
Server-Side Caching Strategies for Online
Auction Sites

Daniel A. Menascé1 and Vasudeva Akula2

1 Department of Computer Science,
George Mason University, Fairfax, VA 22030, USA

menasce@cs.gmu.edu
2 School of Information Technology & Engineering George Mason University,

Fairfax, VA 22030, USA
vakula@gmu.edu

Abstract. Online auction sites have very specific workloads and user
behavior characteristics. Previous studies on workload characterization
conducted by the authors showed that i) bidding activity on auctions
increases considerably after 90% of an auction’s life time has elapsed, ii)
a very large percentage of auctions have a relatively low number of bids
and bidders and a very small percentage of auctions have a high number
of bids and bidders, iii) prices rise very fast after an auction has lasted
more than 90% of its life time. Thus, if bidders are not able to successfully
bid at the very last moments of an auction because of site overload, the
final price may not be as high as it could be and sellers, and consequently
the auction site, may lose revenue. In this paper, we propose server-side
caching strategies in which cache placement and replacement policies are
based on auction-related parameters such as number of bids placed or
percent remaining time till closing time. A main-memory auction cache
at the application server can be used to reduce accesses to the back-end
database server. Trace-based simulations were used to evaluate these
caching strategies in terms of cache hit ratio and cache efficiency.

1 Introduction

Online auctions are becoming an important segment of the e-commerce space
with large players such as eBay and Yahoo!Auctions. It has been observed that
web requests follow Zipf-like distributions and that this fact can be used to design
caches that improve hit ratios [3]. That work was applied to web sites that mostly
served static pages. E-commerce sites generate most of their pages dynamically.
Our workload characterization work [1, 10] of online auction sites also found
evidences of Zipf distributions, and power laws in general. Our previous work
also showed that the workload of online auction sites is substantially different
from that of online retailers and uncovered a plethora of interesting findings
that can be used, among other things, to improve the performance of online
auction sites. These findings include i) A very large percentage of auctions have
a relatively low number of bids and bidders and a very small percentage of

M. Kitsuregawa et al. (Eds.): WISE 2005, LNCS 3806, pp. 231–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

232 D.A. Menascé and V. Akula

auctions have a high number of bids and bidders. ii) There is some bidding
activity at the beginning stages of an auction. This activity slows down in the
middle and increases considerably after 90% of an auction’s life time has elapsed.
iii) Prices rise faster in the first 20% of an auction’s life time than in the next
70% of its life time. However, after the age of an auction reaches 90%, prices
increase much faster than in the two previous phases. iv) A relatively few users
are responsible for winning the majority of auctions. v) A relatively few sellers
are responsible for creating the majority of the auctions. vi) The majority of
bids are placed by a relatively small number of unique bidders.

We rely on these facts to suggest that a main memory auction cache at the ap-
plication server can save a significant number of accesses to a backend database
and thus significantly reduce the server-side latency for both read and write re-
quests at online auctions sites. We propose several cache placement and replace-
ment policies. We conducted an experimental validation of our policies for various
cache sizes using a trace derived from a data collection process in which an agent
collected data for over 340,000 auctions from Yahoo!auctions. We measured the
cache hit ratio and the cache efficiency. Our findings show that small caches can
be quite efficient and are able to provide reasonably large hit ratios.

Significant work has been done in the area of web caching [5, 6, 13, 14]. Many
conferences including IEEE’s International Workshop on Web Content Caching
and Distribution (WCW), already in its 10th installement, and the International
World Wide Web Conference (WWW), started in 1994, have been some of the
preferred venues for cache-related publications. A good collection of cache related
information and resources is Brian Davidson’s web site (www.web-caching.com/).
In general, web caching work can be classified into browser caching, client-side
proxy caching, network caching (as in Content Delivery Networks), and server-
side caching. Our work falls into the realm of server-side caching and is specific to
online auctions sites. The authors are not aware of any other auction-site specific
caching study that uses real traces from a large production auction site.

The rest of this paper is organized as follows. Section two provides some
background and definitions used throughout the paper and introduces in more
detail the notion of an auction cache. Section three describes typical user be-
havior using a Customer Behavior Model Graph. The next section describes
the cache placement and replacement policies studied here. Section five presents
and discusses the results of our experiments. Finally, section six presents some
concluding remarks.

