, with

D′ = D, (ỹ : T̃ u Ñ),

where Ni = fn(P,Q,D) ∪ {y1, · · · , yi−1}, for i = 1, · · · , |ỹ|;

– if P
x̃:T̃ ,φ−−−→ P ′, σ is a substitutive effect of φ and σ respects D, x̃ : T̃ then

Q
x̃:T̃ ,φ−−−→ Q′ and P ′σ RD′′ Q′σ, with

D′′ =
(
D, (x̃ : T̃ uN)

)
σ,

where N = fn(P,Q,D).

R is an indexed bisimulation if both R = {RD}D and R−1 = {R−1
D }D are

indexed simulations. Open bisimulation, {∼D}D, is the largest indexed bisimu-
lation preserved by respectful substitutions, i.e.: for each σ and distinction D, if
P ∼D Q and σ respects D then Pσ ∼Dσ Qσ.

We write P ∼ Q for P ∼ε Q, where ε is the empty distinction. In the following
examples we shall write {x̃ = ỹ}.P for (νc) (cx̃|cỹ.P) (for a fresh name c).

Proposition 1 (scope extrusion and swapping). Let P and Q be two pro-
cesses. Then:

1. (λx : T) P |Q ∼D (λx : T) (P |Q), with x /∈ fn(Q) and ω does not appear in
Q.

2. (νx) P |Q ∼D (νx) (P |Q), with x /∈ fn(Q).

9

3. (λx : T) (λy : T ′ + x) P ∼D (λy : T ′) (λx : T + y) P .

A special case of 3. is: (λx) (νy) P ∼D (νy) (λx : y) P .

Example 3.

1. (νc) (νn) (λx)
(
cx.P | cn.0

)
∼ (νc)

(
(λx) cx.P | (νn) cn.0

)
∼ (νc) (νn) τ.P [n/x]

but (νc) (λx) (νn)
(
cx.P | cn.0

)
∼ (νc) (λx)

(
cx.P | (νn) cn.0

)
∼ 0.

2. An example of ‘expansion’ for parallel composition is as follows:

(λy : T) ay.0|ax.0 ∼ (λy : T) ay.ax.0 + ax.(λy : T) ay.0 + {x = y}.0 if x 6E T,

while (λy : T) ay.0|ax.0 ∼ (λy : T) ay.ax.0 + ax(λy : T) ay.0 if x E T

3. The static nesting of name binding is relevant:

(νy) (λx) ay.ax.{x = y}.0 6∼ (λx) (νy) ay.ax.{x = y}.0.

The above two processes extrude y and x in the same order. However, after the
two extrusions, the process on the left-hand side can fuse the two names, while the
other one cannot.

Theorem 1. Let P and Q be two processes. Then:

1. P ∼D,x:TuN Q and x /∈ n(D) imply (λx : T)P ∼D (λx : T) Q, with
N = fn((λx : T)P, (λx : T) Q, D).

2. Prefix, parallel composition, sum, matching and replication operators pre-
serve ∼D.

Proof: See the appendix.

Example 4. Let P
def= (λy) ay.(νx) ax.0 and Q

def= (λy) ay.(νx) ax.{x = y}.Q′. It
holds that P ∼ Q. Indeed, Q cannot fuse x and y, since ν-extruding x yields a
distinction x : y. Suppose R

def= (λz) az. It also holds that P |R ∼ Q |R. Indeed,
after synchronising (λz) az and (λy) ay, Q |R ν-extrudes x and then evolves, for
instance, to (λz : x) {x = z}.Q′[z/y]. Thus, the fusion {x = z} cannot take place
and (λz : x) {x = z}.Q′[z/y] ∼ 0.

3 Pi-Calculus and Fusion as subcalculi of U-Calculus

The labelled transition systems of pi-calculus and Fusion are embedded into
polarised U-calculus’s, under the two obvious translations given below. Note
that these translations are uniform, in the sense of [1]; in particular, no central
coordinator is introduced in the translated processes.

Definition 6. The translations [[·]]π : Π → Up and [[·]]f : F → Up are defined by
extending in the expected homomorphic way the following clauses, respectively:

[[a〈x〉.P]]π = a〈x〉.[[P]]π [[a(x).P]]π = (λx) a〈x〉.[[P]]π [[(νx)P]]π = (νx) [[P]]π

[[a〈x〉.P]]f = a〈x〉.[[P]]f [[a〈x〉.P]]f = a〈x〉.[[P]]f [[(x)P]]f = (λx) [[P]]f

10

Embedding in terms of labelled transition systems naturally lifts to be-
havioural equivalences. Here, we restrict our attention to equivalences based
on barbed bisimulation.