2 Background

An open auction (i.e., one that is still in progress) is defined by several pa-
rameters including: opening time, to, closing time, tc, and number of bids, b(t),
submitted up to time t. From these parameters, one can define tp(t), the percent
remaining closing time at time t, as [(tc − t)/(tc − to)] × 100.

The typical software architecture of an auction site is multitiered and is
composed of three layers as indicated in Fig. 1. The first layer comprises web

Server-Side Caching Strategies for Online Auction Sites 233

Cache
Manager

Web Server

Auction
Cache

Database
Server

Application Server

DB

cache
hit

cache miss

Fig. 1. Architecture of an online auction site

servers that handle the incoming HTTP requests and serve static HTML pages.
Most pages served by an auction site are dynamically generated by an application
server, which implements the site’s business logic. The application server may
need to access persistent data stored in a backend database server. An example
is the processing of a request to view all bids for a given auction. The bid
information comes from the database. The application server then generates an
HTML page with the bid information. This page is passed back to the web
server, which sends the page back to the browser.

The performance of online auction sites can potentially be improved if a frac-
tion of the millions of auctions is cached in the main memory of the application
server, thus avoiding most of the trips to the database. As indicated in Fig. 1,
when the information about an auction can be found in the main memory cache
of the application server, a cache hit occurs. Otherwise a cache miss occurs and
the information about the auction has to be retrieved from the database. The
auction cache can store the following information about an auction:

– Auction information: includes headline, textual description, names of the
files that store thumbnail images and possibly larger images, number of bids,
highest bid, highest bidder ID, bid increment, starting price, and seller ID.

– Bid history: all the bids placed for the auction. Each bid includes bidder ID,
overall bid sequential number, bid price, and proxy flag (indicates if the bid
was manually placed or if it was placed by an agent on behalf of the bidder).

– Seller information: specifies the seller of the auction and his/her rating in-
formation, number of auctions sold, and date since the seller has been a
member of the auction site.

In this paper we are only concerned with transactions that can potentially
be served by an auction cache. Therefore, we do not consider transactions such
as auction creation, registration, and login. The transactions that may be served
by the cache can be divided into read-only and write transactions. Read-only
transactions include View Bid, View Auction Information, View Auction Details

234 D.A. Menascé and V. Akula

(e.g., description of items, warranty), View Seller Information and Ratings, and
View Comments on the Seller. The main write transaction is Place Bid. There
could be a problem executing write transactions at the cache without refreshing
the database immediately. If a power failure occurs, the contents of the main
memory cache could be lost and with it all updates (i.e., all bids on the cached
auctions). However, large production e-commerce sites maintain multiple lev-
els of backup power supplies. Typically, the servers have dual power supplies,
from two separate power sources. There are multiple uninterrupted power sup-
ply (UPS) units that act as backup for these power supplies. In case of failure
of these UPS units, or in cases in which the actual power supply is lost for a
longer duration which can lead to the shutdown of UPS units, power generators
act as backups for the UPS units. These generators can run for as long as the
diesel supply lasts. So, power failures at popular e-commerce sites are extremely
rare. Therefore, we assume that the auction cache survives power failures. This
assumption assures that write transactions can be executed at the cache.

Failures due to software crashes are also possible. To cope with them, one
may write a log of all write transactions at the application server in parallel with
writing into the cache. A background process can be used to refresh the backend
database at regular intervals from the log.

Most production auction sites have several web servers and several applica-
tion servers. Therefore, each application server will have its own auction cache.
To deal with problems of cache coherence we assume that any given auction
can be cached at one and only one application server cache. This can be ac-
complished by identifying each auction by a unique id. Then, one can devise a
function f that takes as input an auction’s unique id and returns the id of one of
the application servers. The id of the application server that handles requests for
a given auction can be first sent in a cookie and returned in a cookie to the web
server so that the request can be dispatched to the proper application server.

Auction sites have grown rapidly in the last couple of years, and recent statis-
tics indicate that eBay carries about 50 million items for sale at any time on
its site [7]. Yahoo!Japan carries 7.5 million items for sale [15]. We estimate that
each auction, including its details, bids history and seller information, requires
about 8KB of cache space. Thus, to cache 5% of all auctions, an auction site
carrying 10 million items for sale would require 10, 000, 000×0.05× 8KB = 4GB
of main memory cache. This estimate does not include other items to cache, such
as category names, state names, payment types and other static information to
serve web requests quickly. Thus, for a caching scheme to be effective, it must
provide a relatively high cache hit ratio for a reasonably small cache.

3 User Behavior

Users of an online auction site may invoke many different transactions during
a session (i.e., a sequence of consecutive requests from a user during the same
visit). We describe in what follows a typical user session using the Customer
Behavior Model Graph (CBMG) defined by Menascé et al. [12]. Each node of

Server-Side Caching Strategies for Online Auction Sites 235

Home
(h)

Search
Auction

(s)

View
Details

(d)

View
Info
(i)

Place
Bid
(b)

View
Bids
(v)

p
hs

p
ss

p
sd

p
di

p
ds

p
is

p
iv

p
vs

p
vb

Fig. 2. Customer Behavior Model Graph (CBMG) for an online auction site

the graph represents a state in which a user may be during a session. Nodes
of a graph are connected by directed arcs that indicate the possible transitions
between states. Arcs are labeled with the probability that a transition between
states occurs. Figure 2 depicts an example CBMG for an online auction site.
Transactions that are not relevant to the cache are not shown. Transitions from
each state to an Exit state are not shown for better readability. A CBMG can
be used to determine the average number of visits per session to state i, Vi, as a
function of the transition probabilities between states as shown in [12]. Applying
this method to the CBMG of Fig. 2, yields the following equations.

Vs = ph,s + ps,sVs + pd,sVd + pi,sVi + pv,sVv (1)

Vd = ps,dVs (2)

Vi = pd,iVd = pd,i ps,dVs (3)

Vv = pi,vVi = pi,v pd,i ps,dVs (4)

Vb = pv,bVv = pv,b pi,v pd,i ps,dVs (5)

The value of Vs can be obtained by solving Eqs. (1)-(5):

Vs =
1

1 − (ps,s + pd,sps,d + pi,spd,ips,d + pv,spi,vpd,ips,d)
(6)

The ratio between read and write transactions, RW , is given by RW = (Vd +
Vi + Vv)/Vb. Using the values ph,s = 1.0, ps,s = 0.8, ps,d = 0.1, pd,i = 0.55,
pi,v = 0.5, pv,s = 0.75, pv,b = 0.2 pd,s = 0.4, pi,s = 0.45, yields a value of RW
equal to 33.

236 D.A. Menascé and V. Akula

4 Cache Placement and Replacement Policies

A cache placement policy determines if an auction should be placed in the cache
and a cache replacement policy determines which auction should be removed
from the cache if the cache is full and a new auction needs to be cached.

The following cache placement policies have been evaluated.

– ABn: this is an activity based policy. An auction accessed at time t is cached
if b(t) ≥ n for that auction. For example the AB2 policy caches auctions with
at least two bids already submitted at time t.

– PRTp: this is a percent remaining time policy. An auction is cached at time
t if tp(t) < p.

– H-AND-n-p: this a hybrid policy that caches an auction if both ABn and
PRTp would cache it.

– H-OR-n-p: this is a hybrid policy that caches an auction if ABn or PRTp
would cache it.

We consider the following auction replacement policies.

– AB: this replacement policy is only used in conjunction with the ABn place-
ment policy. It removes the auction with the smallest number of submitted
bids.

– PRT: this replacement policy is only used with the PRTn placement policy.
It replaces from the cache the auction with the largest percent remaining
time to close.

– AB-PRT: this replacement policy is used with both H-AND-n-p and H-OR-
n-p. It removes the auction with the largest percent remaining time to close
among the ones with the smallest number of bids.

– Least Recently Used (LRU): replaces the auction that has received a request
further in the past. This is a standard replacement policy used in operating
systems [4].

– Least Frequently Used (LFU): replaces the auction that has received the
smallest percentage of requests among all auctions in the cache. This policy
has been considered in the context of operating systems [4] and in the web
in combination with LRU [9].

A caching policy is then specified by its cache placement and replacement
policy. We use the naming convention <cache placement>:<cache replacement>
to name the caching policies investigated here. For example, AB2:LRU means
that AB2 is the cache placement policy and LRU the replacement policy.

If the cache size is unlimited (i.e., at least as large as the total number of
auctions), the replacement policy does not matter since all auctions will always
find a place in the cache. Also, in this case, one should cache all auctions. This
means that placement policies such as PRT100, which is a “always cache” policy,
are optimal.

Figure 3 shows a relationship between the various policies in the unlimited
cache size case. An arrow from policy a to policy b indicates that the hit ratio
for a is higher or the same as that of policy b in the unlimited cache size case.