Definition 7 (barbed bisimulation and barbed congruence). We write
P ↓ a if and only if there exist an action µ = ((λx̃ : T̃) , aṽ) and a process Q

such that P
µ−→ Q.

A barbed bisimulation is a symmetric binary relation R between processes
such that P RQ implies:

1. whenever P
τ−→ P ′ then Q

τ−→ Q′ and P ′RQ′;
2. for each name a, if P ↓ a then Q ↓ a.

P is a barbed bisimilar to Q, written P
.∼ Q, if PRQ for some barbed bisimula-

tion R.
Two processes P and Q are barbed congruent, written P ∼b Q, if for all

contexts C[·], it holds that C[P] .∼ C[Q].

Let ∼π and ∼f denote barbed congruence, respectively, over Π ([12]) and
over F (see [14]). Also, let ∼[[π]] and ∼[[f]] be the equivalences on U obtained by
closing barbed bisimulation .∼ only under translated pi- and Fusion-contexts,
respectively (e.g., P ∼[[π]] Q iff for each Π-context C[·], [[C]]π[P] .∼ [[C]]π[Q]).

Proposition 2.

1. Let P and Q be two pi-calculus processes. P ∼π Q iff [[P]]π ∼[[π]] [[Q]]π.

2. Let P and Q be two Fusion processes. P ∼f Q iff [[P]]f ∼[[f]] [[Q]]f .

Next, we now show that the U-calculus cannot be uniformly encoded into
Π. The intuition is that, in U-calculus (like in D-Fusion [1]), the combined use
of fusions and restrictions allows one to express a pattern matching atomically.
This is not possible in Π. To show this fact, we restrict our attention to polarised
U-calculus, Up.

The reference semantics for Π is the late operational semantics. Given P ∈ Π

and a trace of U-calculus actions s, let us write P
ŝ=⇒ if P

s′=⇒ for some pi-actions
trace s′ that exhibits the same sequence of subject names as s, with the same
polarities (e.g., s = a〈x̃〉 · (λỹ) b〈ṽ〉 and s′ = a(z̃) · b〈w̃〉). The reference semantics
for Π is again the late operational semantics.

Definition 8. A translation [[·]] : Up → Π is uniform if for each P,Q ∈ Up:

– for each trace s, P
s=⇒ implies [[P]] ŝ=⇒;

– [[P |Q]] = [[P]]|[[Q]];
– for each y, [[(νy) P]] = (νy) [[P]];
– for each substitution σ, [[Pσ]] = [[P]]σ.

11

Below, we denote by ∼Up any fixed equivalence over Up contained in trace
semantics (defined in the obvious way), and by ∼Π any fixed equivalence over
Π contained in trace equivalence. Note that both barbed congruence over Up,
and open bisimulation are contained in trace equivalence.

Proposition 3. There is no uniform translation [[·]] : Up → Π such that
∀P,Q ∈ Up:

P ∼Up Q ⇒ [[P]] ∼Π [[Q]].

Proof: Suppose that there exists such a translation [[·]]. Let us consider the
following two Up-processes P and Q:

P = (νc, k, h) (c〈k〉.a.0|c〈h〉.b.0|c〈k〉.0) Q = τ.a.0.

It holds that P ∼ Q in Up: the reason is that, in P , synchronisation between
prefixes c〈h〉 and c〈k〉, which carry different restricted names h and k, is forbid-
den (see rule Passf). Thus P can only make c〈k〉 and c〈k〉 synchronise, and then
perform a. Thus, P ∼Up Q holds too.

On the other hand, by Definition 8, for any uniform encoding [[·]], c and c̄ in

[[P]] can synchronise and, thus, [[P]] b=⇒, while [[Q]] 6 b=⇒ (because of b 6∈ fn(Q)
and of the uniformity with respect to substitutions). Thus [[P]] 6∼Π [[Q]]. �

Of course, it is also true that the U-calculus cannot be uniformly encoded
into F , as this would imply the existence of a uniform fully abstract encoding
from Π to F , which does not exist (see [1]).