Server-Side Caching Strategies for Online Auction Sites 237

H-OR-m-p H-OR-n-s H-AND-m-p H-AND-n-s

H-OR-n-p H-AND-n-p

PRTp ABn

PRTs ABmn < m
p > s
 higher or same hit ratio

Fig. 3. Relation between placement policies for unlimited cache size

If the cache size is limited, there is a cost associated with evicting an auc-
tion from the cache since its state has to be refreshed in the backend database
server. Also, an “always cache” policy may force a more popular auction than
the incoming one out of the cache thus reducing the cache hit ratio.

5 Experimental Evaluation

The experimental evaluation of the policies described above was carried out with
a trace-based simulation. The trace is derived from actual data collection per-
formed for our previous workload characterization and closing time rescheduling
work [1, 10, 11]. The data collection process was described in detail in these pa-
pers. We provide here a brief summary of the process. A data collection agent
gathered a total of 344,314 auction items created during the month of January
2003, belonging to over two thousand categories, from the Yahoo!Auctions site.
A total of 1.12 million bids were placed on these auctions.

For this paper we used three weeks worth of that data, which contains 210,543
auctions, and 156,074 bids on these auctions. Note that the data we collected
only contains the auction creation and bid records for each auction. Thus, we
do not have data on read-only requests (e.g., view bids, view seller info, view
auction details). However, for the purpose of the simulation, we inserted thirty
read requests in the trace before each bid to maintain a RW ratio compatible
with the CBMG analysis of section 3.

We varied the cache size to assess the impact of the placement and replace-
ment policies as the cache size changed. We report the cache size as a percent,
Pc, of the total number of auctions Na. Thus, a 5% cache size implies that 5%
of the 210,543 auctions can be stored in the cache. The amount of main memory
required per auction is around 8,000 bytes.

Each experiment used a combination of cache placement and cache replace-
ment policy and computed the following metrics for different cache sizes:

– Cache hit ratio (H): percent of cacheable transactions that were served from
the auction cache.

– Cache efficiency (ε): defined as the ratio (H × 100)/Nc, where Nc is the
average number of auctions in the cache. This number is computed, using

238 D.A. Menascé and V. Akula

Little’s Law [8], as the product of the average cache throughput (i.e., number
of auctions that leave the cache divided by the duration of the experiment)
and the average time spent in the cache per auction. The cache efficiency ε
measures how much hit ratio one gets per cached auction on average.

Due to space limitations we only present a small subset of all graphs we
generated in our simulations. A general observation seen from all graphs is that
a relatively small cache, e.g., 4 to 5% of all auctions is enough to generate cache
hit ratios of around 50 to 70%. Even very small caches of about 1% can generate
cache hit ratios as big as 40%.

5.1 Results for ABn Placement Policies

Figure 4 displays the cache hit ratio for the AB1:AB, AB2:AB, and AB3:AB
policies as a function of the percent cache size. The figure indicates that the three
policies have almost the same cache hit ratio for very small cache sizes. However,
as the cache size increases, AB1:AB outperforms AB2:AB, which outperforms
AB3:AB, as discussed above. It can also be observed that the cache hit ratio
increases much faster at the beginning for smaller cache sizes. It can also be
observed that a cache size of 0.5% is sufficient to provide a cache hit ratio
of about 35% for all three policies. It can also be seen that all three policies
approach very fast their unlimited cache size performance. For example, the
AB1:AB policy has a limiting hit ratio of 68.2%. Ninety nine percent of this
value is achieved for a 4% cache size. Around 86% of the limiting performance of
AB1:AB is obtained for a 2% cache size. While AB1:AB outperforms AB2:AB,
which outperforms AB3:AB, the situation is reversed with respect to efficiency.
For example, for a Pc = 0.25%, the efficiency of AB1:AB is 0.078 while that of
AB3:AB is 0.086.

Figure 5 shows a comparison among the replacement policies AB, LRU, and
LFU when used in conjunction with placement policy AB1, the best in Figure 4.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6

P
er

ce
nt

ag
e

C
ac

he
 H

it
R

at
e

Percentage Cache Size

AB1:AB
AB2:AB
AB3:AB

Fig. 4. Hit ratio for AB1:AB, AB2:AB, and AB3:AB

Server-Side Caching Strategies for Online Auction Sites 239

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6

P
er

ce
nt

ag
e

C
ac

he
 H

it
R

at
e

Percentage Cache Size

AB1:AB
AB1:LRU
AB1:LFU

Fig. 5. Comparison among replacement policies AB, LRU, and LFU for placement
policy AB1

As expected, for sufficiently large cache sizes, i.e., for Pc > 4.5% all three policies
yield the same result. Smaller cache sizes distinguish the three policies with
LRU being the best, followed by AB, and then by LFU. For example, for Pc =
0.25%, LRU outperforms AB as a replacement policy by a 53% margin. In fact,
AB1:LRU has a 43% hit ratio while AB1:AB has a 28.1% hit ratio for Pc =
0.25%.

5.2 Results for PRTp Placement Policies

Figure 6 compares policies PRT10:PRT, PRT30:PRT, and PRT50:PRT. As was
the case with the ABn placement policy, the increase in hit ratio is much faster
for smaller caches. The unlimited cache size hit ratios for these policies are 18.6%,
32.2%, and 44.2%, respectively, and occurs for a value of Pc equal to 6%. The

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6

P
er

ce
nt

ag
e

C
ac

he
 H

it
R

at
e

Percentage Cache Size

PRT10:PRT
PRT30:PRT
PRT50:PRT

Fig. 6. Hit ratio for PRT10:PRT, PRT30:PRT, and PRT:50

240 D.A. Menascé and V. Akula

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6

P
er

ce
nt

ag
e

C
ac

he
 H

it
R

at
e

Percentage Cache Size

PRT50:PRT
PRT50:LRU
PRT50:LFU

Fig. 7. Comparison among replacement policies PRT, LRU, and LFU for placement
policy PRT50

difference in hit ratio is significantly reduced for smaller cache sizes. For example,
for Pc = 0.25% the hit ratios for PRT10:PRT, PRT30:PRT, and PRT50:PRT,
are 15.3%, 19.5%, and 23.5%, respectively. Figure 7 compares the effects of the
PRT, LRU, and LFU replacement policies combined with the PRT50 placement
policy. For a percent cache size of 6% all three replacement policies display
similar results because the unlimited cache size behavior is already achieved
at this point. For smaller cache sizes, LRU is slightly better than PRT, which
is slightly better than LFU. The difference between these replacement policies
when combined with PRT is not as marked as in the ABn case.

5.3 Results for the Hybrid Policies

We consider now policies of the type H-AND-n-p:AB-PRT in Fig. 8. The un-
limited cache size behavior is achieved for much smaller cache sizes than in the
ABn and PRTp cases (Pc = 2.5% instead of Pc = 6.0%). As indicated in Fig. 3,
one would expect that for large cache sizes, the following orders, from best to
worst, to hold: i) H-AND-1-30 → H-AND-2-30 → H-AND-3-30; ii) H-AND-1-50
→ H-AND-2-50. iii) H-AND-1-50 → H-AND-1-30. iv) H-AND-2-50 → H-AND-
2-30. These relationships are confirmed in the graph of Fig. 8. However, Fig. 3
does not allow us to infer a relationship between H-AND-1-30 and H-AND-2-50.
Our experiments indicate, as shown in Fig. 8, that H-AND-2-50 outperforms
H-AND-1-30. For Pc = 2.5% the hit ratio of H-AND-2-50 is 15% higher than
that of H-AND-1-30 and for a small cache of Pc = 0.3%, the hit ratio of H-AND-
2-50 is 20.0% higher than that of H-AND-1-30. This means that it is better to
start caching earlier as long as the auction seems to be more popular. Figure 9
is similar to Fig. 8 except that a H-OR placement policy is used as opposed to
a H-AND one. The H-OR policies provide higher hit ratios than their H-AND
counterparts. We already knew that would be the case for unlimited cache sizes
according to Fig. 3. For example, while H-AND-1-50:AB-PRT has a cache hit

Server-Side Caching Strategies for Online Auction Sites 241

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5

P
er

ce
nt

ag
e

C
ac

he
 H

it
R

at
e

Percentage Cache Size

H-AND-1-30:AB-PRT
H-AND-2-30:AB-PRT
H-AND-3-30:AB-PRT
H-AND-1-50:AB-PRT
H-AND-2-50:AB-PRT

Fig. 8. Hit ratio for various HIT-AND-n-p policies

ratio of 37.8% for Pc = 2.5%, H-OR-1-50:AB-PRT has a cache hit ratio of 59.0%
for the same value of Pc. Consider now the same relationship for a small cache
size of Pc = 0.3%. The H-OR-1-50 policy outperforms the H-AND-1-50 one by
a factor of 1.7.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7