The conclusion is that there is some expressiveness gap between U-calculus
on one side and Pi/Fusion on the other side, at least, as far as our simple notion
of uniform encoding is concerned.

Remark There cannot exist any encoding from D-Fusion to the U-calculus, or
vice-versa, that are uniform in a sense extending Def. 8, in particular map-
ping λ to λ and ν to ν. The reason is that in D-Fusion, as mentioned, one
can always swap λ and ν, while in the U-calculus this is not possible. More
in detail, the equality (λx) (νn) {x = n}.c̄ ∼ 0 in the U-calculus would be
mapped to [[(λx) (νn) {x = n}.c̄]] ∼DF [[0]] in D-Fusion (for ∼DF included in
trace equivalence). In D-Fusion, using commutativity of ν and λ, one would get
[[(νn) (λx) {x = n}.c̄]] = [[P]] ∼DF [[0]]. But this equivalence does not hold true,
since P

c̄=⇒ implies by definition that [[P]] c̄=⇒, while [[0]] 6 c̄=⇒ (the latter fol-
lows by uniformity with respect to substitutions). This show that the U-calculus
cannot be encoded uniformly into D-Fusion. A similar argument applies to the
other direction (that is, mapping D-Fusion to U-Calculus).

4 Encoding guarded choice

We show that in U-calculus, like in D-Fusion [1], the combined use of fusions
and restrictions can still be used to uniformly encode guarded mixed choice via

12

parallel composition. Practically, this guarantees that there is no significant loss
of expressive power when moving from D-Fusion to U-calculus.

In the encoding, different branches of a guarded choice will be represented
as concurrent processes. The encodings add pairs of extra names to the object
part of each action: these extra names are used as ‘side-channels’ for atomic
coordination among the different branches. Let us first look at a simple example.

Example 5. Consider the guarded choice A = (νn) (λx) a〈xn〉.P +
(νm) (λx) a〈xm〉.Q. Its intended ‘parallel’ implementation is the process:

B = (νn) (νm) (λx) (a〈xn〉.P | a〈xm〉.Q)

(here, x, n, m /∈ fn(a, P,Q)). Assume parallel contexts are constrained so that
output actions on channel a must carry two identical names. In B, the parallel
component that first consumes any such message, forces fusion of x either to n
or to m, and consequently inhibits the other component, thus:

(λu) a〈uu〉|B τ−→∼ (νn) (P | (νm) a〈mn〉.Q) ∼ P |(νn,m) a〈mn〉.Q.

Under the mentioned assumption, (νm, n) a〈mn〉.Q should be ‘equivalent’ to 0,
because there is no way of fusing m and n together. In other words, choice
between P and Q has been resolved atomically. Note that this example exploits
in a crucial way features of both Fusion (sharing of the variable x, in B) and of
U-calculus (restricted input).

We generalise the above example by providing a fully abstract encoding of
mixed guarded choice. For the sake of simplicity, we shall work here with barbed
equivalence. We believe the results can also be stated in terms of labelled bisimi-
larity ∼, at the cost of breaking uniformity of the encoding (e.g. by introducing
of ‘firewalls’ contexts that filter out output messages that disrupt the encoding,
see [1]) .

As a source language we fix a sorted version of polyadic pi-calculus [5] with
‘mixed’ choice, Πmix. In this language, prefixes and + are replaced by mixed
summation,

∑
i∈I ai (x̃i).Pi +

∑
j∈J bj〈ṽj〉.Qj . The target language is the frag-

ment of polarised U-Calculus with no summation at all. The relevant clause is
shown below, where ñ = (ni)i∈I and m̃ = (mj)j∈J are two disjoint tuples of
distinct names:

[[
∑

i∈I ai (x̃i).Pi +
∑

j∈J bj〈vj〉.Qj]]mix =

(νñm̃) ((λz, u)) (Πi∈I(λx̃i) ai〈x̃izniuu〉.[[Pi]]mix | Πj∈Jbj〈ṽjuuzmj〉.[[Qj]]mix).

The encoding acts as a homomorphism over the remaining operators of Πmix.
Note that, differently from [1], the declaration of the λ-names is within the scope
of the ν-names. Communication between two remote prefixes of opposite polar-
ities causes all λ-names within the same choice to be fused to a single ν-name.
This atomically inhibits the remaining prefixes. Note that the relative positions

13

of ν-names correctly forbid communication between branches of opposite polar-
ities within the same choice (no ‘incestuous’ communication, according to the
terminology of [7]).

Below, ∼mix denotes barbed congruence over Πmix, and ∼[[mix]] the equiva-
lence over the U-calculus obtained by closing barbed bisimulation under trans-
lated Πmix-contexts, i.e.: P ∼[[mix]] Q iff for each Πmix-context C[·], it holds
[[C]]mix[P] .∼ [[C]]mix[Q]). Both equivalences are reasonable semantics in the sense
of [9]. The proof of the following theorem is straightforward, given that there is a
1-to-1 correspondence between reductions and barbs of R and of [[R]]mix, for any
R, and given that the encoding is compositional, in particular, for any context
C[·], it holds [[C]]mix[[[P]]mix] = [[C[P]]]mix.

Theorem 2 (full abstraction for mixed choice). Let P,Q ∈ Πmix. It holds
that P ∼mix Q if and only if [[P]]mix ∼[[mix]] [[Q]]mix.

In a pi-calculus setting, it is well-known that mixed choice cannot be encoded
into the choice-free fragment, if one requires the encoding be uniform and pre-
serve a reasonable semantics [8, 9, 7]. The theorem above shows that pi-calculus
mixed choice can be implemented into the choice-free fragment of the U-calculus.
The encoding is uniform, deadlock- and divergence-free, and preserves a reason-
able semantics.

5 Conclusions

We have introduced U-Calculus, a process calculus with no I/O polarities and
a unique binding, that can be used both to control the scope of fusions and
new name generation. This is achieved by means of a simple form of typing that
prevents a name x such that x : T from being fused with any name in T .

We have proved that the U-Calculus is strictly more expressive than pi-
calculus and Fusion calculus separately. Remarkably, thanks to the combination
of static and dynamic ordering of names, the labelled bisimulation defined for the
U-Calculus is a congruence. This property represents a substantial improvement
with respect to D-Fusion.

We plan to extend the U-Calculus by generalising name fusions to substitu-
tions over an arbitrary signature of terms. We believe that the extended calculus
would be strictly more expressive that Logic Programming, the intuition being
that restriction (creation of new fresh names) cannot be modelled in LP.

It would also be interesting to investigate whether the partition refinement
algorithm proposed in [11] for the checking open bisimilarity could be extended
to U-Calculus.

References

1. M. Boreale, M. Buscemi, U. Montanari. D-Fusion: a Distinctive Fusion Calculus.
To appear in Proc. of APLAS’04, LNCS 3302, Springer-Verlag, 2004.

14

2. P. Gardner, C. Laneve, and L. Wischik. The fusion machine (extended abstract).
In Proc. of CONCUR ’02, LNCS 2421. Springer-Verlag, 2002.

3. L. G. Meredith, S. Bjorg, and D. Richter. Highwire Language Specification Version
1.0. Unpublished manuscript.

4. Microsoft Corp. Biztalk Server - http://www.microsoft.com/biztalk.
5. R. Milner. The Polyadic pi-Calculus: a Tutorial. Technical Report, Computer Sci-

ence Dept., University of Edinburgh, 1991.
6. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and

II). Information and Computation, 100(1):1–77, 1992.
7. U. Nestmann and B. C. Pierce. Decoding choice encodings. Information and Com-

putation, 163(1):1–59, 2000.
8. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asyn-

chronous pi-calculus. In Conf. Rec. of POPL’97, 1997.
9. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asyn-

chronous pi-calculus. Mathematical Structures in Computer Science, 13(5):685–
719, 2003.

10. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in
Mobile Processes. In Proc. of LICS’98. IEEE Computer Society Press, 1998.

11. M. Pistore and D. Sangiorgi. A Partition Refinement Algorithm for the Pi-Calculus.
Information and Computation, 164(2): 264–321, 2001.

12. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, Department of Computer Science, University of
Edinburgh, 1992.

13. D. Sangiorgi. A Theory of Bisimulation for the pi-Calculus. Acta Informatica,
33(1): 69-97, 1996.

14. B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes.
PhD thesis, Department of Computer Systems, Uppsala University, 1998.