P
er

ce
nt

ag
e

C
ac

he
 H

it
R

at
e

Percentage Cache Size

H-OR-1-30:AB-PRT
H-OR-2-30:AB-PRT
H-OR-3-30:AB-PRT
H-OR-1-50:AB-PRT
H-OR-2-50:AB-PRT

Fig. 9. Hit ratio for various HIT-OR-n-p policies

Another observation from Fig. 9 is that a large cache is required to achieve
an unlimited cache size performance level (Pc = 6.5% as opposed to Pc = 2.5%)
when compared to the H-AND case. For the large cache sizes, the following
relationships, which are in accordance with Fig. 3, can be observed (from best
to worst): i) H-OR-1-50 → H-OR-2-50. ii) H-OR-1-30 → H-OR-2-30 → H-OR-3-
30. iii) H-OR-1-50 → H-OR-1-30. iv) H-OR-2-50 → H-OR-2-30. It is interesting
to note the crossovers between H-OR-1-50 and H-OR-1-30 and between H-OR-2-
50 and H-OR-2-30. They show that for smaller cache sizes, the preferred policy
is not the one that has the best performance for unlimited cache sizes.

242 D.A. Menascé and V. Akula

5.4 Policy Comparisons

This section compares the best policies of each category—AB1:LRU,PRT50:LRU,
H-OR-1-50:LRU, and H-AND-1-50:LRU—with respect to the cache hit ratio H
and the cache efficiency ε. Figure 10 compares these policies with respect to H and
shows that AB1:LRU and H-OR-1-50:LRU are very similar and far superior than
PRT50:LRU and H-AND-1-50:LRU. AB1:LRU is slighty superior than H-OR-1-
50:LRU for 0.25% ≤ Pc ≤ 4.0%. For Pc > 4.0%, H-OR-1-50:LRU has a higher
hit ratio. Figure 11 compares the same policies in terms of cache efficiency. It can
be seen that, for all four policies, ε decreases very fast as the cache size increases
indicating that small caches are very effective because of the power law charac-
teristics of auction workloads [1, 10]. In fact, the efficiency curves also follows a
power law. For example, using regression on the AB1:LRU efficiency curve yields
ε = 0.001704/P 0.703

c . As can be seen, AB1:LRU and H-OR-1-50:LRU have higher
cache efficiency than the two other policies.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6

P
er

ce
nt

ag
e

C
ac

he
 H

it
R

at
e

Percentage Cache Size

AB1:LRU
PRT50:LRU

H-OR-1-50:LRU
H-AND-1-50:LRU

Fig. 10. Hit ratio comparison for various policies

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0 1 2 3 4 5 6

C
ac

he
 E

ffi
ci

en
cy

Percentage Cache Size

AB1:LRU
PRT50:LRU

H-OR-1-50:LRU
H-AND-1-50:LRU

Fig. 11. Cache effectiveness comparison for various policies

Server-Side Caching Strategies for Online Auction Sites 243

6 Concluding Remarks

This paper proposed several cache placement and replacement policies and ana-
lyzed them through trace-based simulations using traces from a large production
site. Some general observations from our analysis are: i) LRU is the cache re-
placement policy that outperforms the others when combined with any of the
placement policies considered. For example, for Pc = 0.25%, AB1:LRU outper-
forms AB1:AB by a 53% margin. ii) Hit ratios increase much faster for small
cache sizes than for larger ones. For example, for the AB1:AB policy, an increase
in cache size from 0.25% to 0.5% provides a 27% increase in hit ratio. An in-
crease in cache size from 4% to 4.5% provides only a 0.7% increase in hit ratio.
iii) The unlimited cache behavior can be obtained with cache sizes ranging from
2.5%, for H-AND policies, to around 6% for the other policies. iv) a relatively
small cache, e.g., 4 to 5% of all auctions is enough to generate cache hit ratios of
around 50 to 70% as is the case with the ABn policies. Even very small caches of
about 1% can generate cache hit ratios as large as 40%. v) the H-OR-n-p policies
provide a much better hit ratio than the H-AND-n-p ones. For example, while
H-AND-1-50:AB-PRT has a cache hit ratio of 37.8% for Pc = 2.5%, H-OR-1-
50:AB-PRT has a cache hit ratio of 59.0% for the same value of Pc. vi) The H-OR
policies have crossover points indicating that the best policy for unlimited cache
sizes is not the best for smaller cache sizes. vii) AB1:LRU and H-OR-1-50:LRU
are very similar and far superior than PRT50:LRU and H-AND-1-50:LRU. viii)
AB1:LRU is slighty superior than H-OR-1-50:LRU for 0.25% ≤ Pc ≤ 4.0%. For
Pc > 4.0%, H-OR-1-50:LRU has a higher hit ratio. ix) The cache efficiency de-
creases very fast as the cache size increases indicating that small caches are very
effective because of the power law characteristics of auction workloads. In fact,
the efficiency curves also follows a power law.