15

A Proof of Theorem 1

Definition 9. Let {RD}D be a set of process relation indexed by distinction.
For each D, we define:

Λ(RD) = { 〈(λx̃ : T̃)P, (λx̃ : T̃)Q〉 | PRD,x̃:T̃uÑ Q,

with Ni = fn((λx̃ : T̃)P, (λx̃ : T̃)Q,D) ∪ {x1, · · · , xi−1},

for i = 1, · · · , |x̃| and x̃ ∩ n(D) = ∅}.

Definition 10 (bisimulation up to λ). A set R = {RD}D of process relations
indexed by distinctions is an indexed simulation up to λ if, for each D, whenever
P RD Q:

– if P
(λỹ:T̃) az̃−−−−−−→ P ′ then Q

(λỹ:T̃) az̃−−−−−−→ Q′ and P ′ Λ(RD′) Q′, with

D′ = D, (ỹ : T̃ u Ñ),

where Ni = fn(P,Q,D) ∪ {y1, · · · , yi−1}, for i = 1, · · · , |ỹ|;

– if P
x̃:T̃ ,φ−−−→ P ′, σ is a substitutive effect of φ and σ respects D, x̃ : T̃ then

Q
x̃:T̃ ,φ−−−→ Q′ and P ′σ Λ(RD′′) Q′σ, with

D′′ =
(
D, (x̃ : T̃ uN)

)
σ,

with N = fn(P,Q,D).

R is an indexed bisimulation up to λ if both R = {RD}D and R−1 = {R−1
D }D

are indexed simulations up to λ, and it is closed with respect to substitutions.

Lemma 1. If {RD}D is a bisimulation up to λ, then {Λ(RD)}D is a bisimula-
tion.

Proof of Theorem 1.

1. The proof that P ∼D,x:T Q and x /∈ n(D) imply (λx : T) P ∼D (λx : T) Q
follows as a corollary of Lemma 1, since {∼D}D is trivially a bisimulation
up to λ.

2. We only prove the case of parallel composition. Let RD =
{〈P |R,Q|R〉 |P ∼D Q}. We have to prove that RD is a bisimulation up
to λ. The thesis will then follow by Lemma 1. Clearly, {RD}D is closed with
respect to respectful substitutions, because {∼D}D is.
Suppose P |R µ−→ P1. The most delicate case is when rule (Com) has been
applied, that is: µ = w̃ : Ṽ , φ−x̃ỹ and P1 = (λz̃ : Z̃) (P ′|R′)σ|x̃ỹ, with

P
(λx̃:T̃) ab̃−−−−−−→ P ′, R

(λỹ:Ũ) ac̃−−−−−−→ R′ and side condition (2) holds:

16

φ = {b̃ = c̃}; 〈(λx̃ : T̃) , (λỹ : Ũ) , φ〉 σ. For ũ = n(φ) \ x̃ỹ:
(x̃ỹũ : T̃ Ũ ∅̃)σ|x̃ỹ = w̃ : Ṽ , z̃ : Z̃ with z̃ ⊆ x̃ỹ, and w̃ ∩ x̃ỹ = ∅.

By P ∼D Q it follows that ∃Q (λx̃:T̃) ab̃−−−−−−→ Q′, such that P ′ ∼D0 Q′, with
D0 = D, x̃ : T̃ uN and N = fn(P,Q,D). Let N ′ = fn(P,Q,D,R) and D′ =
D, x̃ỹ : T̃ Ũ u N ′. By a ‘weakening’ argument, it holds that P ′ ∼D′ Q′. By

rule (Com), Q |R
w̃:Ṽ ,φ−x̃ỹ−−−−−−→ (λz̃ : Z̃) (Q′|R′)σ|x̃ỹ = Q1. We have to prove that

P1σ0F(RD′′)Q1σ0, where σ0 is a substitutive effect of φ−x̃ỹ and σ0 respects
D, w̃ : Ṽ uN ′, and D′′ = (D, w̃ : Ṽ uN ′)σ0. The thesis follows by definition
of F(RD′′) and by observing that P ′σ1 ∼D′′′ Q′σ1, with σ1 = σ|x̃ỹ σ0 and
D′′′ = D′′, z̃ : Z̃σ0uÑ ′′, and N ′′

i = fn(P ′σ1, Q
′σ1, Rσ1, D

′′) ∪ {z1, · · · , zi−1},
for i = 1, · · · , |z̃|.