In summary, the performance of online auction sites can be significantly in-
creased with very small caches (on the order of 1% of the millions of items being
auctioned). These small caches are more effective than larger caches and pro-
duce more hits per cached auction. We are currently designing a comprehensive
benchmark for online auctions based on our workload characterization of such
sites. We are also implementing a testbed compliant with this benchmark and
we will be using it to test the caching policies described in this paper.

References

1. Akula, V., Menascé, D.A.: An analysis of bidding activity in online auctions. 5th
Intl. Conf. (EC-Web 2004), Zaragoza, Spain, Aug./Sept. (2004) 206–217

2. Bapna,R., Goes, P., Gupta, A.: Online auctions: insights and analysis. Comm.
ACM. 44(11) (2001) 42–50

3. Breslau, L., Cao, P., Fan, Li., Phillips, G., Shenker, S.:, Web Caching and Zipf-like
Distributions: Evidence and Implications. INFOCOM (1), (1999), 126-134.

4. Coffman Jr., E.G., Denning, P.J.: Operating Systems Theory. Prentice Hall, Upper
Saddle River, NJ (1973)

244 D.A. Menascé and V. Akula

5. Davison, B. D.: The Design and Evaluation of Web Prefetching and
Caching Techniques PhD Dissertation, Rutgers University, October (2002) URL:
http://citeseer.ist.psu.edu/davison02design.html

6. Douglis, F., Davison, B. D. (eds) : Web Content Caching and Distribution Proc.
8th International Workshop. Kluwer, June (2004)

7. hardwarezone.com: 10,000 Ebay Enthusiasts to Gather For 10TH Anniversary Cel-
ebration. URL: www.hardwarezone.com/news/view.php?id=1576&cid=5, May 26
(2005)

8. Kleinrock, L.: Queuing Systems: Theory, Vol I. John Wiley & Sons, NY (1975)
9. Lee, D., Choi, J., Kim, J., Noh, S., Min, S.L., Cho, Y., Kim, C.: LRFU: A Spectrum

of Policies that Subsumes the Least Recently Used and Least Frequently Used
Policies. IEEE Trans. Computers 50(12): 1352-1361 (2001)

10. Menascé, D.A., Akula, V.: Towards workload characterization of auction sites.
Proc. IEEE 6th Annual Workshop on Workload Characterization (WWC-6),
Austin, TX, Oct. 27 (2003)

11. Menascé, D.A., Akula, V.: Improving the performance of online auction sites
through closing time rescheduling. 1st Intl. Conf Quantitative Evaluation of Sys-
Tems (QEST-2004), Enschede, the Netherlands, Sept. 27-30 (2004)

12. Menascé, D.A., Almeida, V.A., Fonseca, R., Mendes, M.: A methodology for work-
load characterization for e-commerce servers. ACM Conf. Electronic Commerce,
Denver, CO, Nov. 3-5, (1999) 119-128

13. Pierre, G.: A Web caching bibliography, June (2000) URL : cite-
seer.ist.psu.edu/pierre00web.html

14. Yagoub, K., Florescu, D., Issarny, V., Valduriez, P.: Caching Strategies for
Data-Intensive Web Sites. The VLDB Journal, (2000) 188–199. URL : cite-
seer.ist.psu.edu/yagoub00caching.html

15. Yahoo!Japan: Monthly Disclosure - March
(2005 URL:http://ir.yahoo.co.jp/en/monthly/200503.html, April 8 (2005)

	Introduction
	Background
	User Behavior
	Cache Placement and Replacement Policies
	Experimental Evaluation
	Results for ABn Placement Policies
	Results for PRTp Placement Policies
	Results for the Hybrid Policies
	Policy Comparisons

	Concluding Remarks

